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ON THE EQUIVALENCE BETWEEN COMPROMISE PROGRAMMING AND THE 

USE OF COMPOSITE COMPROMISE METRICS1. 

 

Francisco J. André2 and    Carlos Romero3 

Abstract. This paper analyzes the relationship between Compromise Programming and a 

close relative called Composite Programming that is based on the use of composite metrics. 

More specifically, it focuses on the possibility that the results of Compromise Programming 

are equivalent to those obtained with a particular case of Composite Programming in which a 

linear combination between the two bounds of the compromise set is established.  Several 

situations, depending on the number of criteria involved and the mathematical structure of the 

efficient set, are studied. The most relevant result is obtained when two criteria are involved 

and the efficient set is continuously differentiable. In this case, it is possible to find a unique 

equivalent value of the control parameter in Composite Programming for each metric in 

Compromise Programming. It is remarked that this particular case is very relevant in many 

economic scenarios. On the other hand, it turns out that the equivalence between both 

approaches can not be extended to the case with more than two criteria. 
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1. Introduction 

Compromise Programming (CP) is a Multiple Criteria Decision Making (MCDM) 

approach introduced by Yu and Zeleny in the seventies (Refs. 1-5) with many theoretical 

extensions and with applications in several fields. Its basic idea is to determine a subset of 

efficient solutions (called compromise set) that is nearest with respect to an ideal and 

infeasible point (called ideal point), for which all the criteria are optimized. The 

corresponding distance functions are introduced through a family of p-metrics. The basic 

structure of a CP model is the following: 

( ) ( )( )
( ) ( ) ( )

1/ 1/
* *

*
1 1

1

min ( ) ( )

. . , , , ,

p pq qp p
p i i i i i i i

i i

i q

L w f f x f f w d

s t F f x f x f x k
= =

⎡ ⎤ ⎡ ⎤
= − − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤ =⎣ ⎦

∑ ∑

… …

  (1) 

where x  is the vector of decision variables; ( )if x   is the mathematical expression for the i -

th criterion ( { }1i , ,q∈ … ); ( ) ( ) ( )1 i qf f x f x f x≡ … …* * * *, , , ,  represents the vector of anchor 

values or ideal point, i.e., the optimum value for each attribute, without considering the 

achievement of the other attributes and ( ) ( ) ( )1 i qf f x f x f x≡ … …* * * *, , , ,  the vector of nadir 

values or anti-ideal point, i.e., the worst value of each criterion when the others are optimized; 

id  stands for the degree of discrepancy for the i -th criterion (i.e., the normalized difference 

between the anchor value and the actual achievement of the i -th criterion); iw  is the weight 

or relative importance attached to the i -th criterion; ( ) ( ) ( )1 , , , ,i qF f x f x f x k⎡ ⎤ =⎣ ⎦… …  is the 

mathematical expression of the opportunity set or the efficient set defined in the criteria space 

and p  is the topological metric; i.e., a real number belonging to the closed interval [ ]0,∞ . 

CP solutions enjoy useful economic and mathematical properties such as feasibility, 

Pareto optimality, uniqueness, asymmetry, etc; See Ref. 5, pp.71-74 for a rigorous analysis of 
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these properties. Moreover, Yu and Freimer (Ref. 4) demonstrated that for the bi-criteria case 

metrics 1p =  and p = ∞  define two bounds of the compromise set and the other best-

compromise solutions fall between these two bounds. For more than two criteria this property 

in general does not hold. However, it was demonstrated (see Ref. 6) that under relatively 

general conditions (a convex feasible set limited by a differentiable hypersurface) usual in 

economic problems the boundness of the compromise set given by metrics 1p =  and 

p = ∞ remains. 

A composite form of CP based upon composite metrics was proposed in the eighties 

(see Refs. 7 and 8). A suitable particular case of this type of Composite Programming is 

obtained by minimizing a linear combination between the bounds corresponding to metrics 

1p =  and p = ∞  (e.g., Refs. 9 y 10) in the following way: 

( ) { }

( ) ( ) ( )
1, , 1

min 1 max
q

i i i ii q i

1 i q

w d w d

s.t.: F f x , , f x , ,f x  = k

= =

⎧ ⎫
− λ ⋅ + λ ∑⎨ ⎬

⎩ ⎭
⎡ ⎤⎣ ⎦

…

… …
    (2) 

Since the objective function in model (2) is not smooth, its minimization is usually 

performed by solving the following equivalent problem (see e.g., Ref. 9): 

( )

( ) ( ) ( )

min
q

i i
i 1

i i

1 i q

1 D w d

s.t.: w d D   i=1, ,q

F f x , , f x , ,f x  = k

=

⎧ ⎫
− λ + λ ∑⎨ ⎬

⎩ ⎭
≤

⎡ ⎤⎣ ⎦

…

… …

    (3) 

where D  represents the maximum degree of discrepancy. When 1λ = , problem (3) collapses 

to the compromise problem with metric 1p = , and for 0λ = , (3) gives the compromise 

solution for metric p = ∞ . For values of λ  belonging to the open interval ( )0,1  intermediate 

or composite solutions can be obtained if they exist. So seemingly the compromise set can be 
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traced out or at least approximated through variations in the value of parameter λ . To 

undertake this task by resorting to model (2) or its smooth formulation (3) implies solving 

only linear programming problems, what represents an important computational advantage 

with respect to model (1). It should be noted that the basic parameter defining the CP model is 

the metric p , while the basic parameter defining model (3) is λ . The preferential meaning of 

p  was clearly explained by Yu (Ref.1). Thus, this author demonstrates that p  plays the role 

of a “balancing factor” between the “group utility” or average achievement of all the criteria 

(that is maximized for 1p = ) and the maximum discrepancy or individual regret (that is 

minimized for p = ∞ ). 

On the other hand, control parameter λ  can be interpreted in a rather similar way, as a 

trade-off or marginal rate of substitution between “group utility” (i.e., minimum of 
1

q

i i
i

w d
=
∑ ) 

and the “utility of the criterion most displaced with respect to the solution obtained” (i.e., 

minimum of D ). 

This paper investigates the connection between model (1) and model (2)-(3), and more 

specifically it establishes links between metric p  and control parameter λ . In short, we 

wonder if there is a functional relationship such as ( )g pλ =  or, in other words, is it always 

possible to find a value of λ  which allows to obtain the same solution obtained for a certain 

value of metric p ? 

In section 2 we prove that, like (1), the solution of (2)-(3) is always Pareto-efficient. In 

section 3 we analyze the connection under both approaches when there are two criteria and we 

show that, given a value of p , it is always possible to find at least one value of λ  in (2)-(3) 

which provides the same solution. If the compromise set is continuously differentiable and not 

linear, then there is a function providing a unique value of λ  for each p  whereas if the 
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compromise set is linear or piece-wise linear, then there is an interval correspondence 

between both parameters. Finally, in section 4 we show that this connection can not be 

extended to the case with more than 2 criteria. 

 

2. A Preliminary Result 

We start with a preliminary result which has interest in order to validate theoretically 

formulations (2) or (3). In fact, we are going to demonstrate the Pareto-efficient character of 

solutions provided by models (2) or (3). 

The proof of this result is rather simple. In fact, assume that the solution of (2) is 

( )1 qf f , , f≡ …  and it is inefficient. This means that there is another feasible solution 

( )1 qf ' f ', , f '≡ …  which Pareto-dominates f , i.e., ii dd ≤'  1, ,i q∀ = … , and there is some 

{ }1, ,j q∈ …  such that jj dd <' . This implies L ' L∞ ∞≤  and 1 1
'L L<  which, in turn, implies 

1 1 L ' + (1- ) D' <  L  + (1- ) Dλ λ λ λ , and this result contradicts the hypothesis that f  is the 

solution to problem (2) or (3). We conclude that, if f  is the solution of (2)-(3) it must by 

Pareto-efficient. Note that, in general, the solution of (2)-(3) for a given value of λ  (in terms 

of the criteria) is not a linear combination of the solutions for 1λ =  and 0λ = . 

 

3. Problems with two Criteria 

3.1 First case: a differentiable and non-linear efficient boundary 

Assume 2q =  and the set of efficient solutions represented by ( ) ( )1 2,F f x f x k=⎡ ⎤⎣ ⎦ , 

which defines implicitly 2f  as a strictly concave of function of 1f  over the compromise set. 
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In this case, the Lagrangean first order conditions are straightforwardly obtained from (1) as 

follows: 

( ) ( )( ) ( ) ( )
1

1 1 1 1 1 1 11 0
pp * * *

* *pw f f f f x f f F f x
−

⎡ ⎤ ⎡ ⎤− − ⋅ − − + µ ⋅∂ ∂ =⎣ ⎦ ⎣ ⎦   (4) 

( ) ( )( ) ( ) ( )
1

2 2 2 2 2 2 22 0
pp * * *

* *pw f f f f x f f F f x
−

⎡ ⎤ ⎡ ⎤− − ⋅ − − + µ ⋅∂ ∂ =⎣ ⎦ ⎣ ⎦   (5) 

where µ  is the Lagrange multiplier associated to the constraint of problem (1). Reordering (4) 

and (5) we get the following tangency condition: 

( )
( )

( )( )
( )( )

( )
( )

1
1

2 2 2 2 1 1 2 21 11 1

21 1 1 1 2 2 1 12 22

pp p* * * * p
* * *

p p* * * *
* * *

F w f f f f f f ( x ) w f fx d
F dw f f f f f f ( x ) w f fx

−
−∂ ⎛ ⎞− − − − ⎛ ⎞∂ ⎜ ⎟= ≡ ⎜ ⎟⎜ ⎟∂ − − − − ⎝ ⎠∂ ⎝ ⎠

    (6) 

Figure 1 illustrates graphically this problem: the objective is to find a point in the 

boundary such that an iso-p-distance curve is tangent to the efficient boundary. Figure 2 

illustrates the solutions for 1p =  and p = ∞ . These solutions, according to Yu´s theorem, 

bound the compromise set. 

 
 

FIGURE 1. Several iso-distance curves for a Compromise Programming problem. 
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FIGURE 2. Illustration of the Compromise Programming solutions for metrics 1L  and   L∞  

 

Without loss of generality, we can write problem (3) for the bi-criteria case in such a 

way that, in the solution, the maximum (weighted) degree of discrepancy corresponds to the 

second criterion (i.e., 2 2 1 1w d w d≥ ). Thus, we have the following equivalent optimization 

problem: 

( ) ( )
( )
( )

( )
( )

( ) ( )

* *
1 1 2 2

1 1 2 2 2 1 2* *
1 1* 2 2*

2

( ) ( )
min

,

2

1

f f x f f x
   w d w d  + 1-  w d =  w   w

f f f f

s.t: F f x f x k

− −
λ + λ λ +

− −

=⎡ ⎤⎣ ⎦

 (7) 

From (7) it is straightforward to interpret parameter λ  as the slope of the iso-distance 

or iso-utility curves (in terms of 2 2w d  with respect to 1 1w d ). Figure 3 illustrates the shape of 

these iso-distance or iso-utility curves for different values of λ . 
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FIGURE 3. Several iso-distance curves for Composite Programming with different λ s. 

 

The Lagrangean conditions of problem (7) are the following: 

( ) ( )1 1 1 1 0*
*w f f F f x− λ − + µ⋅∂ ∂ =      (8) 

( ) ( )2 2 2 2 0*
*w f f F f x− − + µ⋅∂ ∂ =      (9) 

and rearranging (8) and (9) we get the following tangency condition: 

( ) ( )1
1 2 2 2 1 1

2

* *
* *

F
f ( x )

w f f w f fF
f ( x )

∂
∂ ⎡ ⎤= λ − −⎣ ⎦∂
∂

   (10) 

For problems (1) and (2) in order to have the same solution, given p , we must find a 

value of λ  such that the solution satisfies simultaneously both set of first order conditions. 

Equivalently, we need that the tangency conditions (6) and (10) hold at the same time. 
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Equalizing (6) and (10) and rearranging terms, we get the following relationship between p  

and λ : 

1
1 1

2 2

pw d
w d

−
⎛ ⎞λ = ⎜ ⎟
⎝ ⎠

     (11) 

or, more generally,  

{ } { }( ) 1
1 1 2 2 1 1 2 2

p
min w d ,w d max w d ,w d

−
λ =    (12) 

 Since problem (3) is usually computationally easier to solve than (1), in practice it can 

be more useful to solve (3) for a given λ  and then find the equivalent value of p  to sort out 

which metric exactly corresponds to the solution found. This can be done by obtaining the 

inverse function in (11) or in (12). Thus, we get the following inverse function: 

( )1 ap log= + λ      (13) 

where ( )alog λ  denotes the logarithm of λ  to the basis a  and 1 1 2 2a w d w d≡  or, more 

generally, { } { }1 1 2 2 1 1 2 2a min w d ,w d max w d ,w d≡ . 

 In this case we get the following conclusions: given a value of p  ( λ ), it is possible to 

find a unique λ  ( p ) such that the slope of the iso-distance or iso-utility curves are the same 

in the optimum and, therefore, both problems have the same solution. Nevertheless, it is not 

possible to find a general a-priori relationship between both parameters, since this relationship 

depends on the value of the degrees of discrepancy (and, hence, on the value of the criteria) in 

the solution and this solution, in general, depends on the structure of the problem. 

 

Example 1 

To check this relationship, assume that the efficient boundary is given by the 

following equation: 
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( ) ( )( ) ( )( ) ( )( )2 2
1 2 1 250 10000 400 10F f x , f x f x  + f x == −   (14) 

being ( )1 1f x x=  and ( )2 2f x x= . Moreover, the additional constraint ( )2 50f x ≤  is 

considered. For simplicity, assume also 1 2w w= . The ideal point is (366.2278, 50) and the 

anti-ideal point is (243.6492, 0). The following table shows the solutions of problem (1) for 

different values of p , the associated value of λ  according to equation (12), and the solution 

of problem (3) using this value of λ . 

 

Solution problem (1) (with p metric) Solution problem (2) (with λ) 

P f1(x) f2(x) d1 d2 λ f1(x) f2(x) 

1 333.93 27.84 0.26345 0.44313 1 333.93 27.84 

2 325.63 31.00 0.33123 0.37993 0.8718 325.63 31.00 

3 324.27 31.48 0.34232 0.37036 0.8543 324.27 31.48 

4 323.71 31.67 0.34684 0.36652 0.84741 323.71 31.67 

5 323.41 31.78 0.34929 0.36445 0.84372 323.41 31.78 

6 323.22 31.84 0.35082 0.36315 0.84143 323.22 31.84 

10 322.87 31.96 0.35369 0.36074 0.83718 322.87 31.96 

15 322.71 32.02 0.35504 0.35962 0.83563 322.74 32.01 

∞  322.40 32.12 0.35754 0.35754 0 322.40 32.12 

  

By construction, the solution for 1λ =  (0) is always identical to that with 1p =  ( ∞ ). 

For low values of p , the analytic relationship (11) exactly holds in the example. For larger 

values of p , 1d  and 2d  get closer and their ratio tends to 1. The calculation of λ  then gets 

computationally more imprecise, since it involves raising a number very close to one to a very 

high power (note that 1∞  is a mathematical indeterminacy). Nevertheless, in the example, the 
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results are very exact for 15p ≤  and, for 15p > , the solution is virtually identical to the 

solution corresponding to metric p = ∞ . 

 

3.2 Second case: linear or piece-wise linear efficient boundary 

 If the efficient boundary (and therefore, the compromise set) is linear or piece-wise 

linear we have the following situation: the iso-distance or iso-utility curves of problem (1) are 

still non-linear so that problem (1) can have both corner solutions and (unique) interior 

solutions. On the other hand, the iso-distance curves of problem (2) are piece-wise linear and 

we could only get corner solutions (if the slope of the iso-distance curves is different from 

that of the efficient set) or multiple solutions (if the slope of the iso-distance curves is exactly 

the same as that of the compromise set). Hence, it is not possible in general to find a unique 

and precise value of λ  for each value of p , and vice versa. Typically, it will be possible to 

find an interval correspondence between metric p and control parameter λ. This situation is 

clarified in what follows with the help of two examples. The first example illustrates the 

situation when the compromise set is linear, and the second one when the compromise set is 

piece-wise linear. Finally, we summarize the general results for this case. 

 

Example 2: a linear compromise set 

Assume a MCDM problem in which the feasible set is defined in the criteria by the 

following constraints:  

( )
( )
( ) ( )

1

2

1 2

100

100

4 400

f x ;

f x ;

f x f x

≤

≤

+ ≤

     (15) 

being ( )1 1f x x=  and ( )2 2f x x= . Assume also 1 2w w= . 
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 The ideal point is (100, 100) and the anti-ideal point (0,0). The efficient set is the 

linear segment which connects the points (75,100) and (100,0) as it is shown in Figure 4. 

When problem (1) is solved for different values of p  the solution shifts smoothly from the 1L  

solution (75, 100) to the 2L  solution (80, 80) and the compromise set is the linear segment 

between these two bounds. Figure 4 shows the feasible set and the solutions of problem (1) 

for some values of metric p . The situation is rather different for problem (2). Figure 5 shows 

the solutions for 0λ = , 1λ =  and 0 25.λ = . It is easy to see that, for any 0 25.λ <  we get the 

solution corresponding to 1L  For any 0 25.λ >  we get the L∞  solution and for 0 25.λ = , the 

slope of the iso-distance curve is the same as that of the compromise set and we get multiple 

solutions, since any point of the compromise set provides exactly the same value of the 

objective function of (2). Then we conclude that it is not possible to find a unique value of λ  

for each value of p  and vice versa, but there is an interval correspondence between both 

parameters. The following table shows the solution for different values of λ  and the value(s) 

of p  which corresponds to each λ : 

λ f f2 p 

[0, 0.25) 75.00 100.00 1 

0.25 (f1, f2) 1L ,L∞∈ ⎡ ⎤⎣ ⎦  [1, ∞ ] 

(0.25, 1] 80.00 80.00 ∞  
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FIGURE 4. Example 2. Compromise Programming solutions for several values of p . 
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λ = 0 

 
λ=1 

 
λ=0.25 

FIGURE 5. Example 2. Solutions for different values of λ . 
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Example 3: a piece-wise linear compromise set 

Assume the following feasible set defined in the criteria space: 

( )
( )
( ) ( )
( ) ( )

1

2

1 2

1 2

120

100

5 500

2 7 320

f x ;

f x ;

f x f x ;

f x . f x

≤

≤

+ ≤

+ ≤

    (16) 

being ( )1 1f x x=  and ( )2 2f x x= . Assume also 1 2w w= . 

As it is shown in Figure 6 the compromise set is piece-wise linear and it is delimited 

by points ABC, where A = (120, 74.07), corresponding to the 1L  solution, B = (108.70, 

78.26) and C = (96.77, 80.65), corresponding to the L∞  solution. 

When problem (1) is solved for ( )1 1 97p , .∈  the solution shifts smoothly in the 

interval (A,B). For [ )1 97 2 71p . , .∈  the solution is always B. Finally, for [ )2 71p . ,∈ ∞  the 

solution changes smoothly in the interval (B ,C). Regarding problem (1), for [ )0 0 24, .λ ∈  we 

get C as a unique solution. For 0 24.λ =  any point in the segment [B,C] is a solution. For 

( )0 24 0 44. , .λ ∈ , we get B as a unique solution. If 0 44.λ = , any point in the segment [A,B] is 

a solution. Finally, for ( ]0 44 1. ,λ ∈ , we get A as a unique solution. The following table shows 

the solution for different values of λ  and the equivalent value(s) of p . 

λ Solution Type p Solution Type 

[0, 0.24) C Unique ∞  C Unique 

0.24 [ ]B,C  Multiple [2.71, ∞ ) (B,C) Unique 

(0.24, 044) B Unique [1.97, 2.71) B Unique 

0.44 [A,B] Multiple (1, 1.97) (A,B) Unique 

(0.44,1] A Unique 1 A Unique 
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FIGURE 6. Example 3. Feasible set and compromise set. 

 

General results for the two criteria case and a piece-wise linear compromise set 

Given a MCDM problem with two criteria, assume the compromise set is continuous, 

concave towards the origin, and piece-wise linear with a finite number I-1 of linear segments 

connecting I extreme points. The problem is written in such a way that, in all the points of the 

compromise set, it holds 2 1d d≥  (the maximum degree of discrepancy corresponds to the 

second attribute). Let ( )2
i i i

1P f , f≡  denote the i -th extreme point in terms of the attributes, 

where the points are numbered in such a way that 1P  is the 1L  solution, 2P  is the next corner 

point which is closest to the 1L  solution and so on. Finally, IP  is the L∞  solution. 

Define 

( ) ( )2 2 1 1
i i 1 i i 1 i

2 1S w d d w d d+ +⎡ ⎤= − −⎢ ⎥⎣ ⎦
 1 1i , ,I= −…   (17) 
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[ ]
( ),

, / arg min
1 2

i i
pf f

p p 1 P L
⎧ ⎫

≡ ∈ ∞ =⎨ ⎬
⎩ ⎭

    1i , ,I= …   (18) 

meaning that iS  is the slope (in terms of 2 2w d  with respect to 1 1w d ) of the i -th segment, i.e., 

the segment connecting points iP  and 1iP + , and i  denotes absolute value. As the 

compromise set is concave towards the origin, we know 1i iS S +>  i∀ . In turn, ip  is the set of 

pL  metrics supporting point iP  as a solution, i.e., those values of p  such that iP  is the 

solution to the problem of minimizing pL . By definition, we know that 11 p∈  and Ip∞ ∈ . 

 First, we conclude that, if iSλ =  holds, then  

( )
( ) ( )

, , ,
arg min max

1 2

q
i i 1

i i i if f i 1 q
i 1

1 w d w d P P +

=
=

⎧ ⎫⎪ ⎪− λ ⋅ + λ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑…
  (19) 

where i i 1P P +  is the segment connecting points iP  and 1iP + . In words, since λ  is equal to the 

slope of segment i i 1P P + , any point in this segment is a solution of problem (2)-(3) with this 

specific value of λ .  

On the other hand, if it holds that ( )i 1 iS ,S+λ ∈ , then  

( )
( ) ( )

1 2

1
, 1, ,

1

arg min 1 max
q

i
i i i if f i q

i

w d w d P +

=
=

⎧ ⎫⎪ ⎪− λ ⋅ + λ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑…
   (20) 

and we conclude that solving problem (2)-(3) with this value of λ  gives a unique solution, 

which is the same as that obtained when solving problem (1) with any value of p  in the set 

1ip + . We come up with the relationship between λ  and p  given in the following table: 
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λ Solution Type p 

)10 I, S −⎡⎣  L∞  Unique Ip  

… … … … 

1iS +  2 1i iP ,P+ +  Multiple i 1 i 2max p ,min p+ +⎡ ⎤
⎣ ⎦  

( )1i iS , S+  1iP +  Unique 1ip +  

iS  1i iP ,P +  Multiple i i 1max p ,min p +⎡ ⎤
⎣ ⎦  

…    

( 1 1S , ⎤⎦  1L  Unique 1 

 

 

4. General Scenario with q Criteria 

 From section 3, we conclude that, with two criteria, the best possible situation (for the 

sake of relating problems (1) and (2)-(3)) happens when the compromise set is continuously 

differentiable and not linear, because in this case there is a unique relationship between p  

and λ . 

 In this section, we will demonstrate that the above result cannot be extended to a 

general scenario involving q criteria. The first order conditions for problem (1) are now the 

following: 

( ) ( )( ) ( ) ( )
1

0 1
pp * * *

i i i* i i i i* ipw f f f f x f f F f x i , ,q
−

⎡ ⎤− − ⋅ − − + µ ⋅∂ ∂ = =⎣ ⎦ …  (21) 

and rearranging terms, we get the following tangency condition: 

( )( )
( )( ) { }

1

1i

p* *p *
j j* i if ( x ) i j j*

p * * *
j i i* i i* j jj

F
f f f f ( x )w ( f f )

i, j , qF w ( f f ) f f f f ( x )f ( x )

−∂ ⎛ ⎞− −∂ − ⎜ ⎟= ∈
⎜ ⎟∂ − − −∂ ⎝ ⎠

…     (22) 
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In order to obtain the first order conditions for problem (3) we are going to assume 

without loss of generality that { }1max , q qd d d=… , that is, the maximum deviation or degree 

of discrepancy corresponds to attribute q. Then the problem can be expressed in the following 

way: 

( )
( )
( )

( )
( )

* *

* *
* *1

( ) ( )
min

( ), , ( )

q q-1
i i q q

i i q i q
i i q qi i=1

1 q

f f x f f x
  w d  + 1- )d =  w   w

f f f f

s.t: F f x f x k

=

− −
λ λ +

− −

⎡ ⎤ =⎣ ⎦

∑ ∑
…

 (23) 

The first order conditions are 

( ) ( ) 0 1 1*
i i i* iw f f F f x i , q⎡ ⎤−λ − + µ∂ ∂ = = −⎣ ⎦ …   (24) 

                                    ( ) ( )1 0*
q q q* qw f f F f x⎡ ⎤− − + µ ⋅∂ ∂ =⎣ ⎦    (25) 

and rearranging terms, we get the following tangency conditions: 

( ) ( ) 1 1* *i
i q q* q i i*

q

F
f ( x )

w f f w f f i , ,qF
f ( x )

∂
∂ ⎡ ⎤= λ − − = −⎣ ⎦∂
∂

…   (26) 

( ) ( ) 1 1* *i
i j j* j i i*

j

F
f ( x )

w f f w f f i, j , ,qF
f ( x )

∂
∂ ⎡ ⎤= − − = −⎣ ⎦∂
∂

…    (27)  

 Note that these conditions are different depending on if they include or not attribute q . 

Consider two criteria different from the q -th one. For a point to be a solution of both 

problems at the same time, it must satisfy simultaneously (22) and (27). Using both 

conditions, we have: 

( ) ( )
1 1

1
p pp *

i j j* * *i i i
i j j* j i i*p *

j j jj i i*

w ( f f ) d w d
w f f w f f

d w dw ( f f )

− −
⎛ ⎞ ⎛ ⎞− ⎡ ⎤= − − ⇒ =⎜ ⎟ ⎜ ⎟⎣ ⎦⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

 (28) 
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and this implies i i j jw d w d= which, in general, does not hold in an arbitrary point of the 

compromise set. 

      This result has the following interpretation. In order to obtain a precise mapping between 

metric p  and the control parameter λ  (that is, an equivalence of solutions between problems 

(1) and (2)-(3)), it is necessary that the slope of the iso-distance curves involved by problem 

(2) coincide with the respective slopes in the optimum. When there are two criteria, there is 

only one relevant slope that can be univocally replicated by modifying the value of  λ . 

However, when there are more than criteria the number of possible slopes coincide with the 

number of “paired” criteria. Hence, with a single value of the parameter is not possible to 

replicate so many slopes. Thus, in problem (2) when the criterion considered is not the q -th 

one, then  the slopes of the objective function are always equal to 1 (in terms of the weighted 

discrepancies), and when one of the two criteria is the q  -th the slope is equal to λ . In short, 

given different values to control parameter λ, it will be possible to replicate only those 

solutions such that , 1, ,i jd d i j q= ∀ = … .  

 

5. Conclusions 

      Model (2)-(3) represents a particular case of a composite form of CP, which is usually 

taken as a surrogate of classic CP (model (1)). However, although both problems are rather 

similar in spirit, they are not always fully equivalent. In fact, it has been demonstrated in this 

paper that the similarities are actually very strong only in the bi-criteria case, when the 

efficient set is given by a continuously differentiable and not linear function (such that one of 

the attributes is implicitly defined as a strictly concave function of the other one). In this case, 

the compromise set can be traced out by changing the value of metric p  or by changing the 
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value of control parameter λ . Moreover, for this particular case there is a rather stable 

relationship between both parameters in the sense that every value of p  has a unique 

equivalent value of λ  and vice versa (see expressions (11)-(13)). However, when the 

differentiability of the efficient set disappears or the number of criteria involved is more than 

two, then the close relationship between the two approaches almost vanishes.  

With two criteria and a linear or piece-wise linear efficient set, it is still possible to 

find some relationship between p  and λ , and for every point of the compromise set, there is 

always at least one value of λ  such that this point is obtained as a solution of (2)-(3). 

Nevertheless, it is not possible to find a function that links each value of p  with a unique 

value of λ  and vice versa. On the other hand, with more than two criteria, in general, by 

solving problem (2)-(3) it is not possible to trace out the compromise set. Since we have 

proven that problem (2)-(3) always provides efficient solutions, we can conclude that, by 

solving (1) we obtain the compromise set, which is a subset of the efficient set, and by solving 

(2)-(3) we get a bundle of solutions that is a different subset of the efficient set. 

It is important to notice that the result obtained for the bi-criteria case under the 

conditions of continuity and differentiability of the efficient set are specially relevant in 

economics. In fact, this type of mathematical properties are usually assumed in economics 

and besides there are many relevant economic problems defined in a bi-criteria space. Some 

examples are the following. The Markowitz approach in portfolio selection, the Philips curve 

in macroeconomic policies, the Baumol sales-revenue hypothesis in firm theory, the 

determination of the optimal level of externality in environmental economics, the trade-off 

curve between efficiency and equity in welfare economics, etc (see Ref. 11). Therefore, the 

empirical interest of this result is clearly reinforced.  
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