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1. INTRODUCTION

The Multiattribute Utility Theory (MAUT) provides a conceptual framework that allows
linking Multicriteria Decision Making (MCDM) to economics and decision theory by
defining a Multiattribute Utility Function (MAUF). This utility function comprises all the
relevant attributes to be optimized by the decision maker, subject to all the constraints
of the problem (see Keeney and Raiffa 1976 for a classic reference).

Once the existence of a MAUF is accepted, the practical implementation of this
approach faces at least two technical difficulties. First, the mathematical specification
for the MAUF must be chosen, and second, the parameters of this function need to be
elicited by some estimation or calibration procedure. Actually, both problems are
strongly connected in practice, because the availability of an elicitation procedure
strongly determines the selection of a specific function.

Assume there are n relevant attributes and the preferences of the decision maker for
these attributes are represented by the monoattribute utility functions w; (i=1,...,n).
Keeney (1974) and Keeney and Raiffa (1976) demonstrated that, if the attributes are

mutually utility independent, then the MAUF U (i, ,...,u,,) can be expressed as follows:

UQtyseestt,) = D kit +k ki + k2 ok ki + .+ K"k, Lk, .,
i=1 i=1 i=1

i j>i
I>j

where U and uj,...,u, are normalized to be bounded between zero (for the worst

possible value) and one (for the best possible value) and k is a scaling constant that
n n

must satisfy the normalizing constraint 1+k = H(l+kk,-). If >k;#1 and, as a
i=1 i=1

consequence, k #0, then the general utility function proposed by Keeney and Raiffa

can be expressed in the following multiplicative form:

KU Gty ooy t,)) +1 = [T [kkt; +1] [1]

i=1

n
On the other hand, if > k; =1, then k=0 and the Keeney and Raiffa function
i=

collapses to the following linear form:



n

Uuy,...;u,) =) ku, [2]

i=1
where n-1 parameters need to be elicited and the n-rh one can be calculated from the

n
condition X} k; =1.
i=1

The conventional way to elicit the parameters of the MAUF in applied studies is to use
face-to-face surveys in order to get direct information from decision makers about the
weight attached to each criterion in the decision making process (see Tiwari et al.,
1999, Linares and Romero, 2000, Prato and Hajkowicz, 2001). On the other hand,
Sumpsi et al. (1997) proposed a non-interactive method to elicit the weights given by
farmers to each criterion, so that these weights are “compatible not with the answers of
the farmers to artificial questionnaires but compatible to the actual behavior which they
follow” (p. 65). These weights can be understood as sensible estimates for the

parameters ki,...,k, in a linear MAUF as [2] (see Sumpsi et al., 1997, Gémez-Limo6n

and Berbel, 1999, Berbel and Gémez-Limén, 2000, or Gémez-Limén and Riesgo,
2004).

Specification [2] can be understood as a limiting case of [1], implying that [2] is more
restrictive or, equivalently, that [1] is more general and flexible, so that it could be
potentially more accurate in some real situations. Nevertheless, specification [2] is
chosen much more often than [1] for obvious technical reasons: the linear structure of
[2] makes the interpretation of the parameters much more apparent and, therefore, it is
easier for the decision makers to reveal their preferences as measured by these
parameters in a survey. Furthermore, the linear structure of [2] allows the natural use of
an indirect linear elicitation method such as the one proposed by Sumpsi et al. (1997)
without the need of interactive surveys'.

To the best of our knowledge, there is no equivalent (non interactive) method to elicit
the parameters of a nonlinear function as [1] and the only available procedures require

' As a further argument to use a linear MAUF, some authors have claimed that, in some cases, it seems to
represent a reasonably close approximation to a hypothetical real utility function (Edwards, 1977; Farmer,
1987; Huirne and Hardaker, 1998; Amador et al., 1998). As a matter of fact, a linear expression can be
considered as a good local approximation to a nonlinear one, so that, if the environment under which the
decision making process takes place is very stable and close to a initial observed situation, the linear
approach is likely to be accurate enough. Nevertheless, an estimated linear function will not be probably
very suitable to reproduce decisions made under a changing environment.



direct surveys. Furthermore, the nonlinear structure makes the interpretation of the
parameters more obscure so that the questions in the surveys need to be more
artificial, typically involving lotteries rather than the values of the criteria themselves
(see, for example, Herath, 1981, Herath et al., 1982, Le Gales et al., 2002).

In this paper, we propose a non interactive method to elicit the parameters of nonlinear
utility functions starting from the structure of the problem and from the observed
behavior of the decision makers. From an analytical point of view, the method consists
of writing the problem of determining the values of the parameters, given the observed
decision, as a dual problem of that of making the optimal decision, given the values of
the parameters. From a conceptual point of view, the idea is to make the observed
decision to be consistent with a rational decision making process by finding an
expression of the utility function that reaches its maximum at the observed point. We
use the fact that a rational decision maker will always choose an efficient solution, so
that we can restrict the feasible set to an auxiliary set given just by the efficient
solutions. When the efficient set is not fully known, an operative approximation is
needed. Our proposal to elicit the parameters of the MAUF is independent of the
method used for this approximation, but we present an application in which the efficient
set is approximated by means of a simple linear procedure combining the elements of
the payoff matrix. This procedure gives satisfactory results for our case study, but more
sophisticated methods can be applied if required.

Section 2 presents the problem to be solved and the method proposed to solve it.
Section 3 offers an application for a Spanish agricultural system in which we compare
the simulation ability of both the linear and the multiplicative form of the function
proposed by Keeney and Raiffa (1976). We come up with the result that, in most
cases, the multiplicative specification provides a better approximation to the observed

behavior of farmers. Section 4 presents the main conclusions and some discussion.

2. METHODOLOGY

2.1 The problem

The main idea of our proposal is to make observed decisions to be consistent with a
rational decision making process. To illustrate this idea, assume that a decision maker



has a vector x of decision variables and two criteria over which his preferences are
represented by the mono-attribute utility functions u,(x), u,(x). Let us postulate the
existence of a multiattribute utility function:

U, (x), u, ()] 3]
which is partially unknown. To focus on the proposed method to elicit U , assume that

u,(x) and u,(x) are fully known. For the decision maker the problem is to choose the

value of x to maximize [3] subject to xe Q, where Q is the feasible set for the
decision variables in x. Figure 1 shows an example where the feasible set, in terms of

u, and Uy, is given by the polygon ABCDE. The figure also shows the map of

indifference curves of the decision maker (those combinations providing a fixed value
of function U ). It is important to stress that, the decision maker being rational, the

optimal solution will belong to the efficient set which in this example is represented by

segment AB. Specifically, the optimal decision is located at point P", where an
indifference curve (that one as far as possible from the origin) is tangent to the efficient
set. Using the fact that the solution necessarily belongs to the efficient set, we can
represent the decision problem as the following auxiliary problem:

max U(uy,u,)
4]
s.I. (1/!1,1/!2)6 AB

where the feasible set is replaced by the efficient set. This simplification is both
theoretically sound and operationally convenient for our methodology. Moreover, in [4]

the decision variables are u, and u, rather than x, which is an innocuous change of

variable if the mono-attribute utility functions are known.

The elicitation problem can be stated in the following terms: we can observe the

decision actually made (in the example, point P*) and, typically, we also know the
feasible set, from which we can construct, or at least approximate, the efficient set.
Using this information we need to find a function such that the tangency condition holds

exactly at the observed point P".If we postulate a specific parametric expression for

U , the problem can be seen as finding the value of the parameters in this expression

in such a way that the tangency conditions are satisfied at P

2.2. A simple example



Assume the efficient set is given by the equation u, +1.5u, =1.9 and, by construction,

the mono-attribute utility functions are bounded so that 0 <u,,u, <1. Let us postulate a

multiplicative multiattribute utility function of the Cobb-Douglas type, as in Stam and
Duarte-Silva (2003):

Uuyuy) = )" ()" [5]

where w,,w, are unknown parameters to be elicited. Assume, furthermore, that we
can observe the decisions made by the decision-maker and these decisions provide

the values u,=0.7, u,=0.8, which can be understood as the solution for the problem
of maximizing [5] subject to u +1.5u, =1.9. From the first order conditions of this
problem, we get ”1/“2 =15 WI/WZ and, using the observed values for u,, u,, we can
conclude that w, =12/7w, . Finally, using the common normalization w, +w, =1, we

get the estimates w; =7/19,w, =12/19.

2.3 Determining the efficient set and the reference point: a simple linear
approach

The proposed procedure has two main steps: first, determining the efficient set and the
reference point, and second, finding the values of the parameters such that the
tangency conditions meet exactly at the reference point. This section elaborates on the
first part.

In practice, it may well be the case that decision makers are not fully efficient, so that
their decisions may not belong to the efficient set (for example, point P in Figure 1).
Since an inefficient decision cannot be reconciled with a rational decision making
process, we propose to project the observed point on the efficient frontier by finding
that efficient point as close as possible to the observed one. For example, in Figure 1,
point P is projected on P*. We can interpret the distance between both points as an
error made by the decision maker. We label P as reference point, and it is taken as a
surrogate of P. If the observed point is efficient, then the reference point is the
observed point itself.



INSERT FIGURE 1

If the knowledge of the problem allows us to specify an analytical expression for the
efficient set, this can be used as the “landing surface” for the utility function. Otherwise,
some approximation technique for the efficient set is needed. In this section, we
propose a simple linear method which is used in the application presented below
(section 3), but the rest of the elicitation procedure is independent of the approach
followed to construct the efficient set. Our proposal is to approximate the efficient set
by the hyperplane connecting the elements of the payoff matrix. As noted by André et
al. (2004), these elements turn out to be efficient if properly constructed, an we claim
that combining them can provide a good enough approximation in some cases.
Specifically, it seems to work rather well for our case study but more precise
approximations can be made (at the cost of a higher computational burden) if needed?.
In Annex A we present in detail how to compute the elements of the payoff matrix to
ensure that they are efficient. Moreover, we propose to express those elements in
terms of (mono-attribute) utilities. Although this step is not crucially needed, it is
convenient for operational purposes: by working with utilities we eliminate any problem
of heterogeneity between units of measurement, because all u(x)’s are normalized by
construction (typically between 0 -for the worst value- and 71 -for the best value).
Furthermore, we do not need to distinguish between “more is better” or “less is better”
attributes, because “more” is always better when dealing with utilities.

Assume the feasible set is given the polygon ABCDEFG shown in Figure 2. In this
example, the set of efficient solutions is given by BCD. The linear convex combinations
of the points of the payoff matrix are given by the hyperplane BD. Concerning the
reliability of this approximation, in some cases (such as the example in Figure 1) a
linear combination of the elements of the payoff matrix provides exactly the efficient
set, so that there is no approximation error. In other cases (such as the example in

Figure 2), some approximation error can be made®.

2 Other classic methods to obtain the efficient set are the constraint method, the weighting method or the
multicriterion Simplex method (Romero and Rehman 1989, pp. 71-74, for a brief introduction). See also
Evans (1984) for an overview.

We could also get the paradoxical situations that, if the decision maker is not fully efficient (so that the
observed point is below the efficient set), projecting on the linear combinations of the payoff matrix
provides a better approximation to the real observed behaviour than projecting on the true efficient set. For
example, if the observed point is P in Figure 2, the projection (P) on the linear approximation of the payoff
matrix can be closer to reality than the projection (P ) on the real efficient set.



INSERT FIGURE 2

Once we have constructed the payoff matrix (in terms of utilities), we need to determine
the reference point. If the observed point belongs to the hyperplane BD, then it should
be taken as the reference point itself. Otherwise, it needs to be projected on the
(approximation of the) efficient set. Following Sumpsi et al. (1997), this can be done by

solving the following system of n+ I equations:

= l6]

where u; is the observed value of the i-th criterion and u;; is the jj-th element of the

payoff matrix. If a positive solution exists, then the observed point is a linear convex
combination of the payoff matrix (in terms of Figure 2, it belongs to BD) and it can be
taken as the reference point. Otherwise, we need to project the observed point on the
hyperplane connecting the points of the payoff matrix. We propose to do this by finding
the closest point (according to the Euclidean metric) by solving the following goal
programming problem:
min i(n,- + pl-)2
i
st O+ A+ O U+ = pp=u; [7]
®;,n;, p; 20 i=1.n
0 +..+0, =1

where n; (p) is the negative (positive) deviation variable from the observed value u.
B — . .
The reference point is then constructed as u = > o,u; where u is the j-th column of
i=1

the payoff matrix.

Finally, we need to find an analytical expression for (the approximation of) the efficient
set, i.e. an equation like
Futyyenit,) =0, [8]



to be satisfied by all the elements in the efficient set. We follow the simplest approach

which is to estimate a linear function*:
F(uy,csut,) =PBo +u; +Bouty +...4+B,u, =0 [9]
that needs to be met by the g columns of the payoff matrix and from which the

parameters £ can be calculated by standard linear methods.

2.4 Eliciting the parameters of the utility function: a dual approach

As shown in section 2.1, the problem of the decision maker can be expressed as
deciding the values of u;,...,u, to

max U (uy,...,u,,Y)

[10]
st. F(uy,....u,)=0

where F(u;,...,u,) =0 represents the efficient set and we postulate a parametric

multiattribute utility function U (uy,...,u,,,Y), 7 being a vector of parameters to be
elicited. Assume also that the function is concave so that the first order conditions of
problem [10] provide a maximum. Manipulating these first order conditions we get the
following system of n-1 equations:

oU (uy,...,u,,Y)/Ouy _ OF (uy,...,u,)/ou,y
U (uy,...,u,,Y)/0u;  OF (uy,...,u,)/ou,

[11]
oU (uy,...,u,,Y)/ou, _ OF (uy,..., u, )/u,,
oU (uy,...,u,,Y)/0u;  OF (uy,...,u,)/ou,

where, if the linear approximation [9] is used, OF (u;.....u,)/du; =B;. By substituting
the reference values (those obtained from P) of u,,...,u, in [1 1] we get a system of
equations where the parameters y are unknowns. This is the key system to be solved
in order to elicit the values of the parameters. Typically, we need to solve the system
[11] including some normalization constraint and/or some restriction on the values of

the parameters for the utility function to have desirable properties (for example, the

parameters being nonnegative and smaller than one, etc).

* Since the generic equation of a g-dimensional hyperplane has n+1 parameters (3,, ,, ..., 5,) we can

arbitrarily normalize one of them to be equal to 1. We choose ,31 =1 for computational convenience: since

we need later on to compute the ratios of the ,5 ’s, fixing the denominator to be always equal to one can
avoid part of the numerical errors due to rounding.



If we represent these constraints as ye ®, where ©® is the feasible set for the
parameters, the resulting system is {[11]ye ©} . We can find three cases:

1.- The easiest case happens when there is a unique feasible solution for the system,
as illustrated in the example shown in section 2.2. Then this solution provides the
elicited parameter values.

2.- If the system {[11]ye ©} is unfeasible, we can conclude that the reference point

(observed or surrogate) cannot be explained as the result of a decision making process
with the postulated utility function®. Nevertheless, we can understand it as an
approximation by solving the following goal programming problem:

. n o)
min > (n; +p;)

¥ i=2
s.I.
12
U (uy,...,u,,Y)/ou; = OF (uy,...,u,,)/ou; i . 2]
U (Uy,..sttyy,Y)/Ouy b oF (uy,...,u,,)/ou, "
Ye ®

3.- The most interesting case is that in which there are multiple solutions, which
typically happens when there are more parameters to be elicited than conditions to be
satisfied by these parameters in the system {[11] ye ®}. To deal with this case, we
propose to formulate the parameter elicitation problem as a dual problem of [10]. We
do this by taking advantage of the general formulation of duality proposed by Johri
(1993 and 1994). Consider problem [10] as the primal problem, which can be
formulated as:

max  U(uy,....u,,Y) [13]

I'={u,..,u, )/ Fu,..,u)=07v= Y’} being the feasible set for (uq,...,u,,7Y), where
the value of v is fixed and denoted as y (since the decision maker is assumed to take
it as given). Nevertheless, we include y as a (trivial) decision variable to fit the problem

into Johri’s setting. The Johri’'s general dual problem can be expressed as:

min{ max U(ul,...,un,y)} [14]

® For example, assume that, in the numerical example shown in section 2.2, we have the additional
constraint w, 20.5. Since the only combination of parameters that guarantee tangency in the observed

pointis w; =7/19,w, =12/19, we have an infeasible problem.

10



where the minimization is carried out over all the sets A which include I'. Given the
particular nature of our problem, we have more relevant information which we can
include, as a constraint, in order to tighten the feasible set and pin down the solution.
By hypothesis, we know the solution of [10] in terms of (u,,...,u,) —which we label as

(u;u::) If we include this information, by constraining (u;,...,u,) to be equal to
(uj,...,u:), the resulting restricted dual problem collapses to decide just y. Moreover,

we need to guarantee that the value of y is such that (uj,...,u:) maximizes
U(u,,...,u,,7). In an operational way, we can do it by including the optimality

conditions [11]. Furthermore, any feasibility constraint ye ® on the parameter values

should also be included. Since the constraint F(uf,...,u:;) =0 holds by construction, it

does not need to be explicitly imposed. Summing up, we propose to solve the following
problem in order to elicit the values of the parameters:

min U(uT,...,u: .Y)
U (uy,....u,,Y)/0u; _ OF (uy,...,u,)/ou;
OU (uy ..o, Y)/O;  OF (uy,...,u,,)/Ouy
Ye O

i=2,..n [15]

Figure 3 shows a flow chart summarizing the proposed method. Note that case 1
(single solution) can be seen as a particular case of case 3 (multiple solutions), so that,

in practice, it is enough to solve [15] and, if we are in case 1, i.e., the feasible set

contains a single point, that point will trivially be the solution of [15].

INSERT FIGURE 3
3. AN APPLICATION TO AGRICULTURAL ECONOMICS

A number of authors have pointed out that, contrary to the usual assumption in
conventional economics, farmers are not only concerned with the maximization of
profit, but other attributes such as risk, management complexity, leisure time,
indebtedness, etc., are also involved in farmers’ decision making. See Gasson (1973),
Smith and Capstick (1976) or Cary and Holmes (1982). More recently Willock et al.
(1999), Solano et al. (2001) and Bergevoet et al. (2004) have also stressed this point.

11



Since farmers take their decisions trying to simultaneously optimize a range of
conflicting objectives, both the MCDM paradigm and the multiattribute utility theory
seem to be relevant in this context. In this section we present an application to
agricultural economics in order to test the multiplicative expression [1] as compared to
the linear one [2] and to check if the former can provide some better performance (i.e.,
better ability to reproduce the observed behavior) in some cases.

3.1. Case study

The case study is a sample of 22 average farmers from the Douro basin in northern
Spain. This basin is the greatest of Spanish rivers, with a surface of 78.954 km?. The
climate is warm Mediterranean®, with long cold winters and short warm summers. The
average rainfall ranges between 400 and 500 millimeters per year. The most important
crops in this area are strongly dependent on CAP (Common Agricultural Policy)
subsidies and low value-added crops. In an average year, the main activities are winter
cereals (30%), maize (25%), sugar beet (15%), alfalfa (10%), sunflowers (5%) and
other minor crops (15%). All the data used to feed the models were obtained both from
official statistics and from a survey developed in the area under study during the 2000-
01 agricultural year. For more information on the survey and other elements of the case
study see Gémez-Limon and Riesgo (2004).

3.2. Mathematical model

To simulate the farmers’ decision-making process under the MAUT framework, we
construct a mathematical model where farmers decide the value of their decision
variables, being limited by certain constraints, in order to achieve various objectives:
Decision variables. Each farmer has a vector x of decision variables x,, where x,
measures the amount of land devoted to every particular crop, including winter cereals,

maize, sugar beet, sunflowers, alfalfa, beans, potatoes and set-aside’.

Constraints. We identify the following constraints as applied to each farmer:

6 Papadakis classification (1965)
7 Specifically, x; is (amount of land devoted to) winter cereals, x, is maize, x; is sugar beet, x, is alfalfa, x; is
potatoes, x4 is sunflowers, x; is beans, x; is set-aside

12



= Land constraint. The sum of all crops must be equal to the total surface available to
each farmer (denoted as sup):
8
2. X, = Sup
h=1
= CAP constraints. To fulfill the CAP requirements, we included 20% of set-aside for
cereal, oilseed and protein crops (COP crops). Any land devoted to set-aside greater
than this percentage is excluded of EU subsidies, and this is taken as an invalid
option in the model:

Maximum set-aside: x; <20% - (x, + x, + x,)

On the other hand, the CAP force farmers to withdraw at least the 10% of the land
devoted to COP crops to obtain compensatory payments. This withdrawal is made in
irrigated and non irrigated lands bearing in mind both theoretical yields. A good
estimation of the set-aside in irrigated land is the observed data in the period under
study:

Minimum set-aside: x, 2 observed withdraw
Furthermore, because of the quota, sugar beet is limited for each farmer to the
maximum area in the period studied:

Sugar beet quota: x, < maximum sugar beet

= Agronomic constraints. For rotational conditions, land devoted to alfalfa have to rest

before cultivating again this crop:

4
ptq

X, < - Sup

where p is the number of years during the crop is on the land (4 for alfalfa) and ¢ is
the number of years off the land (3 for alfalfa).

= Market constraints. Alfalfa and potatoes are the only perishable crops considered.
We limited their surface to the maximum observed in the period 1993-2000:

x, < observed area

x5 < observed area

Objectives. After the survey developed in the area, we concluded that farmers take the

following objectives into account:

= Maximization of total gross margin (TGM), as a proxy of profit since, in the short run,
the availability of structural productive factors (land, machinery, etc.) cannot be
changed and financial viability of farms basically depends on gross margin. TGM data

13



are obtained from the average crop margins in a time series of seven years
(1993/1994 to 1999/2000) in constant 2000 euros. According to this TGM can be

calculate as follows: TGM = ZGM » X, » where GM, represents the gross margin
h

per unit of crop h.

Minimization of risk (VAR). As noted by several authors (for example Just and Pope,
1979, Young, 1979, and Gémez-Limén et al., 2003), farmers typically have a marked
risk aversion, so that risk is an important factor in agricultural activity. Following the
conventional Markowitz (1952) approach, risk is measured by the variance of TGM:

VAR= x, '-[Cov]-xh, where [Cov] is the variance-covariance matrix of the crop gross

margins obtained from different crops, during the seven-year period.

Minimization of working capital (K). This objective represents the aim of reducing the
level of indebtedness. In order to model this objective we divided the year into
months, differentiating in this way the periods of cropping activities (capital
immobilization) and sales (income). In month m, the working capital (NWK,,) is the

sum of the working capital for the present month (ZWK,W -x, ) and the working
h

capital from the previous month (NWK,,;), whenever sales are less than the capital
immobilization. Mathematically:

NWK, -> WK, -x,~NWK, >0 Vm
h

hm

where WK, is the working capital per unit of crop 4 in month m.
The aim of a farmer is to minimize the maximum working capital (K), which can be
represented as minimizing the maximum NWK,, calculated for twelve months. To do

that we use the minimax method, and therefore we introduce twelve new equations:

NWK, <K Vm

In order to can test the ability of the MAUT approach to reproduce farmers’ behavior
using both an additive and a multiplicative MAUF specification. we performed the

following experiment:
1.- Taking into account the observed vector of decision variables of each farmer and

the constraints of the problem, we elicit the parameters (weights) of a linear MAUF [2]
using the approach developed by Sumpsi et al. (1997).

14



2.- We simulate the farmers’ behavior (decision variables) by maximizing the linear
utility function (as estimated in the first step) subject to the constraints of the problem.
3.- Compare the simulated decisions (obtained in the second step) with the observed
ones for each farmer.

4.- Repeat steps 1, 2 and 3 with the multiplicative specification [1] of the MAUF.

5.- Compare the performance of the linear and the multiplicative specifications to
replicate observed behavior.

3.3. Results

We applied the procedure described above to each representative farmer in our
sample. In most cases we came up with the result that the simulation ability of the
multiplicative MAUF is better than the linear one. For further clarification, we present all

the intermediate steps of our experiment in a representative case.
Results for the additive MAUF

Firstly we obtain a payoff matrix (in terms of utilities) with efficient solutions for all the
columns, as explained in Annex A. The results are displayed in Table 1, in which we
have included an additional column to show the real observed values.

INSERT TABLE 1

Using the data in Table 1, and following Sumpsi et al. (1997) we estimate the weights
of the different objectives solving problem [7], which takes the following form:
. 3 2
min ) (n; + p;)
W; 1, pi =1
st. 1-0;+0.101- 0, +0- 05 +1n; — p; =0.459
0-0;+1-0, +0.942- 3 + 1y — p, =0.755
0-m; +0.843- @, +1-w5 +n3 — p3 =0.562
O, +0,+0; =1 [16]
o;,n;,p; 20 i=1..3

15



Solving this mathematical program, we obtain that the weight given by the analyzed

farmer to TGM maximization is ®,=31.9% and the weight of risk minimization is
®,=68.1%. On the other hand, minimization of K does not appear to be taken into
account by the farmer in his decision-making process (®;=0). Using the estimated
weights for each objective, and taking k=w, (i=1,2,3) we get the following algebraic

expression of the additive utility function [2]:

U=O.319-[ TGM —20,826.58 j+0.681.[ VAR —81,704,050.27 j+0.[ K —56,297.02 j

52,337.46 —-20,826.58 9,285,839.22 -81,704,050.27 4,264.06 —56,297.02

which can be simplified to
U =10.12-TGM —-0.094-VAR [17]

Afterwards, we simulate the farmer’s behaviour by finding the values of the decision

variables that maximize [17]. The results are shown in Table 2.

INSERT TABLE 2
Results for the multiplicative MAUF

Firstly, we obtain the equation of the hyperplane [9] that connects all the points of the
payoff matrix. Forcing all the columns of the payoff matrix to satisfy [9], we have a

three-equation system with the following solution:
—1+u(MBT)+0.272-u(VAR)+0.744 - u(K) =0 [18]

Using the w,’s obtained in [16], we get the reference point as a linear combination of

the elements of the payoff matrix, P* = (0.388, 0.681, 0.574), which by construction
satisfies [9]. Finally, we elicit the parameters k;’s and & solving [15] which, in this case,

takes the form:
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where

ky,ky k3, k

S.L.

aU(I/t],I/tz,I/t3,k,kl,k2,k3)

1
min U (uy,...,uz) =—
"

f[[kkiui +1]—1}

i=1

al/I2

aU(I/t],I/tz,I/t3,k,kl,k2,k3)

aul

aU(I/t],I/tz,I/t3,k,kl,k2,k3)

al/l3

aU(ul,Mz,M3,k,kl,k2,k3)

al/l]

kl’kZ’k3 20, 1+k:

P

P__0272
o [19]
PL_0.744
P*
n
[1(1+kk;)

i=1

» means that the associated expression is evaluated in the reference point

P". The result of [16] is k;= 0.359, k,=0.087, k;= 0.274, k=1.665. This gives the following

multiplicative utility function:

U=0.359-(

+1.665-

+(1.665)° - {0.359 -0.087-0.274- (

52337.46-20826.58

TGM —20826.58 VAR —81,704,050.27 K —56,297.02
+0.087 - +0.