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Abstract

In a recent paper, Thomson and Yeh [Operators for the adjudication of conflicting

claims, Journal of Economic Theory 143 (2008) 177-198] introduced the concept of opera-

tors on the space of rules for the problem of adjudicating conflicting claims. They focussed

on three operators in order to uncover the structure of such a space. In this paper, we

generalize their analysis upon presenting and studying a general family of operators in-

spired by three apparently unrelated approaches to the problem of adjudicating conflicting

claims. We study the structural properties of this family and show, in particular, that most

of Thomson and Yeh’s results are specific cases of our study.
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1 Introduction

The problem of adjudicating conflicting claims describes a situation in which an arbitrator has

to allocate a given amount of a perfectly divisible (and homogeneous) resource among a group

of agents when the available amount is not enough to fully honor their claims. Most rationing

problems can be given this form (e.g., the division of an estate that is insufficient to cover all

the debts incurred by the deceased, the collection of a given tax from taxpayers, sharing the

cost of a public facility). The reader is referred to Moulin (2002) or Thomson (2003) for reviews

of the sizable related literature initiated by O’Neill (1982). In most of this literature the aim is

to single out rules that assign for each problem an allocation indicating how much each agent

obtains. A recent study by Thomson and Yeh (2008) uncovers the structure of the space of

rules upon studying operators on such a space. An operator is a mapping on the space of rules

that associates with each rule another one. Thomson and Yeh (2008) consider three operators.

First, the duality operator, which assigns to each rule R, its dual (Rd), that allocates awards

in the same way as R allocates losses. Second, the so-called claims truncation operator, which

assigns to each rule R the rule Rt defined, for each problem, by applying R after each claim

has been truncated at the available amount. Third, the attribution of minimal rights operator,

which associates with each rule R the rule Rm defined by the following two-step procedure. For

each problem, first each agent receives her minimal right (to be understood as the part of the

available amount that remains, if anything, when all other agents have been fully honored);

second, each agent gets an award according to R applied to the revised problem obtained by

reducing agents’ claims by their minimal burdens, and the available amount by the sum of

the minimal rights. Thomson and Yeh (2008) establish a number of results linking them and

determine which properties of rules are preserved under each of these operators, and which are

not.

In this paper, we generalize the analysis of Thomson and Yeh (2008) upon providing a sys-

tematic analysis of a family of operators generalizing the last two mentioned above. Our family

is inspired by three apparently unrelated approaches to the problem of adjudicating conflict-

ing claims that, as we shall see later, are intimately connected. First, the so-called baseline

rationing, a generalization of the benchmark model upon adding a vector in the awards space

representing some reference point, or baseline, judged relevant to the division (see Hougaard et

al., (2010) for further details). Second, two of the principles most frequently employed in the

literature on the problem of adjudicating conflicting claims, pertaining to the way rules react
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to tentative allocations of the available amount, and known as composition properties (e.g.,

Young, 1988; Moulin, 2000). Third, the analysis of lower bounds, an important aspect within

the theory of fair allocation, (e.g., Thomson, 2011) that has only been recently explored for the

problem of adjudicating conflicting claims (e.g., Moreno-Ternero and Villar, 2004; Dominguez

and Thomson, 2006).

More precisely, think of the following situation: after having divided the allocation of the

available amount among its creditors, it turns out that the actual value of the amount is

larger than was initially assumed. Then, two options are open: either the tentative division

is canceled altogether and the actual problem is solved, or we add to the initial distribution

the result of applying the rule to the remaining amount. The requirement of composition up is

that both ways of proceeding should result in the same awards vectors. Think now of the dual

case. Namely, after having divided the available amount among its creditors one finds that

the actual value of the amount to divide falls short of what was assumed. Here again we can

ignore the initial division and apply the rule to the revised problem, or we can apply the rule

to the problem in which the initial claims are substituted by the (unfeasible) allocation initially

proposed. The requirement of composition down is that both ways of proceeding should result

in the same awards vectors.

A simple examination of the two composition principles described above will suffice to de-

tect a close relationship between the attribution of minimal rights operator and the principle of

composition up, and the claims truncation operator and the principle of composition down, re-

spectively. In the former case, one just needs to interpret minimal rights as a baseline reflecting

the tentative allocation of the available amount, whereas in the latter case, truncated claims

would refer to a baseline reflecting the unfeasible allocation initially proposed. We propose in

this paper a family of operators to generalize those two upon associating to each baseline an

operator reflecting the composition principles with respect to it.

In other words, all operators within our family will share a common feature inspired by the

composition properties. Namely, if all (individual) baselines cannot be granted, then no agent

will receive an amount above her baseline. Similarly, if all baselines could be granted, then each

agent will receive at least her baseline. More precisely, each rule will be mapped into a new rule

that will solve problems according to a two-stage process, depending on whether the available

amount in each problem is above or falls short the aggregate baseline for that problem. In the

former case, and inspired by the axiom of composition up, the resulting rule assigns first to each

agent her baseline and then adds to that distribution the result of applying the original rule to
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the remaining amount, once claims have been adjusted. In the latter case, and inspired by the

axiom of composition down, the resulting rule solves each problem upon applying the original

rule to the problem in which the initial claims are substituted by the (unfeasible) allocation

proposed by the baselines profile.

As one can easily infer, both the claims truncation operator, and the attribution of minimal

rights operator are specific members of the family of (baseline) composition operators described

above. We shall study some logical relations among the operators within this family, as well as

a number of results linking them, and determine which properties of rules are preserved under

each of these operators, and which are not. In doing so, we shall generalize and scrutinize the

results by Thomson and Yeh (2008). We shall also provide a thorough study of some other

focal members of the family.

The rest of the paper is organized as follows. In Section 2, we describe the model and basic

definitions. In Section 3, we introduce the family of composition operators. In Section 4, we

relate the operators by means of several relationships among them. In Section 5, we explore

the preservation of axioms under these operators. Finally, we conclude in Section 6.

2 Model and basic concepts

2.1 The benchmark framework

We study claims problems in a variable-population model. The set of potential claimants, or

agents, is identified with the set of natural numbers N. Let N be the set of finite subsets of N,

with generic element N . We denote by RN
+ the cross-product of |N | copies of R+ indexed by the

members of N .1 For each i ∈ N , let ci ∈ R+ be i’s claim and c ≡ (ci)i∈N the claims profile.2 A

problem is a triple consisting of a populationN ∈ N , a claims profile c ∈ RN
+ , and an endowment

E ∈ R+ such that
∑

i∈N ci ≥ E. Let C ≡
∑

i∈N ci. To avoid unnecessary complication, we

assume C > 0. Let DN be the set of problems with population N and D ≡
⋃
N∈N DN .

1Alternatively, the superscript N may refer to a set pertaining to the agents in N . Whichever interpretation

is intended should be unambiguous from the context.
2For each N ∈ N , each M ⊆ N , and each z ∈ RN , let zM ≡ (zi)i∈M .
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2.2 Rules

An allocation for a problem (N, c, E) ∈ D is a vector x ∈ RN such that, for each i ∈ N , 0 ≤ xi ≤

ci (boundedness) and
∑

i∈N xi = E (balance). A rule on D, R : D →
⋃
N∈N RN , associates with

each problem (N, c, E) ∈ D an allocation R (N, c, E) for the problem. Some classical rules are

the constrained equal-awards rule, A, which makes awards as equal as possible, subject to

the condition that no agent gets more than her claim, and the constrained equal-losses rule,

L, which makes losses as equal as possible, subject to the condition that no agent gets a negative

amount. Formally, A (N, c, E) = (min{ci, λ})i∈N , and L (N, c, E) = (max{0, ci− λ})i∈N , where

λ > 0 is chosen, in each case, so that the balance is guaranteed. Two other prominent rules

are the proportional rule, P , which makes awards proportional to claims, and the Talmud

rule (e.g., Aumann and Maschler, 1985), which is a compromise between the constrained equal-

awards and the constrained equal-losses rules. Formally, T (N, c, E) = (min{1
2
ci, λ})i∈N if

E ≤ 1
2
C and (max{1

2
ci, ci − µ})i∈N if E ≥ 1

2
C, where λ and µ are chosen so that the balance

condition is guaranteed.

2.3 Operators

An operator is a mapping on the space of rules that associates with each rule another one.

Three operators have been proposed in the literature (e.g., Thomson and Yeh, 2008). The first

one expresses the idea of duality. For any given rule R, the dual rule of R, denoted as Rd,

associates with each (N, c, E) ∈ D, Rd(N, c, E) ≡ c − R(N, c, C − E). A rule is self-dual if it

coincides with its dual. The constrained equal awards and the constrained equal losses are dual

rules and the proportional and the Talmud are self-dual rules, i.e., Ad = L, P d = P , T d = T .

The duality operator Od is the operator assigning to each rule R its dual, i.e., Od(R) = Rd.

The duality operator is an involution, i.e., Od(Od(R)) = R.

The second one refers to the concept of truncated claims. In some claims problems, it makes

sense to postulate that the part of a claim that is above the endowment should be ignored.

For a given problem (N, c, E), we denote by t(N,E, c) its corresponding vector of truncated

claims, i.e., t(N,E, c) = (ti(N, c, E))i∈N , where ti(N, c, E) = min{E, ci} for all i ∈ N . The

claims truncation operator Ot is the operator assigning to each rule R the rule arising from

applying R to each problem once claims have been truncated. Formally, Ot(R) = Rt, where

Rt(N, c, E) = R(N, t(N,E, c), E), for each problem (N, c, E).

The third one refers to the concept of minimal rights. The dual to the previous idea
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is the principle that a minimal amount should be ensured for each agent. The most natural

amount, for each agent i, would be mi(N, c, E) = max{0, E−
∑

j∈N\{i} cj}, which is the portion

of the endowment that is left to her when the claims of all other agents are fully honored,

provided this amount is nonnegative. We interpret this amount as the minimal right of agent

i. Let m(N, c, E) = (mi(N, c, E))i∈N and M(N, c, E) =
∑

i∈N mi(N, c, E). The attribution

of minimal rights operator Om is the operator assigning to each rule R the rule arising from

allocating minimal rights first and applying thenR to the resulting problem once claims (and the

endowment) have been adjusted. Formally, Om(R) = Rm, where Rm(N, c, E) = m(N, c, E) +

R(N, c−m(N,E, c), E −M(N, c, E)), for each problem (N, c, E).

2.4 Baselines

A baseline is a mapping associating to each problem a vector satisfying the boundedness con-

dition, but not necessarily the balance condition. Formally, b : D →
⋃
N∈N RN , associates with

each problem (N, c, E) ∈ D a vector b (N, c, E) such that 0 ≤ bi (N, c, E) ≤ ci for each i ∈ N .3

We single out two important types of baselines. A lower bound on D, b : D →
⋃
N∈N RN ,

is a baseline that associates with each problem (N, c, E) ∈ D a feasible vector. Formally,∑
i bi (N, c, E) ≤ E, for each (N, c, E) ∈ D. On the other hand, an upper bound on D,

b : D →
⋃
N∈N RN , is a baseline that associates with each problem (N, c, E) ∈ D an unfea-

sible vector. Formally,
∑

i bi (N, c, E) ≥ E, for each (N, c, E) ∈ D. An instance of a lower

bound is the application that assigns the minimal right to each agent, whereas an instance of

an upper bound is the application that assigns the truncated claim for each agent. Another

interesting instance of a lower bound is the one that assigns to each agent one n-th of her trun-

cated claim (e.g., Moreno-Ternero and Villar, 2004). Formally, µ(N, c, E) = (µi(N, c, E))i∈N ,

where µi(N, c, E) = 1
n
ti(N, c, E) = 1

n
min{ci, E}.4 The corresponding upper bound is obtained

when requiring that if agent i’s claim is at most as large as the deficit C − E, she should

receive at most ci− 1
n
ci, and otherwise, she should receive at most ci− 1

n
(C−E). Formally,

µd(N, c, E) =
(
µdi (N, c, E)

)
i∈N , where µ

d
i (N, c, E) = ci− 1

n
ti(N, c, C−E) = ci− 1

n
min{ci, C−E}.

Other lower bounds that will play a role in the analysis of this paper are the so-called

proportional lower bounds, which assign to each agent a fixed portion of the proportional al-
3See Hougaard et al., (2010) for an alternative modeling of baseline rationing in which baselines are considered

as arbitrary and exogenously given.
4Note that using claims instead of truncated claims while defining the bound is not a meaningful option, as

the bounds so obtained would not necessarily be feasible for all problems.
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location. Formally, for each α ∈ (0, 1), ρα(N, c, E) = αP (N, c, E) = αE
C
c. The corresponding

(proportional) upper bounds are easily obtained: ρdα(N, c, E) = (1−α)C+αE
C

c.

It might well be the case that a baseline is neither a lower bound nor an upper bound.

Instances are those baselines that do not depend on the available amount. A focal example will

be the case in which baselines are a given percentage of claims. Formally, for each θ ∈ (0, 1),

θ (N, c, E) = θc, for all (N, c, E) ∈ D.

3 Composition Operators

We now introduce the concept of a composition operator. More precisely, for a given baseline

b, the composition operator Ob is the operator assigning to each rule R the rule Rb arising

from composing the tentative allocation of b with the allocation that R proposes for the revised

problem. Formally,

Rb (N, c, E) =

 R(N, b(N, c, E), E) if E ≤
∑

i bi(N, c, E)

b(N, c, E) +R(N, c− b(N, c, E), E −
∑

i bi(N, c, E)) if E ≥
∑

i bi(N, c, E)

(1)

A consequence of (1) is that Rb yields allocations satisfying xi ≤ bi(N, c, E) for each i ∈ N

if and only if E ≤
∑

i bi(N, c, E), and xi ≥ bi(N, c, E) for each i ∈ N if and only if E ≥∑
bi(N, c, E). In words, Rb imposes a rationing of the same sort for each individual and the

whole society according to the profile of baselines.

It can be argued that Rb rations agents relative to the feasible or unfeasible baselines in the

spirit of composition up and down respectively. More precisely, if b is a feasible baseline (i.e.,

a lower bound), then

Rb (N, c, E) = b(N, c, E) +R(N, c− b(N, c, E), E −
∑
i∈N

bi(N, c, E)),

as in the spirit of composition up, where Rb first allocates b and then allocates the residual

endowment using the rule R with respect to residual claims c− b.

If b is an unfeasible baseline (i.e., an upper bound), then

Rb (N, c, E) = R(N, b(N, c, E), E),

as in the spirit of composition down, where Rb allocates E by using the rule R with respect to

the baseline itself.
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It follows from the above that the minimal rights operator and the claims truncation oper-

ator are specific instances of composition operators. More precisely, if b(N, c, E) = m(N, c, E)

for each (N, c, E) ∈ D, then the corresponding composition operator Ob is precisely the oper-

ator Om. Similarly, if b(N, c, E) = t(N, c, E) for each (N, c, E) ∈ D, then the corresponding

composition operator Ob is precisely the operator Ot.

As mentioned above, a natural class of baselines arises when baselines profiles are assumed to

be a given percentage of claims, i.e., for some θ ∈ (0, 1), b(N,E, c) = θc, for each (N, c, E) ∈ D.

It turns out that the proportional rule is a fixed point for each of the corresponding composition

operators {Oθ}θ∈(0,1). Formally, Oθ(P ) = P , for each θ ∈ (0, 1).5 As for the specific case in

which θ = 1/2, which could be interpreted as a psychological threshold, the other two classical

rules (namely, the constrained equal awards and the constrained equal losses rules) also provide

interesting outcomes. More precisely, it is straightforward to show that O1/2(A) would precisely

be the so-called Piniles rule (e.g., Thomson, 2003), whereas O1/2(L) would be its dual rule.

4 Relating operators

4.1 Duality relationships

In this section, we relate some of the composition operators described above. Note first that,

as the duality operator is an involution, then R is the dual of S if and only if S is the dual of

R. Hence, if R is the dual of S we can refer to R and S as dual rules.

We now define the concept of a dual baseline. Formally, for a given baseline b, we define its

dual bd by

bd(N, c, E) = c− b(N, c, C − E). (2)

In words, as it happens with rules, baseline bd allocates awards in the same way as baseline b

allocates losses. The dual of a lower bound is an upper bound and vice versa. Note also that

E ≥
∑
bi (N, c, E) is equivalent to saying that C−E ≤

∑
bdi (N, c, C − E) . Then, we have the

following result:

Theorem 1 Let R and S be dual rules. Then Rb and Sbd are dual rules.

Proof. We need to show that for each (N, c, E), Rb (N, c, E) = c − Sb
d

(N, c, C − E). We

distinguish two cases.

5That is also the case for the proportional bounds operators {Oρα}α∈(0,1) and {Oρ
d
α}α∈(0,1).
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Case 1: E ≤
∑

i∈N bi (N, c, E).

In this case, Rb (N, c, E) = R (N, b(N, c, E), E) and

c− Sbd (N, c, C − E) = c− bd (N, c, C − E)− S

(
N, c− bd (N, c, C − E) , C − E −

∑
i∈N

bdi (N, c, C − E)

)
= b(N, c, E)− S(N, b(N, c, E),

∑
i∈N

bi(N, c, E)− E).

Now, as R and S are dual rules, it follows that

R (N, b(N, c, E), E) = b(N, c, E)− S

(
N, b(N, c, E),

∑
i∈N

bi (N, c, E)− E

)
.

Thus, Rb (N, c, E) = c− Sbd (N, c, C − E), as desired.

Case 2: E ≥
∑

i∈N bi (N, c, E).

In this case,

Rb (N, c, E) = b (N, c, E) +R(N, c− b (N, c, E) , E −
∑
i∈N

bi (N, c, E)),

and

c− Sbd (N, c, C − E) = c− S
(
N, bd (N, c, C − E) , C − E

)
= c− S (N, c− b(N, c, E), C − E) .

Now, as R and S are dual rules, it follows that

R(N, c− b (N, c, E) , E −
∑
i∈N

bi (N, c, E)) = c− b (N, c, E)− S (N, c− b (N, c, E) , C − E) ,

from where the desired equality follows.

Theorem 1 says, in particular, that if R is a self-dual rule, then Rb and Rbd are dual rules.

Somewhat related, we also have that if b is a baseline, S is a rule such that Sb is self-dual, and

R is the dual rule of S, then Rbd ≡ Sb.

The truncated claims and the minimal rights are dual baselines, i.e., td = m and md = t.

We then have the following corollary, which corresponds to Theorems 1 and 5 in Thomson and

Yeh (2008).

Corollary 1 Let R and S be two dual rules. Then, Rm and St are dual rules.

Other similar results can also be obtained as straightforward consequences of the above

theorem.
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Corollary 2 Let R and S be two dual rules. Then,

• Rµ and Sµd are dual rules.

• Rρα and Sρdα are dual rules.

• Rθ and S1−θ are dual rules.6

4.2 Commutative relationships

We now turn to explore how composition operators behave when they are applied sequentially.

More precisely, our next result shows that the composition operators corresponding to two dual

baselines commute, provided they satisfy an additional condition. Formally, let b be a lower

bound. We say that b is duality stable if

b(N, bd (N, c, E) , E) = b(N, c, E),

for each (N, c, E) ∈ D. Then, we have the following:

Theorem 2 If a lower bound is duality stable then the composition operator Ob commutes with

the composition operator Obd , i.e., for each rule R,

Obd(Ob(R(N, c, E))) = Ob(Obd(R(N, c, E))).

Proof. Let (N, c, E) ∈ D be given.

On the one hand,

Obd(Ob(R(N, c, E))) = Rb(N, bd (N, c, E) , E)

= b(N, bd (N, c, E) , E) (3)

+ R(N, bd (N, c, E)− b(N, bd (N, c, E) , E), E −
∑
i∈N

bi(N, b
d (N, c, E) , E)).

On the other hand,

Ob(Obd(R(N, c, E))) = b(N, c, E) +Rbd(N, c− b (N, c, E) , E −
∑
i∈N

bi(N, c, E))

= b(N, c, E) (4)

+ R(N, bd

(
N, c− b(N, c, E), E −

∑
i∈N

bi(N, c, E)

)
, E −

∑
i∈N

bi(N, c, E)).

6In particular, if R is a self-dual rule then R1/2 is self-dual too.
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It follows from (2) that

bd

(
N, c− b(N, c, E), E −

∑
i∈N

bi(N, c, E)

)
= c− b(N, c, E)− b(N, c− b(N, c, E), C − E)

= c− b(N, c, E)− b(N, bd(N, c, C − E), C − E)

= c− b(N, c, E)− b(N, c, C − E)

= bd(N, c, E)− b(N, c, E).

Thus, by dual stability, both (3) and (4) are equal to

b(N, c, E) +R(N, bd (N, c, E)− b(N, c, E), E −
∑
i∈N

bi(N, c, E)).

It is not difficult to show that the minimal rights lower bound is duality stable. Consequently,

we have the following corollary, which corresponds to Theorem 3 in Thomson and Yeh (2008).

Corollary 3 Om and Ot commute.

The proportional lower bounds are duality stable too. Consequently, Oρα and Oρdα commute,

for any α ∈ (0, 1). The lower bound µ, however, is not duality stable and, actually, it turns out

that Oµ and Oµd do not commute. The operators Oθ and O1−θ do not commute either, for any

θ ∈ (0, 1).

Theorem 2 can be further extended in the two-agent case for rules satisfying a mild notion

of impartiality stating that agents with equal claims are treated equally. In order to present

this result, let us refer first to a focal principle in the two-agent case, known as concede-and-

divide, whose motivation can be traced back to the Talmud.7 It amounts to solve two-agent

problems upon conceding each agent a portion of the endowment and dividing the remainder

equally. A point in case for such concessions are the minimal rights described above, but

any other lower bound could be considered too. Formally, for any lower bound b, the so-called

generalized concede-and-divide rule, CDb, selects, for each two-agent problem ({i, j}, (ci, cj), E),

the allocation(
bi({i, j}, (ci, cj), E) +

E −B({i, j}, (ci, cj), E)

2
, bj({i, j}, (ci, cj), E) +

E −B({i, j}, (ci, cj), E)

2

)
,

where B({i, j}, (ci, cj), E) = bi({i, j}, (ci, cj), E) + bj({i, j}, (ci, cj), E). The so-called concede-

and-divide rule, CD, which corresponds to the two-agent version of the Talmud rule, is obtained

when b = m.
7The principle was first modeled by Aumann and Maschler (1985) although the term concede-and-divide was

later coined by Thomson (2003).
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We now introduce an additional condition for lower bounds, which says that all agents

should face a constant gap between a lower bound and its dual upper bound. Formally, let b

be a lower bound. We say that b satisfies constant duality gap if, for each (N, c, E) ∈ D,

bdi (N, c, E)− bi (N, c, E) = bdj (N, c, E)− bj (N, c, E) ,

for each i, j ∈ N .

The following result strengthens Theorem 2 in the two-agent case.

Theorem 3 If R is a two-agent rule satisfying equal treatment of equals, and b is a two-agent

lower bound satisfying dual stability and constant duality gap, then Ob(Obd(R)) = Obd(Ob(R)) =

CDb.

Proof. Let R be a two-agent rule satisfying equal treatment of equals, and let b be a two-agent

lower bound satisfying dual stability and constant duality gap. Let ({i, j}, (ci, cj), E) ∈ D be a

two-agent problem. Then, by the proof of Theorem 2,

Obd(Ob(R ({i, j}, (ci, cj), E))) = Ob(Obd(R ({i, j}, (ci, cj), E))) =

b ({i, j}, (ci, cj), E) +R({i, j}, bd ({i, j}, (ci, cj), E)− b ({i, j}, (ci, cj), E) , E −B ({i, j}, (ci, cj), E)),

where B ({i, j}, (ci, cj), E) = bi ({i, j}, (ci, cj), E) + bj ({i, j}, (ci, cj), E). By constant duality

gap (of b) and equal treatment of equals (of R) the result follows.8

The minimal rights lower bound satisfies constant duality gap in the two-agent case. Con-

sequently, we have the following corollary, which corresponds to Theorem 2 in Thomson and

Yeh (2008).

Corollary 4 If R is a two-agent rule satisfying equal treatment of equals, then Om(Ot(R)) =

Ot(Om(R)) = CD.

4.3 Fixed points and recursive iterations

Another interesting issue related to operators is to explore the rules that remain unchanged

when applied to them. A similar question has been recently addressed by Dominguez (2010)

in the specific case of lower bounds. More precisely, Dominguez (2010) shows that if a lower
8Note that the result could be extended to the general case of n claimants upon imposing constant duality

gap for that general case, and obtaining the rule that allocates the lower bound first and then divides the

remainder equally among all agents.
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bound b is continuous and positive (i.e., for each (N, c, E) ∈ D, bi(N, c, E) ≥ 0 for each

i ∈ N , with some strict inequality), then there is a unique rule satisfying invariance under the

assignment of such lower bound (in the parlance of our paper, the composition operator Ob

has a unique fixed point, i.e., there is a unique S such that Sb = S). Furthermore, such a rule

is obtained by applying the lower bound recursively.9 Thanks to Theorem 1, we can extend

this result to general upper bounds and baselines. We say that an upper bound is strict if

for each (N, c, E) ∈ D, bi(N, c, E) ≤ ci for all i ∈ N , with at least one strict inequality. It is

straightforward to show that a lower bound is positive if and only if its dual upper bound is

strict. The next result summarizes our findings in this section.10

Theorem 4 The following statements hold:

• If a continuous lower bound b is positive then there is a unique fixed point of Ob. This

fixed point is the rule obtained by applying the lower bound b recursively.

• If a continuous upper bound b is strict then there is a unique fixed point of Ob. This fixed

point is the rule obtained by applying the upper bound b recursively, and it corresponds to

the dual rule of the unique fixed point of Obd.

• If a continuous baseline b is strict and positive, then there is a unique fixed point of Ob.

This fixed point is the rule obtained by applying the baseline b recursively.

Proof. As mentioned above, the first statement is shown by Dominguez (2010). As for the

second statement, let b be a strict continuous upper bound. Then, bd is a positive continuous

lower bound. By the first statement, there is a unique rule S, such that Sbd = S (and, moreover,

S is the rule that is obtained by applying the bound iteratively). Then, Od(Sb
d
) = Od(S). Let

R = Od(S). As R and S are dual rules, then, by Theorem 1, so are Sbd and Rb. Thus,

Rb = Od(Sb
d
) = Od(S) = R, which shows that R is indeed the unique fixed point of Ob. It also

follows, by duality, that R is the rule obtained upon applying recursively the upper bound b.

This proves the second statement. The third one follows from the first two statements. More

precisely, positivity guarantees that the residual endowment to be allocated decreases for those
9It is worth mentioning that if positivity is dropped then the result does not hold, and the corresponding

composition operator may well have many fixed points. For instance, all rules within the TAL-family (e.g.,

Moreno-Ternero and Villar, 2006) from the constrained equal losses rule to the Talmud rule are fixed points of

Om.
10Statement 1 is due to Dominguez (2010).
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steps in which the recursive iteration yields a feasible vector, as in the case of lower bounds;

strictness guarantees that claims are reduced for those steps in which the recursive iteration

yields an unfeasible vector, as in the case of upper bounds. Continuity concludes.

It is worth mentioning that, as with the case of positivity, strictness is necessary to guarantee

the uniqueness stated in the previous statements.11 Note that the upper bound µd satisfies

strictness. The unique fixed point of its corresponding composition operator is hence the dual

rule of the so-called recursive rule, introduced and analyzed by Dominguez and Thomson (2006).

Proportional lower (upper) bounds satisfy positivity (strictness). As mentioned above, the

proportional rule is a fixed point of the corresponding operators. Theorem 4 shows uniqueness.12

As for the operators {Oθ}θ∈(0,1), Theorem 4 also shows that they each have a unique fixed point.

5 Preservation of axioms

In this final section we undertake a systematic investigation of which properties are preserved

under the composition operators. An axiom is said to be preserved under an operator if any

rule that satisfies the axiom is mapped by the operator into a rule that also satisfies the axiom.

The literature has provided a wide variety of axioms for rules reflecting ethical or operational

principles. Here we shall concentrate on those formalizing the principles of impartiality, priority,

and solidarity, which have a long tradition in the theory of justice (e.g., Moreno-Ternero and

Roemer, 2006), but also some operational (independence, strategic, and procedural) properties

widely used in the literature on the problem of adjudicating conflicting claims (e.g., Thomson,

2003). In what follows, and in order to save space, we simply enumerate the properties and

refer readers to earlier literature for motivation and formal definitions. We also dismiss some

proofs, which are available upon request.

Equal Treatment of Equals : agents with equal claims should receive equal amounts; Anonymity :

any “renaming” of claimants should be accompanied by a parallel reassignment of awards; Or-
11If strictness is dropped then the corresponding composition operator may well have many fixed points. For

instance, all rules within the TAL-family (e.g., Moreno-Ternero and Villar, 2006) from the Talmud rule to the

constrained equal awards rule are fixed points of Ot.
12One could extend the idea of proportional lower bounds by assigning to each agent a fixed portion of any (not

necessarily proportional) allocation. Formally, for each α ∈ (0, 1), and rule R, b(R,α)(N, c,E) = R(N, c, αE).

It turns out that if the rule R satisfies the property of composition up, then it is a fixed point of the operator

Ob(R,α) . A counterpart dual result can also be obtained for the corresponding upper bounds, when composition

down is considered.
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der Preservation: agents with larger claims receive larger awards but face larger losses too;

Resource Monotonicity : if there is more to be divided, nobody should lose; Claims Mono-

tonicity : if an agent’s claim increases, she should receive at least as much as she did initially;

Linked Monotonicity : if an agent’s claim and the endowment increase by the same amount,

the agent’s award should increase by at most that amount; Population monotonicity : if new

claimants arrive, each claimant initially present should receive at most as much as he did

initially; Resource-and-Population Monotonicity : if new claimants arrive and the endowment

increases by the sum of their claims, then each claimant initially present should receive at least

as much as he did initially; Resource-and-Population Uniformity : the arrival of new agents

should affect all the incumbent agents in the same direction; Consistency : if some claimants

leave with their awards and the problem of dividing among the remaining claimants what is left

is considered, these claimants should receive the same awards as initially;13 Scale Invariance: if

claims and endowment are multiplied by the same positive number, then so should all awards.

To conclude with the inventory of properties, we state two new independence properties

that generalize two existing properties in the literature, known as Minimal Rights First and

Claims Truncation Invariance. Formally, for any lower bound b, we say that a rule satisfies

b-first if R(N, c, E) = b(N, c, E) + R(N, c − b(N, c, E), E −
∑

i bi(N, c, E)) = Rb(N, c, E), for

each (N, c, E) ∈ D. Similarly, for any upper bound b, we say that a rule satisfies b-invariance,

if R(N, c, E) = R(N, b(N, c, E), E) = Rb(N, c, E), for each (N, c, E) ∈ D.14

For any given property P , Pd is the dual property of P if for each rule R, R satisfies P

if and only if its dual rule Rd satisfies Pd. Claims monotonicity and linked monotonicity are

dual properties. The same occurs for population monotonicity and resource-and-population

monotonicity. A property is said to be self-dual if it coincides with its dual. Equal treatment

of equals, order preservation, and resource monotonicity are instances of self-dual properties.

Similarly, if bd is the dual baseline of a given lower bound b then b-first and bd-invariance are

dual properties.

Our next result helps to identify the preservation of some axioms.

Theorem 5 A property is preserved under the composition operator Ob if and only if its dual
13See Young (1987, 1988) or Moulin (2000) for important implications of the idea of consistency in this context

and Thomson (1996) for a survey of the many applications that have been made on this principle in this and

related contexts.
14Using a different parlance, a rule satisfies b-first if b is a lower bound and the rule is a fixed point of Ob,

and b-invariance if b is an upper bound and the rule is a fixed point of Ob.
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property is preserved under the composition operator Obd .

Proof. Let P be a property that is preserved under Ob, Pd its dual, and let R be a rule

satisfying Pd. We need to show that Rbd satisfies Pd. As P is dual to Pd, S = Rd, the dual

rule of R, satisfies P . As P is preserved under Ob, it follows that Sb satisfies P . By Theorem

1, Sb = Rbd , which concludes the proof of the “if” statement. The proof of the “only if” part

goes along the same lines.

The next corollary summarizes some straightforward consequences of the above theorem.

Its first statement corresponds to Theorem 4 in Thomson and Yeh (2008).

Corollary 5 The following statements hold:

• A property is preserved under Om if and only if its dual property is preserved under Ot.

• A property is preserved under Oµ if and only if its dual property is preserved under Oµd .

• A property is preserved under Oρα if and only if its dual property is preserved under Oρdα.

• A property is preserved under Oθ if and only if its dual property is preserved under O1−θ.

For arbitrary baseline profiles it is not difficult to show that almost none of the above axioms

are preserved by the composition operators. A notable exception are the so-called independence

properties described above, which generalize the properties of minimal rights first and claims

truncation invariance.

Proposition 1 The following statements hold:

• If b is a lower bound then Ob preserves b-first.

• If b is an upper bound then Ob preserves b-invariance.

Proof. By Theorem 5, we only need to prove one statement. Let b be an upper bound, R

a rule satisfying b-invariance, and S = Ob(R) = Rb. For any (N, c, E) ∈ D, Sb(N, c, E) =

S(N, b(N, c, E), E) = Rb(N, b(N, c, E), E). As R satisfies b-invariance, it follows that

Rb(N, b(N, c, E), E) = R(N, b(N, c, E), E) = Rb(N, c, E) = S(N, c, E).

Altogether, we have that Sb(N, c, E) = S(N, c, E), as desired.

As mentioned above, most of the usual axioms are not preserved by the composition op-

erators. It turns out, however, that many axioms are consequently preserved. By consequent
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preservation we mean that if a rule R satisfies a property P , and the baseline does that too,

then Rb also satisfies this property.

Proposition 2 Equal treatment of equals, anonymity, order preservation and scale invariance

are consequently preserved.

Proof.

Let us start with equal treatment of equals. A baseline b satisfies equal treatment of equals

if for each (N, c, E) ∈ D, and i, j ∈ N such that ci = cj then bi (N, c, E) = bj (N, c, E).

Let R and b be a rule and a baseline, respectively, satisfying equal treatment of equals. Let

(N, c, E) ∈ D be given and let i, j ∈ N be such that ci = cj. Then, bi (N, c, E) = bj (N, c, E)

and ci − bi (N, c, E) = cj − bj (N, c, E) and therefore, Rb
i(N, c, E) = Rb

j(N, c, E).

A baseline b is anonymous if for each (N, c, E) ∈ D, π ∈ ΠN , and i ∈ N , bπ(i)
(
N, (cπ(i))i∈N , E

)
=

bi (N, c, E). Let R and b be an anonymous rule and baseline, respectively. Let (N, c, E) ∈ D be

given and let also π ∈ ΠN and i ∈ N be given. Then, if E ≤
∑

i bi(N, c, E), Rb
π(i)(N, (cπ(i))i∈N , E) =

Rπ(i)(N, b(N, (cπ(i))i∈N , E), E) = Rπ(i)(N, (bπ(i)(N, (cπ(i))i∈N , E))i∈N , E) = Ri(N, b(N, c, E), E) =

Rb
i(N, c, E). Similarly, ifE ≥

∑
i bi(N, c, E), thenRb

π(i)(N, (cπ(i))i∈N , E) = bπ(i)(N, (cπ(i))i∈N , E)+

Rπ(i)(N, (cπ(i)− (bi(N, (cπ(i))i∈N , E))i∈N , E−
∑

i bi(N, (cπ(i))i∈N , E)) = bi(N, c, E)) +Ri(N, (c−

b(N, c, E), E −
∑

i bi(N, c, E)) = Rb
i(N, c, E)), as desired.

We now move to order preservation. A baseline b is order preserving if for each (N, c, E) ∈

D, and i, j ∈ N such that ci < cj then bi (N, c, E) ≤ bj (N, c, E) and ci − bi (N, c, E) ≤

cj − bj (N, c, E). Let R and b be an order-preserving rule and baseline, respectively. Let

(N, c, E) ∈ D be given and let i, j ∈ N be such that ci < cj. Then, bi (N, c, E) ≤ bj (N, c, E)

and ci − bi (N, c, E) ≤ cj − bj (N, c, E). As R is order preserving, it follows that Ri(N, b, E) ≤

Rj(N, b, E) if E ≤
∑

i bi(N, c, E) and that bi (N, c, E) + Ri(N, c − b, E −
∑

i bi(N, c, E)) ≤

bj (N, c, E) + Rj(N, c − b, E −
∑

i bi(N, c, E)) if E ≥
∑

i bi(N, c, E). Then, Rb
i(N, c, E) ≤

Rb
j(N, c, E). Similarly, as R is order preserving, it follows that bi (N, c, E) − Ri(N, b, E) ≤

bj (N, c, E) − Rj(N, b, E) if E ≤
∑

i bi(N, c, E). As b is order preserving, this implies that

ci − Ri(N, b, E) ≤ cj − Rj(N, b, E) if E ≤
∑

i bi(N, c, E). Finally, as R and b are order

preserving, it follows that ci− bi (N, c, E)−Ri(N, c− b, E−
∑

i bi(N, c, E)) ≤ cj− bj (N, c, E)−

Rj(N, c−b, E−
∑

i bi(N, c, E)) if E ≥
∑

i bi(N, c, E). Thus, ci−Rb
i(N, c, E) ≤ cj−Rb

j(N, c, E),

which concludes the proof.

Finally, a baseline b is scale invariant if for each (N, c, E) ∈ D, and λ > 0, b (N, λc, λE) =

λb (N, c, E). Let R and b be a scale-invariant rule and baseline, respectively. Let (N, c, E) ∈ D
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be given and let λ > 0 be given. Then, if E ≤
∑

i bi(N, c, E), Rb(N, λc, λE) = R(N, b(N, λc, λE), λE) =

R(N, λb(N, c, E), λE) = λR(N, b(N, c, E), E) = λRb(N, c, E). Similarly, if E ≥
∑

i bi(N, c, E),

thenRb(N, λc, λE) = b(N, λc, λE)+R(N, λc−b(N, λc, λE), λE) = λb(N, c, E)+λR(N, b(N, c, E), E) =

λRb(N, c, E), as desired.

We now move to a set of properties that require additional conditions on baselines, to the

consequent counterpart properties of the baselines, to be preserved. Borrowing the term from

Hokari and Thomson (2008), we refer to this aspect as assisted preservation.

Let us start with claims monotonicity. We say that an upper bound b satisfies strong

claims monotonicity if, for all (N, c, E) ∈ D and i ∈ N , ci < c′i implies bi(N, (ci, cN\{i}), E) <

bi(N, (c
′
i, cN\{i}), E) and bj(N, (ci, cN\{i}), E) = bj(N, (c

′
i, cN\{i}), E) for each j ∈ N \ {i}.15 It is

not difficult to show that claims monotonicity is preserved if assisted by the previous condition.

More precisely, if R is claims monotonic and b is an upper bound that satisfies strong claims

monotonicity, then Rb satisfies claims monotonicity too.

As for population monotonicity, we say that an upper bound satisfies strong population

monotonicity if, for each (N, c, E) ∈ D and (N ′, c′, E) ∈ D such that N ⊆ N ′ and c′N = c,

then bi (N
′, c′, E) = bi (N, c, E), for each i ∈ N .16 It is not difficult to show that population

monotonicity is preserved if assisted by the previous condition.

Thanks to Theorem 5, we also have that linked monotonicity and resource-and-population

monotonicity are preserved if assisted by the dual properties of strong claims monotonicity and

strong population monotonicity, respectively. To summarize:

Proposition 3 The following statements hold:

• If R satisfies claims monotonicity and b is an upper bound that satisfies strong claims

monotonicity, then Rb satisfies claims monotonicity.

• If R satisfies linked monotonicity and b is a lower bound that satisfies strong linked mono-

tonicity, then Rb satisfies linked monotonicity.

• If R satisfies population monotonicity and b is an upper bound that satisfies strong linked

monotonicity, then Rb satisfies population monotonicity.

• If R satisfies resource-and-population monotonicity and b is a lower bound that satisfies

strong resource-and-population monotonicity, then Rb satisfies resource-and-population
15Note that this condition implies claims monotonicity.
16Note that this condition implies population monotonicity.
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monotonicity.

The remaining properties described above are highly disruptive. This is certainly the case

of the two composition properties, which might be somewhat surprising given the underlying

connection between these properties and the composition operators. Something similar happens

with resource monotonicity, consistency, resource-and-population uniformity, and self-duality.

The reason for such a disruptive behavior in all these cases is that the effect of each of these

properties on the baseline and the primitive rule cannot be disentangled, in contrast with the

previous properties.

We conclude referring to the properties dealing with the immunity of rules to coalitional

manipulation. It is well known that the proportional rule is essentially the only non-manipulable

rule (e.g., Ju et al., 2007).17 It follows from here that if the proportional rule is not a fixed point

of a given composition operator, then such operator does not preserve any of the properties of

non manipulability.

The following corollary, whose content is shown directly by Thomson and Yeh (2008), is a

straightforward consequence of the results in this section.

Corollary 6 The following statements hold:

• Ot preserves invariance under claims truncation, equal treatment of equals, anonymity,

order preservation, scale invariance, claims monotonicity and population monotonicity.

• Om preserves minimal rights first, equal treatment of equals, anonymity, order preserva-

tion, scale invariance, linked monotonicity and resource-and-population monotonicity

6 Final remarks

We have presented in this paper a unifying framework for the problem of adjudicating conflicting

claims. Thomson and Yeh (2008) uncovered the structure of the space of rules for that problem

upon studying operators on such a space. In this paper, we have generalized their contribution

with a systematic analysis of a family of operators generalizing two of theirs. This has allowed

us to scrutinize further the structure of the space of rules, deriving new lessons and testing the

robustness of other known aspects.
17This is not only the case for manipulations via merging or splitting claims, but also with respect to any

other similar form of manipulation such as reallocation or transfers of claims (e.g., Ju et al, 2007).
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We believe that the main important lesson of our analysis is that three apparently unrelated

approaches to the problem of adjudicating conflicting claims (namely; baseline rationing, com-

position properties, and lower bounds) can be unified. It is left for further research to explore

whether such feature extends to other related models.

Our analysis and results are also relevant for the so-called Talmud rule, whose initial anal-

ysis originated a relevant portion of the literature dealing with the problem of adjudicating

conflicting claims. As mentioned above, the Talmud rule is a compromise between two other

focal rules (the constrained equal-awards and the constrained equal-losses rules). More pre-

cisely, the Talmud rule behaves as follows. First, apply equal division until the claimant with

the smallest claim has obtained one half of her claim. Then, that agent stops receiving ad-

ditional units and the remaining amount is divided equally among the other agents until the

claimant with the second smallest claim gets one half of her claim. The process continues until

every agent has received one half of her claim, or the available amount is distributed. If there

is still something left after this process, agents are invited back to receive additional shares.

Now agents receive additional amounts sequentially starting with those with larger claims and

applying equal division of their losses. As such, the rule can be seen as imposing a rationing of

the same sort for each individual and the whole society, according to the profile of half claims.

If the endowment falls short of half of the aggregate claim, then no agent gets more than half

of her claim. Similarly, if the endowment is above one half of the aggregate claim, no agent

gets less than half of her claim. It turns out, as mentioned above, that our family of operators

introduced here are also somehow reflecting this same Talmudic dictum, but in a more general

way, as half claims are replaced by arbitrary baselines.
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