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1 Preliminaries

In a recent paper, Fragnelli and Gagliardo (2012) (in what follows, “FG”) analyze a simple

distribution problem in which one object (divisible or indivisible) has to be allocated among a

group of agents, each having a (strictly) positive valuation of the object. FG propose several

methods to solve this problem. One traces back to a classical procedure due to Knaster (1946).

Another uses classical values at a coalitional game associated to the problem. Yet a third one

is based on the literature on bankruptcy problems, initiated by O’Neill, (1982). Our aim in

this note is to extend FG’s analysis, as well as to contextualize it into recent developments of

the fast-expanding literature on bankruptcy problems (e.g., Thomson, 2003; 2012).

Formally, suppose one object (divisible or indivisible) has to be allocated among a group of

agents N = {1, . . . , n}. For each agent i ∈ N , her valuation of the object is denoted by vi > 0.

Without loss of generality, let us assume that agents are ranked according to their valuations,

i.e., v1 ≤ v2 ≤ · · · ≤ vn.

It is straightforward to see that, by Pareto efficiency, the object should be assigned to agent

n, whereas the others should be compensated. Thus, an admissible (efficient) allocation for the

problem just described is simply a vector x = (x1, x2, . . . , xn), such that
∑n

i=1 xi = vn (balance

condition), and where each xi ≥ 0 is interpreted as the compensation for agent i ∈ N \ {n}.

Besides Pareto efficiency, FG propose several properties for allocation rules: Individual

Equal Sharing requires that agents obtain at least one n-th of their valuation, i.e., xi ≥ vi/n;

Selfish monotonicity, on the other hand, states that agents cannot obtain more than a

portion of the highest valuation, where this portion is inversely correlated to the number of

agents with a higher valuation, i.e., for each i ∈ N , xi ≤ vn/|Ki|, where Ki = {j ∈ N : vj ≥ vi}.

FG consider several allocation rules and study their performance with respect to the above

properties. First, they consider the so-called Knaster rule, which awards each agent one n-th

of her valuation and then divides equally the remainder. Formally, for each i ∈ N ,

Ki(v) =
1

n
vi + λ,

where λ ≥ 0 is chosen so that the balance condition is guaranteed. Second, they take a

game-theoretical approach and consider the rules emerging from using two well-known values

(Shapley and Tau) to solve a coalitional game associated with each problem, whose charac-

teristic function yields as the worth of a coalition the maximum valuation of the members of
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that coalition, i.e., u : 2N → R such that u(S) = maxi∈S vi, for each S ⊂ N . Formally,

Si(v) =
v1

n
+
v2 − v1

n− 1
+
v3 − v2

n− 2
+ · · ·+ vi − vi−1

n− i+ 1
,

for each i ∈ N , and

τ(v) =
(vn−1

n
,
vn−1

n
, . . . ,

vn−1

n
, vn − vn−1 +

vn−1

n

)
.

Third, they propose four rules coming from the literature on bankruptcy problems. On the

one hand, the so-called constrained equal-awards rule, which makes awards as equal as

possible, subject to the condition that no agent gets more than her valuation, and the so-

called constrained equal-losses rule, which makes losses as equal as possible, subject to the

condition that no agent gets a negative amount. Formally, for each i ∈ N ,

Ai(v) = min{vi, λ},

and

Li(v) = max{0, vi − λ},

where λ > 0 is chosen, in each case, so that the balance condition is guaranteed. On the other

hand, the so-called proportional rule, which makes awards proportional to valuations, i.e.,

P (v) =
vn

V
· v,

where V =
∑

i∈N vi, and the Talmud rule (e.g., Aumann and Maschler, 1985), which is

a compromise between the constrained equal-awards and the constrained equal-losses rules.

Formally, for each i ∈ N ,

Ti (v) =

 min{1
2
vi, λ} if vn ≤ 1

2
V

max{1
2
vi, vi − µ} if vn ≥ 1

2
V

where λ and µ are chosen so that the balance condition is guaranteed.

2 The analysis

The property of individual equal sharing is a specific lower bound condition. Lower bound

conditions have a long tradition in models of distributive justice (e.g., Moulin, 1991; Mani-

quet, 1996). Even though some specific lower bounds have been consider in the literature on

bankruptcy problems from its beginning (for instance, the very definition of a rule includes
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the requirement that awards be non-negative), Moreno-Ternero and Villar (2004) introduced

a focal one, under the name of securement. Formally, a (bankruptcy) rule satisfies secure-

ment if it guarantees to each agent one n-th of her truncated valuation (claim). Formally,

xi ≥ 1
n

min{vi, E}, for each i ∈ N , where E denotes the endowment to be allocated in the

bankruptcy problem. In FG’s setting, E = vn ≥ vi, for each i ∈ N and, thus, securement be-

comes individual equal sharing. The performance of the bankruptcy-like rules mentioned above,

with respect to this property, is summarized in Proposition 3 in FG, which is a straightforward

consequence of Theorem 1, and Propositions 2 and 3 in Moreno-Ternero and Villar (2004).

The fact that the remaining rules (namely; Knaster, Shapley and Tau) satisfy individual equal

sharing is straightforward, as noted by FG.

As for selfish monotonicity, one simply has to note that it is a weakening of the standard

notion of order preservation (in awards), i.e., agents with higher valuations receive higher

awards. As a consequence, selfish monotonicity is satisfied by each of the rules considered

above, as stated in Proposition 5 of FG.1 Now, selfish monotonicity can be seen as a sort of

counterpart of individual equal sharing, as it imposes an upper bound on individuals’ awards.

Nevertheless, and as shown above, such upper bound is rather weak. An upper bound with a

deeper bite could be obtained by imposing the dual notion of securement (also introduced by

Moreno-Ternero and Villar, 2004), which formally says that vi − xi ≥ 1
n

min{vi,
∑

j∈N vj −E},

for each i ∈ N . In FG’s setting, this property translates into the requirements xi ≤ n−1
n
vi,

for each i ∈ N \ {n}, and xn ≤ max{n+1
n
vn − V

n
, n−1

n
vn}, to which we shall refer as the dual

of individual equal sharing. The following proposition summarizes the performance of the

above rules with respect to this property.

Proposition 1 The constrained equal losses, Talmud and Shapley rules satisfy the dual no-

tion of individual equal sharing, whereas the constrained equal awards, proportional, Tau, and

Knaster rules violate it.

Proof. The statements regarding the constrained equal losses and Talmud rules are a conse-

quence of Proposition 3 and Theorem 2 in Moreno-Ternero and Villar (2004). The statements

regarding the constrained equal awards, proportional, Tau, and Knaster rules are shown, for

1It is worth noting that, in the proof of Proposition 5, FG wrongly consider “claims monotonicity”, the

property saying that if an agent’s claim (valuation) increases then she should receive at least as much as she

did initially (e.g., Thomson, 2003), instead of order preservation of awards.
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instance, by considering the problem v = (1, 3, 10), as

min{A1(v), P1(v), τ1(v), K1(v)} > 2

3
=
n− 1

n
v1.

To conclude, let us show the statement regarding the Shapley rule. Note first that S1(v) = v1

n
≤

n−1
n
v1. Reasoning by induction, let us assume that Si(v) ≤ n−1

n
vi, for each i ∈ {1, 2, . . . ,m},

with m ≤ n− 2. Then,

Sm+1(v) = Sm(v) +
vm+1 − vm

n−m
≤ n− 1

n
vm +

vm+1 − vm

n−m
≤ n− 1

n
vm+1,

where the last inequality follows from the fact that n ≤ (n− 1)(n−m). Thus, it only remains

to show that Sn(v) ≤ max{n+1
n
vn − V

n
, n−1

n
vn}. Now,

Sn(v) = vn −
n−1∑
i=1

xi ≤ vn −
n−1∑
i=1

vi

n
=
n+ 1

n
vn −

V

n
,

where the last inequality follows from the fact that the Shapley rule obeys securement, as

mentioned above.

It follows from the above proposition, and the discussion preceding it, that the Talmud and

Shapley rules emerge as superior procedures in FG’s setting, at least regarding their performance

with respect to lower and upper bounds. It turns out that these two rules coincide in the two-

agent case, but diverge in the case of more than two agents. Actually, the two-agent version of

these two rules is the so-called concede-and-divide procedure (e.g., Thomson, 2003), denoted

by CD, which rationalizes the classical example of the contested garment that appears in the

Talmud, which states that the contested portion of the garment is divided equally, and the

non-contested parts are conceded to the other agent. Formally, if v = (v1, v2) is a two-agent

problem, then CD(v) = (v1/2, v2 − v1/2). As the next proposition shows, the two bounds

described above actually characterize the concede-and-divide procedure (as shown by Moreno-

Ternero and Villar (2004) in the more general setting of bankruptcy problems).

Proposition 2 In the two-agent case, a rule satisfies individual equal sharing and its dual, if

and only if it agrees with concede-and-divide.

Proof. It is straightforward to see that concede-and-divide satisfies individual equal sharing

and its dual, for each two-agent problem. Conversely, let v = (v1, v2) be a two-agent problem

and R be a rule satisfying individual equal sharing and its dual. Then, by individual equal

sharing, R1(v) ≥ v1/2 and, by its dual, R1(v) ≤ v1/2. Consequently, R1(v) = v1/2 and, by the

balance condition, R(v) = (v1/2, v2 − v1/2) = CD(v).
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For problems involving more than two agents, the Shapley and Talmud rules diverge, al-

though they still satisfy the general version of the two bounds. This is in contrast with the Tau

rule, which also coincides with concede-and-divide in the two-agent case (and, hence, satisfies

both bounds in such case) but, as shown above, it does not obey the dual of individual equal

sharing in the case of more than two agents.

3 Further insights

The previous analysis extends (as well as contextualizes) that of FG by scrutinizing how the

rules they considered performed with respect to focal lower and upper bound conditions, which

have played an important role in the theory of fair allocation. We have singled out a unique

procedure to solve two-agent problems in FG’s setting by means of a lower and an upper bound

condition. For problems involving more than two agents, no unique procedure exists satisfying

those two conditions, and we have actually presented two among those considered by FG. It

remains as an open question to characterize the set of procedures satisfying the two bounds in

the general case of more than two agents and, ideally, to add some other ethically appealing

axioms that, when combined with the two bounds, single out a unique procedure.

Apart from the previous notions, the literature on bankruptcy problems has provided a

long list of properties reflecting ethical or operational properties. Most of them are relational

properties which do not preserve the constraint E = vn, and hence cannot be brought to

FG’s context. That is the case of the standard notions modeling the principle of solidarity

in the model of bankruptcy problems (e.g., resource monotonicity, population monotonicity,

consistency). Nevertheless, there are some punctual properties that could still be considered

in this context. Instances are properties modeling the principle of impartiality (such as equal

treatment of equals, or anonymity), or the principle of priority (such as the notions of order

preservation, in awards and losses). Each of these properties are satisfied by all the rules

described above, which enhances their fairness nature (which was the initial motivation of FG’s

analysis).2

To conclude, it is worth mentioning that, as indicated by FG, their model is similar to the

model of the so-called airport problem.3 Counterparts of the rules presented in the previous

2The principles of impartiality, priority and solidarity have a long tradition in the theory of justice (e.g.,

Moreno-Ternero and Roemer, 2006).
3See Thomson (2007) for a survey of the literature on these problems.
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sections and characterizations of them, based on axioms related to the cost-sharing nature of

the airport problem, exist in the literature. For instance, the sequential equal contributions rule

(which corresponds to the Shapley rule) is the only rule satisfying equal treatment of equals

and a property indicating that an agent’s contribution should not depend on the costs of the

segments he does not use (e.g., Moulin and Shenker, 1992). Similarly, the constrained equal

benefits rule (which corresponds to the constrained equal losses rule) is the only rule satisfying

equal treatment of equals, a limited version of the independence property mentioned above,

and a specific version of the consistency principle (e.g., Hu et al., 2012).
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Appendix that is not part of the submission for possible publication

To save space, we have included in this appendix, which is not for publication, formal

statements and proofs of some aspects, as well as some further insights, that have been dismissed

from the body of the paper.

• Two other properties (neither connected to lower bounds, nor to upper bounds) were also

considered by FG. Equitability requires that agents are awarded equally, i.e., xi = xj, for

each i, j ∈ N ; No-Envy requires that no agent perceives another agent obtains a higher

value than herself after the allocation, i.e., vn−1/n ≤ x1 = x2 = · · · = xn−1 ≤ xn.4 The

two properties are very restrictive in this context and that is why we have discarded them

from our analysis in this note. As a matter of fact, no rule satisfies the two properties

and, as noted by FG, only some do so for specific restricted domains.

• A bankruptcy problem is a triplet consisting of a population N , a claims profile c ∈ RN
+ ,

and an endowment E ∈ R+ such that
∑

i∈N ci ≥ E. The problem proposed by FG

can therefore be seen as a bankruptcy problem in which each claim is interpreted as the

valuation of the corresponding agent, and the endowment corresponds with the highest

valuation, i.e., E = cn. Four focal rules are considered in this setting. On the one

hand, the so-called constrained equal-awards rule, A, which makes awards as equal

as possible, subject to the condition that no agent gets more than her claim, and the

so-called constrained equal-losses rule, L, which makes losses as equal as possible,

subject to the condition that no agent gets a negative amount. Formally, A(N, c, E) =

(min{ci, λ})i∈N , and L(N, c, E) = (max{0, ci − λ})i∈N , where λ > 0 is chosen, in each

case, so that the balance is guaranteed, i.e.,
∑

i∈N xi = E. Two other prominent rules

are the so-called proportional rule, P , which makes awards proportional to claims, i.e.,

P (N, c, E) = E
C
· c, and the Talmud rule (e.g., Aumann and Maschler, 1985), which is a

compromise between the constrained equal-awards and the constrained equal-losses rules.

4It is assumed by FG that the value obtained by any agent i ∈ N \{n} is perceived by any other agent j ∈ N

equal to her compensation, whereas the value obtained by agent n is perceived by any other agent j ∈ N \ {n}

as her evaluation of the object minus the compensations, i.e., vj −
∑n−1

i=1 xi = vj − vn + xn. Consequently, the

no-envy axiom translates into vn−1/n ≤ x1 = x2 = · · · = xn−1 ≤ xn. The first inequality follows from the

fact that agent n − 1 cannot envy agent n. Given our assumption that agents are ranked according to their

valuations, such inequality also guarantees that no other agent envies agent n.
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Formally, T (N, c, E) = (min{1
2
ci, λ})i∈N if E ≤ 1

2
C and (max{1

2
ci, ci− µ})i∈N if E ≥ 1

2
C,

where λ and µ are chosen so that the balance condition is guaranteed.

• Moreno-Ternero and Villar (2004) introduced the property of securement in the con-

text of bankruptcy problems. Formally, a bankruptcy rule R satisfies securement if

Ri(N, c, E) ≥ 1
n

min{ci, E}, for each i ∈ N .5 Moreno-Ternero and Villar (2006) de-

fine lower securement as the half of the securement property guaranteeing the lower

bound for claims below the endowment, i.e., Ri(N, c, E) ≥ 1
n
ci, for each i ∈ N , such

that ci ≤ E. This notion is, therefore, also identical to individual equal sharing in FG’s

setting.

• The notion of duality is proposed by Aumann and Maschler (1985) in the context of

bankruptcy problems. It refers to the possibility of associating each rule (or property)

with a mirror procedure that allocates awards in the same manner as the initial one

allocates losses. The notion of duality can also be applied to the properties a rule satisfies.

That is, P∗ is the dual property of P if for every rule R it is true that R satisfies P

if and only if its dual rule R∗ satisfies P∗. The dual of securement in the bankruptcy

literature (also introduced by Moreno-Ternero and Villar, 2004), is an upper bound axiom

formally defined as Ri(N, c, E) ≤ ci − 1
n

min{ci,
∑

j∈N cj − E}, for each i ∈ N , which,

in FG’s setting, translates into the requirements xi ≤ n−1
n
vi, for each i ∈ N \ {n}, and

xn ≤ max{n+1
n
vn − V

n
, n−1

n
vn}.6

• Theorem 1 in Moreno-Ternero and Villar (2004) shows that the Talmud rule satisfies

both securement and its dual. Proposition 2 (3) shows that the constrained equal awards

(losses) rule satisfies securement (its dual) but not its dual (securement). Proposition 1

shows that the proportional rule fails to satisfy securement and its dual in the general

domain of bankruptcy problems. However, it obeys securement (albeit not its dual) in

the restricted framework considered by FG, as vi

n
≤ vn

V
vi, for each i ∈ N .

• The Shapley rule satisfies individual equal sharing:

Si(v) =
v1

n
+
v2 − v1

n− 1
+
v3 − v2

n− 2
+ · · ·+ vi − vi−1

n− i+ 1
,

5Note that using claims, instead of truncated claims, while defining the bound is not a meaningful option,

as the bounds so obtained would not necessarily be feasible for all problems.
6Note that an upper bound can also be interpreted as a lower bound on losses (the difference between the

amount awarded and the initial claim).
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for each i ∈ N . Then, for each i ∈ N , Si(v) ≥ vi

n
⇐⇒

vi − v1

n
≤ v2 − v1

n− 1
+
v3 − v2

n− 2
+ · · ·+ vi − vi−1

n− i+ 1
⇐⇒

v2 − v1

n
+
v3 − v2

n
+ · · ·+ vi − vi−1

n
≤ v2 − v1

n− 1
+
v3 − v2

n− 2
+ · · ·+ vi − vi−1

n− i+ 1
�

• In the bankruptcy literature, there exists a focal principle in the two-agent case, known

as concede-and-divide, whose motivation can be traced back to the Talmud.7 It amounts

to solve two-agent problems upon conceding each agent the portion of the endowment

that is not claimed by the other agent, and dividing the remainder equally. Formally, for

each two-agent problem P = ({i, j}, (ci, cj), E),

CD(P ) =

(
min{0, E − cj}+

E −M(P )

2
,min{0, E − ci}+

E −M(P )

2

)
,

where M(P ) = min{0, E−cj}+min{0, E−ci}. It turns out that the two bounds (secure-

ment and its dual) actually characterize the concede-and-divide procedure in bankruptcy

problems (e.g., Moreno-Ternero and Villar, 2004; Theorem 2).

• FG take a game-theoretical approach and associate with each problem the coalitional

game defined by the characteristic function selecting as the worth of a coalition the

maximum valuation of the members of that coalition. Formally, u : 2N → R is such

that u(S) = maxi∈S vi, for each S ⊂ N . It turns out that such is the same formula

proposed by Aumann (2010) to associate bankruptcy problems with coalitional games.

Nevertheless, the formula is overly optimistic for small coalitions. A different (and perhaps

more realistic) proposal was provided by O’Neill (1982), who considered the worth of each

coalition to be the difference between the amount available and the sum of the valuations

of the members of the complementary coalition, if this difference is non-negative, and 0

otherwise. Formally, u : 2N → R such that u(S) = max{vn −
∑

i∈N\S vi, 0}, for each

S ⊂ N . It is well-known that the nucleolus of that coalitional game yields the same

solutions as the Talmud rule for the associated bankruptcy problems (e.g., Aumann and

Maschler, 1985). If, instead of the nucleolus, we consider the Shapley and τ values, we end

up with the two following well-known rules in the bankruptcy literature (e.g., Thomson,

2003).

7The principle was first modeled by Aumann and Maschler (1985) although the term concede-and-divide was

later coined by Thomson (2003).
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First, imagine a bankruptcy situation in which agents arriving one at a time to get

compensated, and suppose that each claim is fully honored until money runs out. To

remove the unfairness of the first-come first-serve scheme associated with any particular

order of arrival, let us take the average of the awards vectors calculated in this way when

all orders are equally probable. The so-called Random Arrival rule results (e.g., O’Neill,

1982). Formally, RA(v) = ( 1
n!

∑
�∈RN min{vi,max{vn −

∑
j∈N,j�i vj, 0}})i∈N , where RN

denotes the class of strict orders in N . It turns out that this rule satisfies securement and

its dual upper bound described above.

Now, consider the adjustment of the proportional rule resulting from assigning first to

each agent his minimal right (to be understood as the remaining amount, if positive,

after honoring all other agents’ valuations; and zero otherwise), revise subsequently his

valuation down, truncate revised valuations at the amount that remains to divide, and

apply the proportional rule. Formally, the Adjusted Proportional rule (e.g., Curiel

et al., 1987) is defined, in this context, as AP (v) = P (v) if vn < V/2 and AP (v) =

(v1/2, . . . , vn−1/2, vn + (vn − V )/2) otherwise. It turns out that this rule also satisfies

securement and its dual upper bound described above (that is actually a consequence of

Proposition 5 in Moreno-Ternero and Villar, 2004).

• The Knaster procedure not only violates the dual of individual equal sharing, but even

the weakest possible notion of upper bound by which awards cannot be above individual

valuations. A natural modification of this procedure to account for such natural upper

bound, while keeping the spirit of the rule, would amount to consider the constrained

equal-awards procedure in the second stage, rather than just imposing equal shares. For-

mally, K̂(v) = ( 1
n
v + min{n−1

n
vi, λ})i∈N , where λ > 0 is chosen, so that the balance

condition is guaranteed. It is straightforward to see that K̂ guarantees resulting alloca-

tions satisfy valuations upper boundedness.8 It does not obey the dual of securement

though (e.g., some agents with small valuations could be fully honored with this proce-

dure). For that to happen we would need to modify the second stage of the procedure in

a way that would alter the spirit of the original procedure proposed by Knaster.

• The Shapley rule considered in FG has also been studied in bankruptcy problems under

the name of Ibn-Ezra’s rule. The focus therein has been to extend such rule to the

8In the more general setting of bankruptcy, K̂ is an instance of the rules obtained by the application of the

so-called baseline composition operators on the space of bankruptcy rules (e.g., Hougaard et al., 2012).
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universal domain of bankruptcy problems (e.g., Bergantiños and Mendez-Naya, 2001;

Alcalde et al., 2005).

• Solidarity properties with respect to population changes were famously introduced by

Thomson (1983a,b). A related notion with respect to changes in the endowment was first

considered by Roemer (1986). In the bankruptcy literature, similar notions have been

considered by several authors (e.g., Young, 1988; Chun, 1999).
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