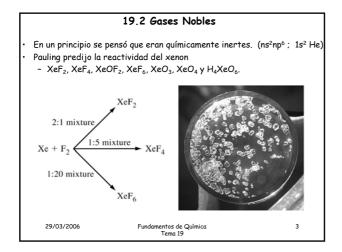
Tema 19: Estudio general de los elementos. II. No metales

- 19.1 Propiedades generales (físicas y químicas)
- 19.2 Gases nobles
- 19.3 Halógenos
- 19.4 Familia del oxígeno
- 19.5 Familia del nitrógeno
- 19.6 Familia del Carbono

29/03/2006

Fundamentos de Química Tema 19

19.1 Propiedades generales


19.1.1 Propiedades físicas

- ·Raramente tienen brillo metálico
- $\cdot A$ temperatura ambiente pueden ser sólidos, líquidos o gases (generalmente gases)
- \cdot No son ni dúctiles ni maleables. Los sólidos suelen ser quebradizos
- ·Son malos conductores de la electricidad
- ·Son malos conductores del calor
- ·Tienen bajo punto de fusión

19.1.2 Propiedades químicas

- ·No reaccionan con ácidos
- ·Reaccionan con bases formando óxidos ácidos.
- ·Forman aniones en solución acuosa
- •Forman compuestos covalentes

29/03/2006 Fundamentos de Química

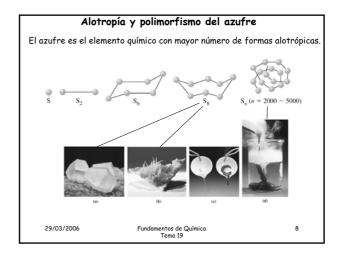
Helio En gas natural	Superconductores, cromatografía de
	gases
Neón Aire	Señales luminosas de gas
Argón Aire	Soldadura de arco
Kriptón Aire	Ninguno
Xenón Aire	Ninguno
Radón Aire	Ninguno, contaminante radiactivo del aire

19.3 Halógenos

- Moléculas diatómicas, representadas por X₂.
- Moléculas diatómicas no polares → puntos de fusión y ebullición relativamente bajos que aumentan dentro del grupo (F → I).
- · La reactividad aumenta.: I \longrightarrow F
- Fluoro
 - Es el elemento más electronegativo de la tabla periódica.
 - Forma enlaces muy fuertes (iónicos y covalentes)

	Fluorine (F)	Chlorine (CI)	Bromine (Br)	Iodine (I)
Physical form at room temperature	Pale yellow gas	Yellow-green gas	Dark red liquid	Violet-black solid
Melting point, °C	-220	-101	-7.2	114
Boiling point, °C	-188	-35	58.8	184
Electron configuration	[He]2s22p5	[Ne]3s23p5	$[Ar]3d^{99}4s^24p^5$	[Kr]4d105s25p5
Covalent radius, pm	71	99	114	133
Ionic (X ⁻) radius, pm	133	181	196	220
First ionization energy, kJ mol-1	1681	1251	1140	1008
Electron affinity, kJ mol ⁻¹	-328.0	-349.0	-324.6	-295.2
Electronegativity	4.0	3.0	2.8	2.5
Standard electrode potential, V				
$(X_2 + 2e^- \longrightarrow 2X^-)$	2.866	1.358	1.065	0.535

		Aplicaciones	
Flúor	nF ₂	Combustibles nucleares, aislantes, fluorantes, catálisis, insecticidas	
Cloro	Agua del mar (NaCl ₂)	Agente oxidante en blanqueadores y desinfectantes, anión biológico principal	
Bromo	Agua del mar	Bromuros orgánicos, fotografía (AgBr	
Yodo	Salitre (NaIO ₃)	Sal de mesa, hormonas tiroideas, desinfectante	
Astato	Isótopo muy raro	Ninguno	


19.4 Familia del oxígeno

- S y O son los dos elementos de este grupo con comportamiento claramente no metálico.
- Forman compuestos iónicos con metales activos y compuestos covalentes semejantes:

- Diferencias importantes entre los compuestos del S y del ${\it O}$ que son debidas a:
 - 1. Las características especiales del O: pequeño tamaño, electronegatividad alta e incapacidad para formar octetos expandidos en las estructuras de Lewis.
 - 2. Formación de enlace de hidrógeno en agua pero no en $\rm H_2S$.
 - 3. Estados de oxidación: EO(O) -2, -1 y 0, pero EO(S) -2 a +6

inclusive.

29/03/2006 Fundamentos de Química 7
Tema 19

Ozono

Forma alotrópica del oxígeno (O_3)

3 $O_2(g) \rightarrow$ 2 $O_3(g)$ ΔH° = +285 kJ

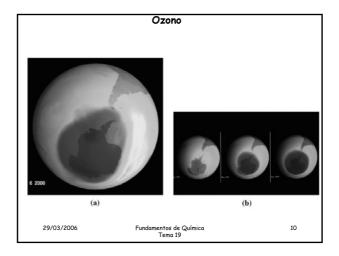
Reacciones que producen ozono en la parte superior de la atmósfera

 O_2 + UV radiation \rightarrow 2 O

 $M + O_2 + O \rightarrow O_3 + M^*$

Funciones más importantes del ozono

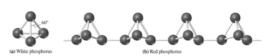
1. Absorber radiación ultravioleta


 O_3 + UV radiation $\rightarrow O_2$ + O

2. Desprender calor a la atmósfera

 $O_3 + O \rightarrow 2 O_2$ $\Delta H^{\circ} = -389.8 \text{ kJ}$

29/03/2006 Fundamentos de Química Tema 19


amentos de Química Tema 19

Obtención y Aplicaciones: Familia del oxígeno Elemento Fuente Aplicaciones Agente oxidante, tratamiento de aguas, blanqueadores, combustibles de cohetes, aplicaciones médicas, Oxígeno Depósitos subterráneos de Ácido sulfúrico, tratamiento del S: gas natural y petróleo caucho, fármacos, textiles, Azufre insecticidas... Impurezas en las menas de Electrónica, xerografías, pigmentos Selenio sulfuro de cadmio Telurio Mezclas de telururos y Fabricación de acero sulfuros metálicos Petchblenda (mineral de uranio); elemento traza Uso futuro como fuente de calor en satélites espaciales y estaciones Polonio formado en el decaimiento lunares del radio 29/03/2006 Fundamentos de Química Tema 19

19.5 Familia del nitrógeno

- · Elementos con enorme riqueza química
 - El nitrógeno puede presentarse en muchos estados de oxidación (desde +5 hasta -3 incluidos)
- · N and P son no metálicos
- · As and Sb son metaloides
- Bi es metálico
- P, As y Sb muestran alotropía

Formas alotrópicas más frecuentes del fósforo. Fósforo blanco y Fósforo rojo

12

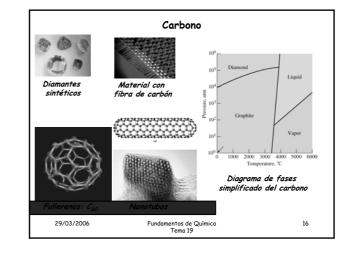
29/03/2006 Fundamentos de Química Tema 19

Elemento	Fuente	Aplicaciones	
Nitrógeno	Aire	Metalurgia, petroquímica, amoniaco, congelantes, alimentos, conservante biológico, uso futuro en superconductores	
Fósforo	Menas de fosfato	Materia prima para la síntesis del ácido fosfórico, sulfatos y cloruros d fósforo. Insecticidas	
Arsénico	Arsenopirita (FeAsS); polvo de chimenea en la extracción de Cu y Pb	Películas, diodos (foto) emisores de luz, aleaciones de plomo	
Antimonio	Estibnita (Sb ₂ S ₃); polvo de chimenea en la extracción de Cu y Pb	Baterías ácidas de plomo (5% Sb)	
Bismuto	Bismutita (Bi ₂ S ₃)	Aleaciones; medicinas	

Eutrofización; un problema medioambiental relacionado con el fósforo

·La eutrofización (enriquecimiento en nutrientes de las aguas) produce un crecimiento excesivo de algas y otras plantas acuáticas.

·Al morir, las plantas se depositan en el fondo de los ríos, embalses o lagos, generando residuos orgánicos.


·Los residuos orgánicos se descomponen y consumen gran parte del oxígeno disuelto afectando a la vida acuática y matando por asfixia la fauna y flora.

La eutrofización se acelera con los fosfatos procedentes de las aguas residuales y los restos de fertilizantes utilizados en agricultura

29/03/2006 Fundamentos de Química 14 Tema 19

Una forma cristalina estable semejante al diamante
ar dramarro
Forma sólo un óxido sólido (SiO ₂) estable a temperatura ambiente. El otro óxido SiO sólo es estable en el intervalo 1180-2480°C
Reacciona en medio alcalino formando H ₂ (g) y SiO ₄ ²-(aq)
Oxoanión principal SiO ₄ ²⁻ ; tetraédrico
Menor tendencia a la concatenación
Menor tendencia a formar enlaces múltiples

Elemento	Fuente	Aplicaciones
Carbono	Diamante, grafito, petróleo, carbón, carbonatos, CO ₂	Electrodos, joyería, abrasivos, películas, pigmentos, metalurgia, decolorante del azúcar
Silicio	Sílice (SiO ₂), ninerales de silicato	Semiconductores, vidrio, cerámica
Germanio	Germanita (mezcla de sulfuros de Cu, Fe y Ge)	Semiconductores, espectrómetro infrarrojo, ventanas y lentes
Estaño	Casiterita (SnO ₂)	Anticorrosivo en latas de acero, aleaciones (soldaduras, bronces, peltre
Plomo	Galena (PbS)	Baterías automotrices, soldaduras, munición.