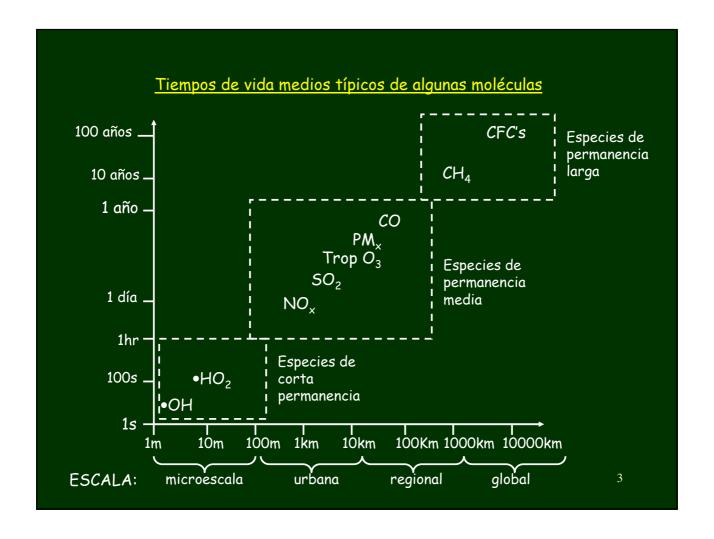
Tema 4: Contaminación Troposférica I

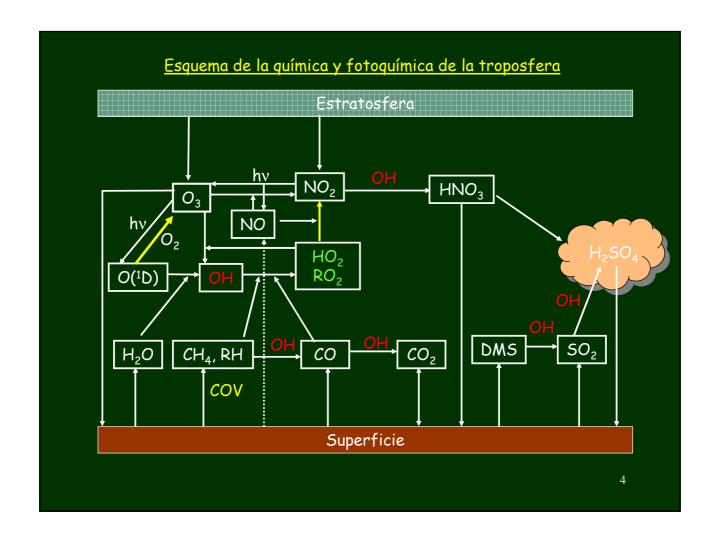
- 4.1 Esquema general de reactividad en la troposfera: fotoquímica y oxidantes troposféricos
- 4.2 Radical OH y mecanismos de oxidación
- 4.3 Ozono urbano y *Smog* fotoquímico

4.1 Esquema general de reactividad en la troposfera

Principales reacciones que tienen lugar en la troposfera:

LUZ (visibleultravioleta)


Radical OH (fundamentalmente)
también: O₃, HO₂, NO₃


REACCIONES FOTOQUÍMICAS

- · Fotólisis del ozono
- · Fotólisis del NO2
- · Fotólisis aldehídos y cetonas

REACCIONES DE OXIDACIÓN

- · Oxidación de hidrocarburos
- · Oxidación del NO
- · Oxidación del NO2 y el SO2

Oxidantes en la troposfera

Radical hidroxilo: OH Radical hidroperoxilo: HO₂ (H-O-O)

Radicales alquilperoxilos: RO_2 (R-O-O, ej. CH_3 -O-O)

Ozono: O_3 Oxígeno atómico: $O(^3P)$, $O(^1D)$

Radical nitrato: NO_3 (química nocturna)

Oxidación de una especie A en la troposfera

A + oxidante → productos

Tiempo de vida media $\tau_A = \frac{\ln 2}{k_{ox} [oxidante]}$

Oxidantes en la troposfera

Radical hidroxilo: OH Radical hidroperoxilo: HO₂ (H-O-O)

Radicales alquilperoxilos: RO_2 (R-O-O, ej. CH_3 -O-O)

Ozono: O_3 Oxígeno atómico: $O(^3P)$, $O(^1D)$

Radical nitrato: NO_3 (química nocturna)

Tabla 4.1 Tiempos mínimos de vida de algunas sustancias orgánicas frente a algunos oxidantes

Concentración, moléculas cm ⁻³	Especies oxidantes				
	0_3 2,46 × 10^{12}	$^{\rm OH}_{1\times10^6}$	$^{\mathrm{HO_2}}_{1,2\times10^8}$	NO_3 2,5 × 10 ⁸	Cl 1×10^3
n-Butano		4,8 d	11-12-12-12-12-12-12-12-12-12-12-12-12-1	33 mes	53 d
trans-2-Buteno	35 min	4,3 h		2,8 h	
Acetileno	16 mes	12,8 d		15,4 mes	58 d
Tolueno		47 h		22,7 mes	207 d
Formaldehído		30 h	29 h	80 d	156 d
o-Cresol	18 d	6,6 h		5 min	
α-Pineno	1,3 h	5,2 h		11 min	24 d
Sulfuro de dimetilo	4,7 d	58 h	19,3 d	1 h	35 d

Producción fotolítica de radicales oxidantes en la troposfera

OH: (1)
$$O_3$$
 + hv \rightarrow $O(^1D)$ + O_2 $O(^1D)$ + H_2O \rightarrow 20H (domina a mediodía)

(2)
$$HO_2 + NO \rightarrow OH + NO_2$$
 reacción de interconversión $OH - HO_2$

(3) fotólisis de ácidos nitroso y nítrico, y de peróxido de hidrógeno:

HONO + hv (
$$<400 \text{ nm}$$
) \rightarrow OH + NO (domina al amanecer)

$$HNO_3 + hv$$
 (<350nm) \rightarrow OH + NO_2

$$H_2O_2 + hv$$
 (<360nm) \rightarrow 2 OH

- (4) fotólisis del formaldehído H₂CO (formado a partir de hidrocarburos)
- (5) reacciones de oxidación de alguenos
- > Destrucción del radical OH: reacciones de oxidación

Aplicación de la aproximación de estado estacionario:

(DESTRUCCIÓN = FORMACIÓN)

Producción fotolítica de radicales oxidantes en la troposfera

HO₂:

(1) fotólisis del formaldehído:

$$H_2CO + hv \longrightarrow H + HCO \quad H + O_2 \longrightarrow HO_2 \quad HCO + O_2 \longrightarrow HO_2 + CO$$

(2) reacción del O_2 con radicales alcoxi (por ejemplo, CH_3CH_2O)

$$RCH_2O + O_2 \rightarrow RCHO + HO_2$$

(3) reacciones nocturnas de NOx e hidrocarburos

La concentración estacionaria de HO_2 es aprox. 100 veces mayor que la de OH Ambas son especialmente abundantes durante el día

Producción fotolítica de radicales oxidantes en la troposfera

NO₃:

formación

$$NO + O_3 \rightarrow NO_2 + O_2 \qquad NO_2 + O_3 \rightarrow NO_3 + O_2$$

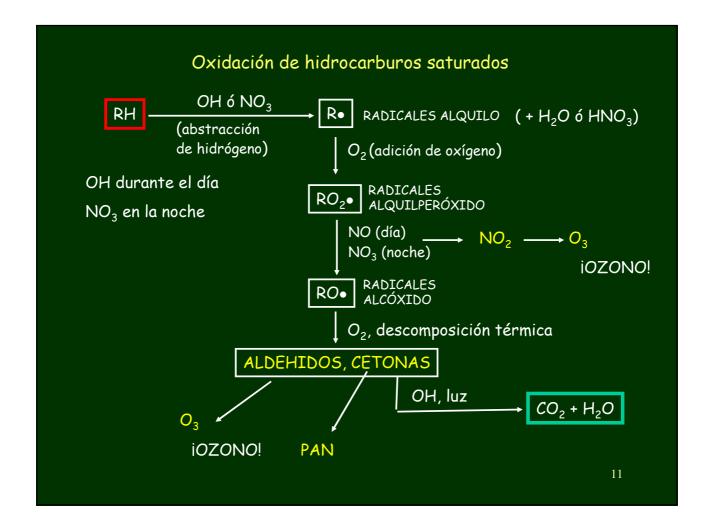
reacciones de destrucción:

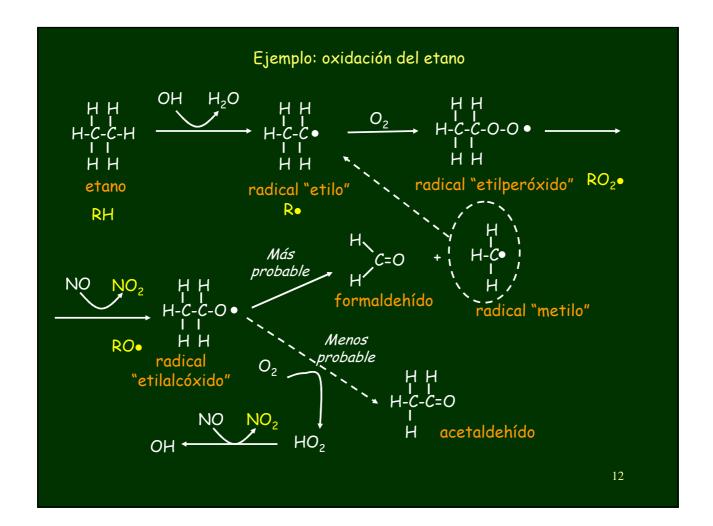
```
fotólisis NO_3 + hv \rightarrow NO + O_2 ó NO_2 + O (precursor de NO_X) reacciones NO_3 + NO_2 \longleftrightarrow N_2O_5 NO_3 + NO \longrightarrow 2NO_2
```

La fotólisis es rápida, el NO_3 es una especie nocturna (10 8 moléculas/cm 3)

4.2 Radical OH y oxidación en la troposfera

El radical OH no reacciona con los componentes mayoritarios de la troposfera, por ejemplo, el ${\it CO}_2$ y el ${\it N}_2$ no reaccionan


1- Adición a enlaces dobles o triples

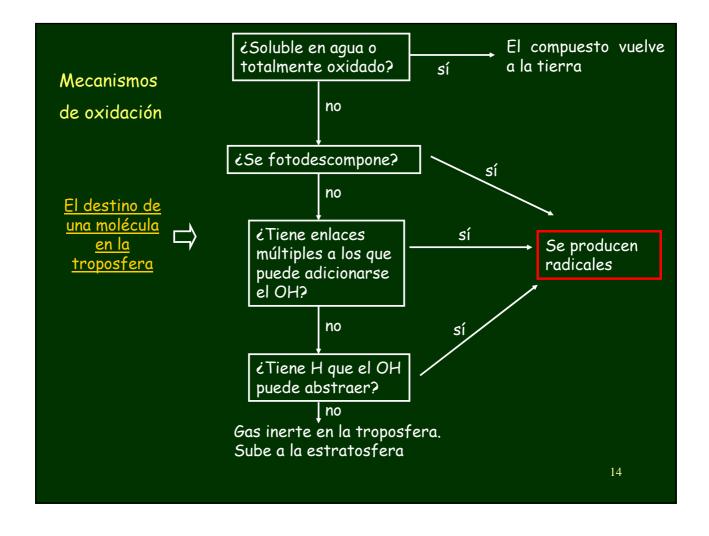

$$O = S = O + OH$$
 \longrightarrow $O = S$
 $O = S = O + OH$ \longrightarrow $O = S$
 $O = C = O + OH$
 $C = O + OH$
 $C = C$
 $O =$

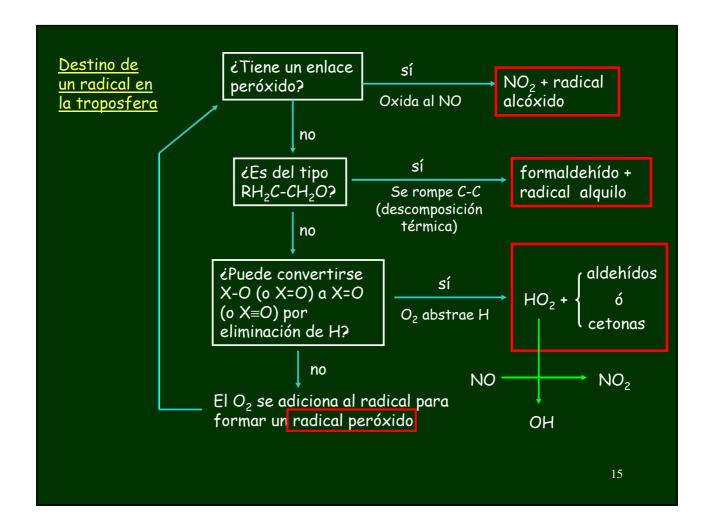
2- Abstracción de hidrógeno

$$CH_4 + OH \longrightarrow CH_3 + H_2O$$

 $RH + OH \longrightarrow R + H_2O$
 $NH_3 + OH \longrightarrow NH_2 + H_2O$

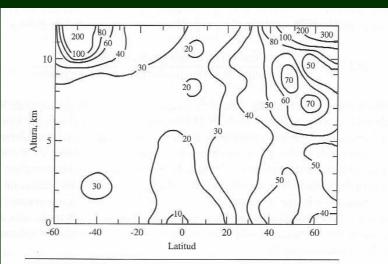
la reacción de adición es <u>preferente</u> frente a la de abstracción





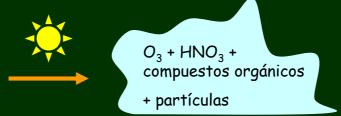
Oxidación de hidrocarburos insaturados

Oxidación de alquenos:


13

4.3 Ozono urbano

"Smog"(= "Smoke"+"Fog"): formación de ozono y otros contaminantes secundarios a partir de NOx y COV, bajo acción de la luz del sol,



Variación con latitud y altura de la concentración de ozono en la troposfera. Adaptada de (Marenco y Said, 1989).

Mecanismo global del smog fotoquímico

> El origen del smog es la oxidación de los hidrocarburos en presencia de NO

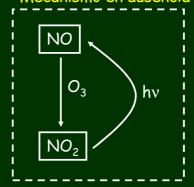
Contaminantes primarios:
NO_× + COV

- · Óxidos de Nitrógeno
- · Compuestos orgánicos volátiles
- · Luz solar

- ·Ozono
- ·Ácidos
- ·Compuestos orgánicos semivolátiles
- ·Partículas en suspensión

Óxidos de nitrógeno y ozono troposférico

Principal contaminante primario: NO


$$2NO + O_2 \rightarrow 2NO_2 \text{ (lenta)}$$

$$NO + O_3 \rightarrow NO_2 + O_2 \text{ (rápida)} \quad k_{NO}$$

$$NO_2 + hv \rightarrow NO + O(^3P) \quad j_{NO2}$$

$$O(^3P) + O_2 + M \rightarrow O_3 + M \quad k_{O3}$$

El NO en exceso mantiene baja la concentración de ozono Mecanismo en ausencia de COV

 \succ Aplicando la aproximación de estado estacionario a O y O_3 , se deduce

$$\left[O_3\right]_e = \frac{j_{NO_2}}{k_{NO}} \frac{\left[NO_2\right]}{\left[NO\right]}$$

Ejercicio: Deduce esta fórmula a partir del mecanismo del recuadro de arriba

Ozono en una atmósfera libre de COV

18

Absorción UV-vis del NO₂

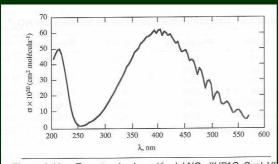


Figura 3.12. Espectro de absorción del NO₂ (IUPAC, Supl. VI)

Fotólisis para λ < 400 nm (formación de ozono)

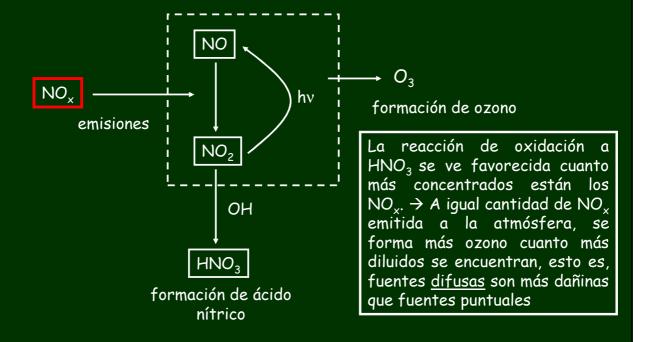

Absorción UV-vis del O₃

Figura 3.11. Absorción del O₃ de radiación estratosférica y troposférica. Adaptadas respectivamente de IUPAC, Supl. VI y de (Brion et al., 1998).

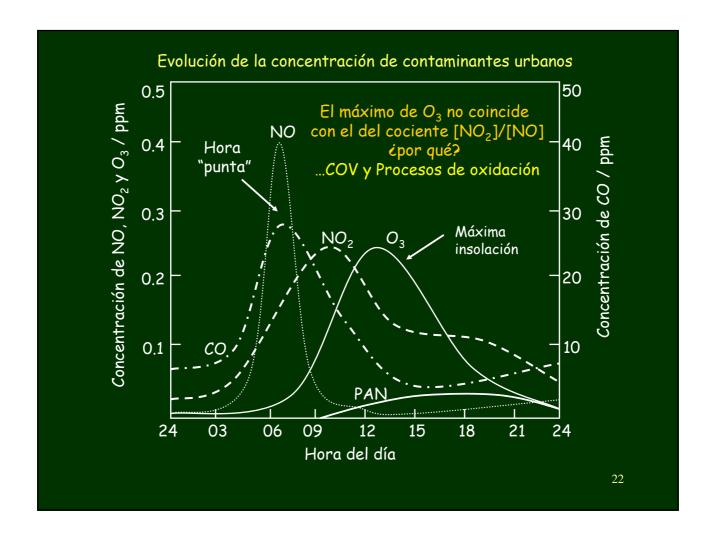
Fotólisis dando $O(^1D)$ para λ < 410 nm (formación de OH)

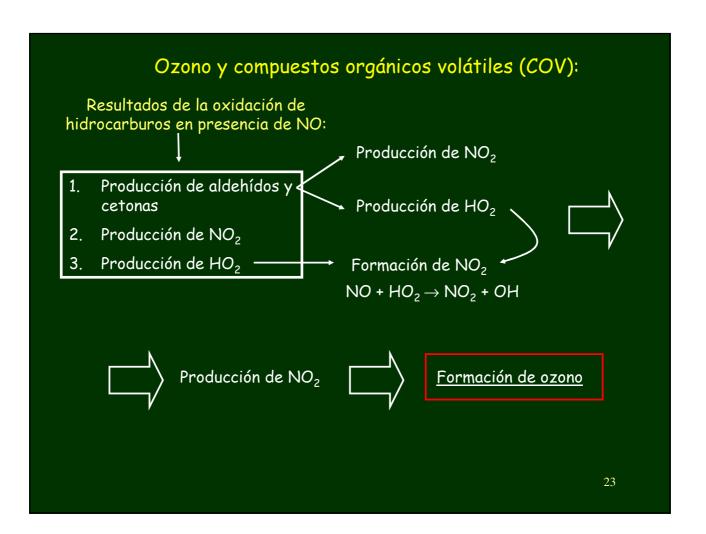
> La formación de ozono <u>compite</u> con otras reacciones químicas que también tienen lugar en la troposfera:

Principales reacciones de destrucción de NOx

```
NO + O_3 \rightarrow NO_2 + O_2

NO + RO_2 \rightarrow RO + NO_2 (en presencia de COV)


NO + HO_2 \rightarrow OH + NO_2


NO + NO_3 \rightarrow 2NO_2 (durante la noche)
```

```
NO_2 + hv \rightarrow NO + O (durante el día)

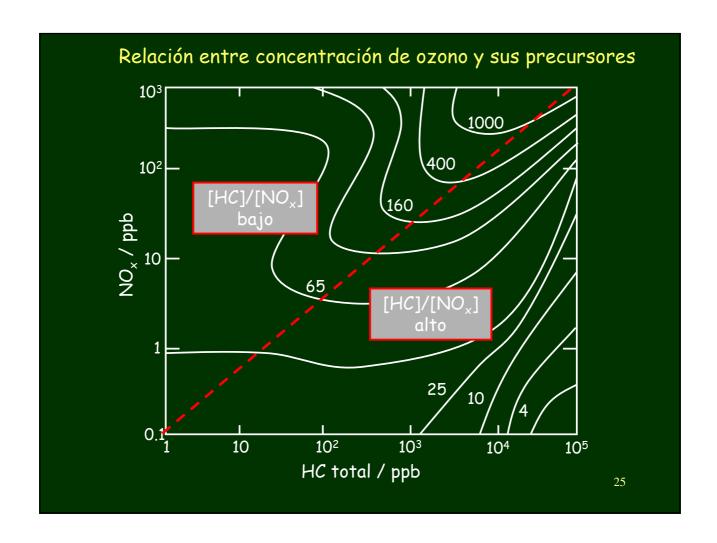
NO_2 + OH \rightarrow NO + H_2O (durante el día)

NO_2 + NO_3 \rightarrow N_2O_5 (durante la noche)
```


Ozono y compuestos orgánicos volátiles (COV):

La oxidación del COV en presencia de NO produce formaldehído

$$COV + OH + NO \longrightarrow H_2CO$$
 (formaldehido)


En presencia de NO, el formaldehído PRODUCE O_3

(1)
$$H_2CO + 2NO + 2O_2 \longrightarrow CO_2 + H_2O + 2NO_2 \longrightarrow O_3$$

En ausencia de NO ([NO] <10-3 [O_3]), el formaldehído DESTRUYE O_3

(2)
$$H_2CO + 2O_3 \longrightarrow CO_2 + H_2O + 2O_2$$

Tanto (1) como (2) son el resultado de una serie de reacciones de oxidación secuenciales $H_2CO \longrightarrow HCO \longrightarrow CO \longrightarrow CO_2$, en las que intervienen el OH y el HO_2

Producción de peroxiacetilnitrato (PAN)

Los peroxialquilnitratos son otros contaminantes secundarios propios del smog fotoquímico. Producen irritación ojos y daños en la flora.

Se forman por adición del NO2 a radicales peroxialquilo

Formación de peroxiacetilnitrato (PAN)
$$CH_3-C + NO_2 \rightarrow CH_3-C$$

$$O-O-NO_2$$

radicales peroxialquilo procedentes de la oxidación de las cetonas

$$R-CO-CH_3$$
 $CH_3 + R-C=O$ O_2 O_2 O_3 O_4 O_4 O_4 O_5 O_5 O_6 O_7 O_8 O

Otro contaminante nitrogenado importante: NH3

De los pocos contaminantes de carácter básico.

Producido por la ganadería (excrementos) y agricultura (abonos)

No sufre fotólisis. Contribuye al efecto invernadero.

Es oxidado por el OH o reacciona con aerosoles de sulfúrico.

$$\begin{array}{c} NH_3 + aerosoles \longrightarrow NH_4^+ \\ NH_3 + OH \longrightarrow NH_2 + H_2O \\ NH_2 + O_3 \\ + NO \\ + NO_2 \end{array}$$

Formación de partículas secundarias

> Muchos de los productos de las reacciones de oxidación: Aldehídos, cetonas, peroxialquilnitratos, ácido nítrico, etc.. e incluso el agua, tienen puntos de ebullición relativamente ALTOS y ello permite que condensen en la atmósfera en forma de pequeñas gotas.

Causa de la "bruma" contaminante característica del "smog" fotoquímico