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Abstract

We survey a series of theoretical contributions on di¤usion in random networks. We

start with a benchmark contagion process, referred in the epidemiology literature as the

Susceptible-Infected-Susceptible model, which describes the spread of an infectious disease

in a population. To make this model tractable, the interaction structure is considered as

a heterogeneous sampling process characterized by the degree distribution. Within this

framework, we distinguish between the case of unbiased-degree networks and biased-degree

networks. We focus on the characterization of the di¤usion threshold ; that is, a condition

on the primitives of the model that guarantees the spreading of the product to a signi�cant

fraction of the population, and its persistence. We also extend the analysis introducing a

general di¤usion model with features that are more appropriate for describing the di¤usion

of a new product, idea, behavior, etc.

JEL numbers: C73, L14, O31, O33.

Keywords: degree distribution, random networks, di¤usion threshold, endemic state,

homophily.

1 Introduction

In this chapter we discuss a number of di¤erent models of di¤usion, where by di¤usion (or

contagion) we mean the process by which information (or any kind of signal) travels along a
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population of agents that are in�uenced by each other in some well de�ned way. The general

objective is to understand how the network structure determines the reach of the process. This

question is relevant for many di¤erent disciplines, ranging from sociology and economics to

molecular biology and neurology.

In economics, technological di¤usion has been a central topic of industrial organization and

development which has lead to many well-known contributions (e.g., Rogers, 1995; Conley and

Udry, 2001, among others). The issue of di¤usion has also been extensively analyzed in the

game theoretic literature where we can distinguish between models of learning (Bala and Goyal,

1998), opinion formation (Golub and Jackson, 2012a, 2012b, 2012c) and network games (Morris,

2000; Galeotti et al., 2010; Jackson and Yariv, 2007). Finally, a direct application of di¤usion is

the study of disease transmission in a population, an issue which has been addressed widely in

the epidemiology literature (e.g., Bailey, 1975; Pastor-Satorrás and Vespignani, 2001a, 2001b).

These last contributions build on the theoretical framework of random networks which provides

a natural setup for the study of complex systems (Bollobás, 2001; Erdös and Rényi, 1959).

The purpose of this chapter is to present a series of models to extend those proposed in

epidemiology. In doing so, we aim to understand di¤usion not only of an infectious disease in

a population, but also of an idea, a product, a cultural fad, or a technology. Our results focus

on the characterization of the di¤usion threshold, a condition on the primitives of the model

which guarantees the spreading of the product (to a signi�cant fraction of the population) and

its persistence.

In Section 1 we study a benchmark contagion process referred in the literature as the

Susceptible-Infected-Susceptible (SIS) model. The interaction structure is considered as the

realization of a random sampling process characterized by the degree distribution, where the

degree of an agent refers to the number of agents sampled by this agent. Within this framework,

we distinguish between the case of unbiased-degree networks and biased-degree networks. In

the �rst case, agents are homogeneous with respect to how much they are observed by others.

Thus, heterogeneity in this framework is only related to the number of observations taken

by agents before making a choice, but all agents are equally in�uential. In the second case,

however, the number of agents observed by an agent roughly coincides with the number of

agents observing such an agent. Thus, this framework can be considered as an approximation

of an undirected network, where if agent i is in�uenced by agent j then j is in�uenced by i.

The results we present shed light on the relevance of the degree distribution on the predictions

of the model. In particular, we report how the di¤usion threshold changes due to �rst order
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stochastic dominance shifts and mean-preserving spreads in the degree distribution.

In Section 2, we extend the previous analysis to account for general contagion processes

which embody di¤erent models, including those based on best-response dynamics of coordina-

tion games, imitation dynamics, etc. We �nd that the di¤usion threshold crucially depends

on the contagion process. Thus, it becomes a relevant empirical question to determine which

models are more appropriate for which applications. For instance, the well-known result that

scale-free degree distributions exhibit a zero epidemic threshold for the SIS model is not robust

to other contagion processes.1 In particular, for those contagion processes in which the relative

number of adopters (with respect to the size of the sample) is what determines the adoption

rate (and not just absolute exposure), degree distributions with intermediate variance might

be more appropriate for fostering di¤usion.

In Section 3, we generalize the model even further to include the issue of homophily (i.e.,

the tendency of agents to associate with others similar to themselves). To do so, agents are

distinguished by their types (e.g., race, gender, age, religion, profession). The interaction

patterns are biased by types and di¤erent types of individuals might have di¤erent proclivities

for adoption. In this context, we can analyze how such biases in interactions together with

heterogeneity in susceptibility for adopting the new product (idea, disease, etc.) a¤ect the

reach of the process. For example, how does the di¤usion of a new product that is more

attractive to one age group depend on the interaction patterns across age groups? The main

result is that homophily actually facilitates di¤usion. That is, having a higher rate of homophily

allows the di¤usion to get started within the more vulnerable type and this can generate the

critical mass necessary to di¤use the behavior or infection to the wider society.

2 The SIS model

Consider a new product, an infectious disease, or an idea spreading in a population. Our

objective is to analyze whether di¤usion occurs. That is, if we start with an in�nitesimal

small fraction of initial adopters, would the product be adopted by a signi�cant fraction of

the population and become endemic? In order to answer this question theoretically we make

several crucial assumptions. On the one hand, the contagion process considered is the standard

Susceptible-Infected-Susceptible model (SIS hereafter) introduced in the epidemiology literature

1The existence of a zero epidemic threshold for scale-free networks was �rst shown by Pastor-Satorrás and

Vespignani (2001).
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to study the di¤usion of an infectious disease in a population.2 On the other hand, we introduce

a directed random sampling process to describe how agents are in�uenced by each other.

Formally, assume a continuum of agents N = [0; 1]. Agents can be in two possible states:

active (infected) or passive (susceptible). A passive agent can become active, and conversely,

an active agent can become passive. The SIS model assumes the simplest possible process

of contagion characterized by the following parameters. A passive agent becomes active with

a probability � > 0 when interacting with an active agent. Conversely, with a probability

� > 0 an active agent can become passive again.3 The crucial parameter of the model is the

(e¤ective) spreading rate denoted by � = �
�
, which measures how contagious the behavior is. In

this setting, the system must always remain in continuous �ux since the particular identity of

active and passive agents is permanently changing. The objective in this context is to predict

the convergence to some population pro�le where the frequency of active agents remains stable

over time. To make the approach tractable, the dynamics is described in continuous time.

Thus, the previously de�ned probabilities � and � are instead interpreted as rates. In addition,

the stochastic process is approximated by its deterministic counterpart. 4

Let us consider that individuals observe each other before changing their states. Assume

that each agent is characterized by her degree. In particular, an agent has degree d if she

samples from the population (and is potentially in�uenced by) d other agents per unit of time.

Observation is typically directed; that is, if an agent observes agent i, this does not imply

that j observes i, although an approximation of an undirected network will be considered as

well. Let P (d) be the degree distribution; that is, the fraction of the population with degree d.

Equivalently, P (d) can be viewed as the probability that a randomly selected node has degree

d.

There are several focal degree distributions. For instance, if the population is homogeneous

then P (d) = 1 for some degree d � 1. Moreover, empirical studies have led to the conclusion

that many complex networks are characterized by a scale-free degree distribution (i.e., a fat-

2The so-called SIS model has extensively been studied in the literature (see e.g., Pastór-Satorrás and Vespig-

nani, 2001; Jackson and Rogers, 2007, etc.).
3Note that in the context of a disease, it is implicitly assumed that there is no full immunization and therefore

a recovered person can catch the disease again. An obvious instance is the standard �u.
4Benaim and Weibull (2003) show that the continuous (deterministic) approximation is appropriate when

dealing with large populations. In particular, they �nd that if the deterministic population �ow remains forever

in some subset of the state space, then the stochastic process will remain in the same subset space for a very

long time with a probability arbitrarily close to one, provided the population is large enough.
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tailed property). Price (1965) was the �rst to �nd such distributions in a network setting

(in particular, in citation networks among scienti�c articles). The scale-free distribution, or

power-law distribution, can be expressed as

P (d) = bd�

where 2 <  � 3 and b is a positive normalizing constant. The main feature of this distribution

is that the relative probabilities of two di¤erent degrees (d, bd) only depend on their ratio (dbd) and
not on their absolute values. In these distributions, the average degree cannot be conceived as

a good estimate of the typical node degree found in the network. In particular, the population

has a signi�cant fraction of hubs, i.e., nodes with very high degree compared to the average.

Within the context of directed random networks, we consider two paradigmatic cases de-

pending on how agents choose who to observe: unbiased-degree (case 1) and biased-degree (case

2). In case 1, agents select other agents completely at random and, thus, the probability of

choosing an agent with degree d is precisely P (d). In case 2, agents are biased by the degree of

others, so that an agent with degree d is sampled d times more often than an agent with degree

1. Therefore, the probability of selecting an agent with degree d is proportional to dP (d). More

precisely, let Q(d) be the probability of selecting an agent with degree d. Then

Q(d) = P (d) in case 1

whereas

Q(d) =
dP (d)

hdiP
in case 2

where hdiP =
X
d�1

dP (d) is the average degree.

Note that Case 2 can be considered as an approximation of an undirected network, as the

number of agents observed by an agent is the same as the (expected) number of agents the

agent is observed by. Note that, for some applications (e.g., the di¤usion of a disease) it is a

more accurate description of the reality as personal interaction is required for contagion. We

analyze next the two cases separately.

2.1 The SIS model and unbiased-degree random networks

In this section we focus on the unbiased-degree network case which represents the simplest

framework to study random interactions characterized by a degree distribution.
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Let us �rst introduce some notation. Let �d(t) denote the frequency of active agents among

those with degree d at time t and �(t) be the total frequency of active agents in the population

at time t. Thus,

�(t) =
X
d

P (d)�d(t).

The adoption dynamics describes the evolution of �d(t) as a function of the parameters of the

SIS model. For each d � 1 we have the following di¤erential equation:

�0d(t) = ��d(t)� + (1� �d(t))�d�(t),

where the �rst term on the sum (��d(t)�) tracks the transitions from active to passive, whereas

the second term tracks the transitions from passive to active ((1��d(t))�d�(t)). To understand

this term, note that the expected number of active agents in the sample of an agent with degree

d is d�(t). Thus, the probability that a passive agent becomes active in the small interval of

time from t to t+ dt is given by [1� (1� �dt)d�(t)] and limdt!0
[1�(1��dt)d�(t)]

dt
= �d�(t).

The stationary states of this dynamics can be computed by imposing that �0d(t) = 0 for all

d. Therefore, for each d,

�d =
�d�

1 + �d�
,

where � = �
�
is the (e¤ective) spreading rate. The following �xed-point equation characterizes

the fraction of adopters in the stationary state:

� = H�;P (�), (1)

where

H�;P (�) =
X
d

P (d)
�d�

1 + �d�
:

Notice that � = 0 is always a solution of equation (1), which implies that the state where all

agents are passive is stationary. Thus, in order to spread the "active state" in the population,

there must be an initial seed of active agents. To be more precise, let us introduce the following

two de�nitions:

We say that there is di¤usion in the population if by seeding it randomly with an in�nites-

imally small initial fraction of active agents, the behavior spreads to a positive fraction of the

population and becomes persistent.

We say that �� is the di¤usion threshold if there is di¤usion if and only if � > ��.
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Theorem 1 (López-Pintado, 2012) Let P be the degree distribution of a (unbiased-degree)

random network. The di¤usion threshold for the SIS model is:

�� =
1

hdiP
The outline of the proof is the following. In this context, di¤usion occurs whenever equation

(1) has a positive solution. It is straightforward to show that H�;P (�) is an increasing and

concave function of �. Moreover, H�;P (0) = 0 andH�;P (1) < 1. Therefore, as depicted in Figure

1, there exists a positive solution of equation (1) if and only if dH�;P (�)
d�

c�=0 = �
X
d

P (d)d > 1.

ρ

)(, ρλ PH

*λ

*
−λ

*
+λ

Figure 1

Fig. 1 Representation of H�;P when (i) � equals the di¤usion threshold �� (ii) � is above the

di¤usion threshold � = ��+ and (ii) � is below the di¤usion threshold � = �
�
�

The di¤usion threshold is inversely proportional to the average degree. That is, the higher

the average degree the easier it is to foster di¤usion. Nevertheless, Theorem 1 does not provide

information about the reach of the process whenever there is di¤usion. We analyze this issue

next.

We say that the adoption dynamics has reached an endemic state with a fraction of adopters

�� if this fraction remains constant in the upcoming periods. Equation (1) provides a charac-

terization of the endemic states as a function of the degree distribution. Notice that equation

(1) has one solution (� = 0) when � � �� and two solutions (� = 0 and a positive one) when

� > ��, as depicted in Figure 1. Nevertheless, � = 0 is not a stable solution whenever � > ��.

Thus, we de�ne as ��(P ) to the (stable) endemic state of the di¤usion process.

Two de�nitions are required before presenting the next result. Consider the degree distrib-

utions P and eP . We say that eP �rst order stochastic dominates P if
xX
d=0

eP (d) � xX
d=0

P (d) for all x.

The intuitive idea is that eP is obtained by shifting mass from P to place it on higher values.
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We can also say that eP is a mean-preserving spread of P if eP and P have the same mean
and

xX
z=0

zX
d=0

eP (d) � xX
z=0

zX
d=0

P (d) for all x.

This condition implies that eP has a (weakly) higher variance than P , but it also implies a
more structured relationship between the two. In fact the reverse is not true, having a higher

variance and the same mean is not su¢ cient for one distribution to be a mean-preserving spread

of another.

Proposition 1 Let P be the degree distribution of a (unbiased-degree) random network and

consider the SIS model. The following holds:

(1) If eP �rst order stochastic dominates P then ��( eP ) � ��(P ).
(2) If eP is a mean-preserving spread of P then ��( eP ) � ��(P ).
Before showing this result, let us describe the following two well-known properties.

� Property 1: If eP �rst order stochastic dominates P then, for all non-decreasing functions
f , X

d

f(d) eP (d) �X
d

f(d)P (d).

and

� Property 2: If eP is a mean-preserving spread of P then, for all concave functions f ,X
d

f(d)P (d) �
X
d

f(d) eP (d).
Notice that the endemic state is characterized by equation (1) and since �d is nondecreasing

and concave (as a function of d), applying properties (1) and (2) we obtain the desired result.

As illustrated in Figure 2, the di¤usion threshold decreases and the endemic state increases

with a �rst order stochastic dominance shift of the degree distribution (see the graph on the

left). This is a consequence of the fact that in the SIS contagion process the higher the degree of

an agent, the easier it is to become an adopter. We also illustrate how, even though the di¤usion

threshold does not vary if we shift the degree distribution with a mean-preserving spread, the

endemic state decreases with such a shift (see the graph on the right). The intuition for this is

that an increase in the degree of an agent increases her adoption rate, but it has a decreasing

marginal e¤ect.
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Figure 2

Fig. 2 The graphs represent qualitatively the endemic state (��) as function of the spreading

rate (�) for the degree distribution P and eP , where eP �rst order stochastic dominates (FOSD) P in

the graph on the left and eP is a mean-preserving spread of P (MPS) in the graph on the right

In the next section we analyze a biased-degree random network instead and �nd critical

di¤erences with the degree-unbiased case.

2.2 The SIS model and biased-degree random networks

The methodology applied in the previous section is useful for understanding the predictions

on di¤usion in a directed network, that is, a network where if i interacts with j this does not

imply that j interacts with i. This, of course, is a strong assumption as many socioeconomic

interactions among agents are bilateral in nature and thus links in the network are undirected.

We therefore can extend the speci�cation of the model proposed above in order to approximate

an undirected interaction structure. A tractable attempt to do so is to assume that sampling

is not performed uniformly at random but that, instead, it is biased by degree. That is, the

probability that an agent samples an agent with degree d is proportional not only to P (d)

but also to d. This captures the idea that agents with higher degree are sampled more often.5

Formally, as already highlighted in Section 1, in this case, the probability that an agent samples

another agent with degree d is:

Q(d) =
dP (d)

hdiP
,

where the average degree hdiP is used for normalization purposes.

Some additional notation is required before presenting the dynamics. Let �(t) be the prob-

ability that an agent samples an active agent at time t. Thus,

�(t) =
X
d

Q(d)�d(t). (2)

5Pastor-Satorrás and Vespignani (2001) used this speci�cation.
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This is due to the fact that the probability that at the end of a link an agent has degree d

is Q(d) (which in this case is di¤erent from P (d)). Following analogous steps to those already

presented in Section 2.1 we �nd that the adoption dynamics is now described as follows:

�0d(t) = ��d(t)� + (1� �d(t))�d�(t),

where the �rst term of the sum (��d(t)�) stands for the transition from active to passive.

The second term stands for the transition from passive to active ((1 � �d(t))�d�(t)), where

the expected number of adopters in a sample of size d is d�(t). The stationary states of this

dynamics can be computed by imposing that �0d(t) = 0 for all d which leads to:

�d =
�d�

1 + �d�
for all d. (3)

Substituting (3) in (2) we �nd that the �xed-point equation which characterizes the value of �

in the stationary state is

� = eH�;P (�), (4)

where eH�;P (�) = 1

hdiP

X
d

P (d)
�d2�

1 + �d�
.

The next result characterizes the di¤usion threshold. To do so let us denote by hd2iP to the

second order moment of the degree distribution P . That is,

d2
�
P
=
X
d

d2P (d).

Theorem 2 (Pastor-Satorrás and Vespignani, 2001) Let P be the degree distribution of

a (biased-degree) random network. The di¤usion threshold for the SIS model is:

�� =
hdiP
hd2iP

.

The outline of the proof is the following. There is di¤usion if there exists a positive solution

of equation (4). In addition, it is straightforward to show that eH�;P (�) is an increasing and
concave function of �, eH�;P (0) = 0 and eH�;P (1) < 1. Therefore, there is di¤usion if and only if
d eH�;P (�)

d�
c�=0 = �

hd2i
P

hdiP
> 1.

Note that, unlike for the unbiased case, now the variance of the degree distribution also

determines the di¤usion threshold as �� = hdiP
hd2iP

=
hdiP

hdi2P+var(p)
, where var(P ) denotes the variance

of distribution P .

As a consequence of Theorem 2, we provide the following comparative statics results on the

degree distribution.
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Corollary 1 Let P be the degree distribution of a (biased-degree) random network and consider

the SIS model. The following holds:

(1) If eP �rst order stochastic dominates P then ��( eP ) � ��(P ).
(2)If eP is a mean-preserving spread of P then ��( eP ) � ��(P ).
This proof of this corollary is straightforward given the expression for the di¤usion threshold

provided by Theorem 2. If we compare these results with those obtained for the unbiased-

degree case (Proposition 1), we �nd that for both cases the di¤usion threshold decreases with

the density of the network. Nevertheless, the e¤ect of a mean-preserving spread is di¤erent

as in the biased-degree case di¤usion is triggered more easily the higher the variance of the

degree distribution. The intuition behind this �nding relies on the relevant role that hubs (i.e.,

high-degree nodes) play for di¤usion in the biased-degree case, which is not as important in the

unbiased-degree case. In the biased-degree case, agents with high degree not only observe many

others, but are also observed by many others. Therefore, they easily become infected and also

infect others afterwards. For the unbiased-degree case, however, agents with high degree are

observed equally as much as any other agent in the population and, thus, they do not necessary

promote di¤usion once they become infected.

The study of the endemic state and how it depends on the degree distribution is not straight-

forward (see Jackson and Rogers, 2007). The main reason for this is that the values of � (the

fraction of adopters in the population) and � (the probability of sampling an adopter) do not

necessarily move in the same direction when there is a shift in P . The next result shows that

� increases with a mean-preserving spread of the degree distribution. Nevertheless, this does

not imply that � also increases. A piece of notation is needed. Given P , let ��(P ) denote the

value of � in the (stable) endemic state of the dynamics. Then the following result holds:

Proposition 2 (Jackson and Rogers, 2007) Let P be the degree distribution of a (biased-

degree) random network and consider the SIS model. If eP is a mean-preserving spread of P ,

then ��(P ) � ��( eP ).
The proof of this result is a direct consequence of equation (4), property (2) described in

Section 2.1, and the fact that �d2�
1+�d�

is a convex function of d.6

6Jackson and Rogers (2007) were the �rst to analyze the di¤usion proprieties of networks ordered through

the stochastic dominance of their degree distributions.
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3 Beyond the SIS model: general adoption rules

The SIS model corresponds with a speci�c contagion process, which is directly imported from

epidemiology. In social contexts, however, the di¤usion of information, or a behavior, often

exhibits features that do not match well those of the epidemic models. For instance, in the SIS

formulation of di¤usion, the transmission of infection to a healthy agent depends on her total

exposure to the disease, i.e., the absolute number of infected neighbors. In the spread of many

social phenomena, there is a factor of coordination (or persuasion) involved and therefore rela-

tive considerations are important (i.e., the number of infected versus non-infected). Moreover,

unlike in the SIS model, the adoption rate does not necessarily need to increase linearly with

the number of adopters. For instance, if agents adopt only if a signi�cant fraction of others

have adopted (a threshold rule). Finally, in the SIS model, the transition from active to passive

occurs at a constant rate and therefore does not depend on the behavior of others, something

which seems arti�cial for di¤usion in many socioeconomic contexts. For all the reasons listed

above, we now present a general family of contagion models which extend the SIS model in

several directions.

We assume that in each period agents are in one of two states: active or passive (as before).

The agents�actions are in�uenced by the actions of others, but in a stochastic manner. A

passive agent adopts the behavior at a rate described by an adoption rule fd(a) where d is her

degree and a is the number of sampled agents who have adopted the behavior. Conversely, an

active agent becomes passive at a rate given by gd(a) where, again, d is her degree and a is the

number of sampled agents who have adopted the behavior. The adoption rules fd(a) and gd(a)

are the primitives of the di¤usion process and must satisfy the following assumptions:

� fd(0) = 0 for each d. In words, a passive agent cannot become active unless she samples

at least one active agent.

� fd(a) is a non-decreasing function of a. In words, the adoption rate is non-decreasing in

the number of adopters in the sample.

� fd(1) > 0 for some d such that P (d) > 0. This is a technical condition and it implies that

there exists a certain degree such that the rate of adoption for agents with such a degree,

when only one agent in the sample is active, is positive.7

7For example, a rule where agents adopt only if at least two sampled agents have adopted does not satisfy

this assumption.
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� gd(0) = � > 0 for all d. That is, the transition rate from active to passive, when all agents

in the sample are passive, is positive and constant for all degrees.

� gd(a) is a non-increasing function of a. That is, the transition rate from active to passive

is non-increasing in the number of active agents in the sample.

This general approach encompasses a number of di¤erent models. Three simple examples

are the following.

First, the SIS model presented in the previous section corresponds with the adoption rules

fd(a) = �a and gd(a) = �.

Second, consider the following Imitation model. Every period, a non-smoker considers the

possibility of smoking at a rate � > 0. This agent engages in smoking if he or she happens

to sample a smoker among those agents that in�uence him or her. Conversely, at a rate � a

smoker considers the possibility of quitting smoking. This agent decides to quit if him or her

happens to sample among those agents that in�uence him or her a non-smoker. This di¤usion

process corresponds with the following speci�cation of the adoption rules: fd(a) = � a
d
and

gd(a) = �
d�a
d
.

Third, consider the following Majority threshold model.8 We consider again the example

of choosing whether to smoke or not. Every period, a non-smoker considers the possibility of

smoking at a rate � > 0. This agent engages in smoking behavior if he or she observes that more

than half of the agents that in�uence him or her are smokers. Conversely, a smoker considers

the possibility of quitting smoking at a rate �. This agent decides to quit if him or her observes

that at least half of the agents that in�uence him or her are non-smoker. This di¤usion process

corresponds with the following speci�cation of the adoption rules: fd(a) = � if a
d
> 0:5 and

fd(a) = 0 otherwise. Also, gd(a) = � if ad � 0:5 and gd(a) = 0 otherwise.

Notice that both in the Imitation model and the Majority threshold model relative consid-

erations (i.e., a
d
instead of a) are important. Moreover, in the Majority threshold model the

adoption rules do not depend linearly on a. Finally, the transition from active to passive, in

both models, is not constant and crucially depends on the behavior observed by the agent when

making such a decision.

The di¤usion threshold can also be calculated for these general models as presented in the

next result.
8These threshold models have been extensively analyzed in the literature (see Granovetter, 1978; Watts,

2002; López-Pintado, 2006 and Jackson and Yariv, 2007).
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Theorem 3 (Jackson and López-Pintado, 2013) Let P be the degree distribution of a ran-

dom network. The di¤usion threshold for the general model is:X
d

Q(d)d
fd(1)

�
> 1

where Q(d) = P (d) in an unbiased-degree random network, whereas Q(d) = dP (d)
hdiP

in a biased-

degree random network.

Notice that Theorem 3 shows that the di¤usion threshold depends on the degree distribution

and on the values of the adoption rules fd(1) and gd(0). The reason why fd(a) and gd(a) for

a > 1 does not appear in the condition is that in the initial periods of the dynamics there is

only a small fraction of adopters in the population and, thus, the probability that an agent

observes more than one adopter in her sample is negligible. Nevertheless, as brie�y explained

below, further properties of the adoption rule (e.g., the concavity of the rule) crucially a¤ect

other properties of the di¤usion process, as for example, the type of transition occurring at the

di¤usion threshold (i.e., whether it is a second order phase transition or not).

The results obtained for the Imitation model are striking. The di¤usion threshold is �� = 1,

both for the unbiased-degree and biased-degree random network. The reason is that, in this

case, all agents have the same probability of becoming an adopter, independently of their

degree. To see this, consider two agents i and j where i has degree d and j has degree 2d.

It is straightforward to show that the probability that agent i observes a active agents in the

sample coincides with the probability that agent j observes 2a. Moreover, the Imitation model

assumes that both agents, i and j, would have the same probability of adopting as a
d
= 2a

2d
).

For the Majority threshold model, we obtain that the di¤usion threshold is �� = 1=p(1) for

the unbiased random network, and �� = hdiP =p(1) for the biased random network. Notice that,

in this case, only agents with degree 1 that happen to sample an adopter will adopt in the initial

periods of the dynamics, which is why the di¤usion threshold decreases with respect to p(1).

The di¤usion threshold is higher for the biased-degree case than for the unbiased-degree case.

The reason is that, in the former case, the agents with degree 1 are observed (in expectation)

only by 1 agent and thus are less e¢ cient in spreading the behavior than in the later case where

an agent with degree 1 is observed by the same number of agents as any other agent in the

population (i.e., roughly by hdiP other agents in each unit of time). 9

9The study of how collective outcomes depend on the details of the contagion process has also been highlighted

by Young (2009), Galeotti and Goyal (2009), López-Pintado and Watts (2008), etc.
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To conclude, let us concentrate on absolute adoption rules, that is, on rules satisfying that it

is the total exposure to the activity what determines the adoption rate. Formally, fd(a) = f(a)

and gd(a) = g(a) for all d and 0 � a � d. We can distinguish three focal absolute adoption

rules, which are the following:

(a) f(a) = �a and g(a) = � (i.e., the SIS model), where the marginal impact on adoption

of having one more adopter in an agents�s sample is constant.

(b) f(a) = �
p
a and g(a) = �, where the marginal impact on adoption of having one more

adopter in an agent�s sample is decreasing.

(c) f(a) = �a2 and g(a) = �, where the marginal impact on adoption of having one more

adopter in an agents�s sample is increasing.

Corollary 2 Let P be the degree distribution of a random network. The di¤usion threshold for

the absolute adoption rules (a), (b) and (c) is

�� =
1

hdiP

for an unbiased-degree random network, whereas it is

�� =
hdiP
hd2iP

for a biased-degree random network.

This corollary is a direct application of Theorem 3. Notice that the di¤usion threshold

coincides for all the absolute adoption rules considered. Nevertheless, as described in López-

Pintado (2008), for cases (a) and (b) the endemic state ��(�) exhibits a second order phase

transition at the di¤usion threshold � = ��. In other words, the endemic state ��(�) is a

continuous function of the spreading rate and, therefore, as � converges to ��, ��(�) converges

to �(��). For case (c), however, we obtain a discontinuity in the endemic fraction of adopters

at � = �� (�rst order phase transition or hysteresis) as illustrated in Figure 3. This is due to

the existence of multiple stationary states of the adoption dynamics, depending on the size of
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the initial seed of adopters.

λ λ

)(* λρ

0 *λ

Figure 3

)(* λρ Adoption rules: (a),(b) Adoption rule: (c)

*λ0

Fig. 3: The graphs represent qualitatively the endemic state (��) as function of the spreading

rate (�). The graph on the left corresponds to concave adoption rules such as (a) and (b), where there

is a second order phase transition at ��. The graph on the right corresponds to adoption rule (c),

where there is a �rst order phase transition at ��

4 Homophily

In this section we want to understand the e¤ect that homophily has on di¤usion, something

which despite its importance has received little attention in the di¤usion literature.10 Ho-

mophily is the tendency of agents to associate with others similar to themselves. For example,

young children in day care have higher rates of interaction with other young children than

with older children. Adults of a certain profession, religion and education are more likely to

interact with other adults with similar characteristics. In addition we allow for heterogeneity

in preferences regarding the new product or behavior (or di¤erent susceptibilities for catching

a disease). For instance, children can be more vulnerable to some diseases than adults, a new

movie can be more attractive to women than men, etc. In particular, we examine whether or

not di¤usion occurs in a heterogeneous and homophilous society.

To be consistent with the rest of the paper, we start analyzing homophily in the SIS model,

and extend later the analysis to more general models of di¤usion in random networks.

4.1 Homophily in the SIS model

For ease of exposition, we assume that the population is only made of two groups (the young

and the elder). Agents in each group have di¤erent proclivities for getting infected of a certain

10There are some exceptions such as Currarini et al. (2009), Golub and Jackson (2012), among others.
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disease. In particular, imagine that the elder are more vulnerable to this disease than the young.

More precisely, if �1 is the spreading rate of the young and �2 of the elder then �1 < �2. Let � be

the probability that an individual interacts with an individual of the same age range. We also

allow for heterogeneity with respect to the degree distribution. In particular, let Pi(d) be the

degree distribution of individuals of type i. In this example it is reasonable to assume bilateral

interaction and, thus, let us focus on the biased-degree network case. Hence, conditional on

sampling an agent of type i, this agent will have degree d with probability Qi(d) =
dPi(d)
hdii . The

result on di¤usion is the following:

Proposition 3 (Jackson and López-Pintado, 2013) Let �0 = 1�ed1�1 ed2�2ed1�1+ed2�2
2

�ed1�1 ed2�2 , where edi =
hd2ii
hdii . Di¤usion occurs for the SIS model with homophily if and only if one of the following con-

ditions hold:

1) �1�2 > 1ed1 ed2 or
2) �1�2 � 1ed1 ed2 and � > �0
Recall that the condition for di¤usion in the standard (homogenous) SIS model is � > 1ed ,

which is a particular case of the previous result. Note also that if we considered, instead,

an unbiased-degree random network, we obtain the same result as in Proposition 3, but withedi = 1
hdii .

The most interesting scenario turns out to be one where one of the types would foster

di¤usion if isolated, whereas the other would not (i.e., �1 < 1ed1 and �2 > 1ed2 ). In that scenario,
we show that homophily either plays no role (if �1�2 > 1ed1 ed2 ) or it actually facilitates di¤usion (if
�1�2 <

1ed1 ed2 ). Note that in the latter case di¤usion occurs only if the two types are su¢ ciently
biased in interactions towards their own types (i.e., � is su¢ ciently large).

4.2 Homophily beyond the SIS model

We now generalize the previous analysis beyond the SIS model with two types. Let us assume

that all relevant characteristics are captured by a �nite set ofm types wherem � 1 (e.g., agents

in type i are male, aged 30-40, atheist and university professors). Formally, the continuum of

agents N = [0; 1] is partitioned by types where ni denotes the fraction of agents of type i.

Thus,
mX
i=1

ni = 1. Again, we assume that agents have a degree which measures the number of

individuals sampled per unit of time. The distribution of degrees can be di¤erent across types

(i.e., the elderly might have lower mean and variance in degrees than teenagers) and thus Pi(d)

indicates the degree distribution of individuals of type i.
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The random meeting process now incorporates biases across types. In particular, the rate

at which an agent of type i meets agents of other types is described by the following matrix:

� =

0BBB@
�11 : : : �1m
... : : :

...

�m1 : : : �mm

1CCCA ,
where �ij is the probability that an agent of type i meets an agent of type j in any given

meeting. Thus,
mX
j=1

�ij = 1. To guarantee that a behavior that starts spreading in one group

reaches any other group we must assume that � is a primitive matrix, that is, �t > 0 for some

t.11

In any given period, an agent of type i with degree d expects to meet d�ij agent of type j,

and conditional on meeting an agents of type j, the probability that this agent has degree d is

Qj(d) = Pj(d),

in the unbiased-degree network case, and

Qj(d) =
dPj(d)

hdiPj
,

in the biased-degree network case, where hdiPj is the average degree of Pj.12

Let �i;d(t) denote the frequency of active agents at time t among those of type i with degree

d. Thus,

�i(t) =
X
d

Pi(d)�i;d(t)

is the frequency of active agents at time t among those of type i, and

�(t) =
X
d

ni�i(t)

is the overall fraction of active agents in the population at time t.

Finally, the contagion model is de�ned with the general adoption rules fi;d(a) and gi;d(a)

presented in Section 2 but note that these rules can di¤er across types. This allows us to de�ne

�i(t) as the probability that an agent of type i samples an active agent. Note that

�i(t) =
X
j

�ij
X
d

Qj(d)�j;d(t). (5)

11Notice that �t = � �� � ::: ��, t times.
12In the biased-degree case, certain constraints on the parameters of the model would be required in order

to approximate it to an undirected network. For example, the number of interactions from type i to type j

should coincide with the number of interactions from type j to type i in a unit of time. That is, n(i) hdii �ij =

n(j) hdij �ji.
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Let us now de�ne the rates at which a passive agent becomes active and vice versa. To do so,

let rate0!1i;d (t) be the rate at which a passive agent of type i and with degree d becomes active,

whereas rate1!0i;d (t) stands for the reverse transition. We assume that the number of infected

agents in a sample follows a binomial distribution with parameters d (number of draws) and

�i(t) (probability of each draw being active). That is,

rate0!1i;d (t) =

dX
a=0

fi;d(a)
�
d
a

�
�i(t)

a(1� �i(t))(d�a),

rate1!0i;d (t) =

dX
a=0

gi;d(a)
�
d
a

�
�i(t)

a(1� �i(t))(d�a).

The di¤usion dynamics is described as follows:

�0i;d(t) = ��i;d(t)rate1!0i;d (t) + (1� �i;d(t))rate0!1i;d (t) (6)

where the right-hand side represents the increase in the level of active agents, whereas the

left-hand side represents the decrease in such a level due to the transition of some active agents

to passive.

As in a stationary state �0i;d(t) = 0 then

�i;d =
rate0!1i;d

rate0!1i;d + rate1!0i;d

. (7)

We substitute equation (7) in equation (5) and �nd that the values for �i in the steady

states are

�i = Hi(�1; �2:::�n),

where

Hi(�1; �2:::�n) =
X
j

�ij
X
d

Qj(d)
rate0!1i;d

rate0!1i;d + rate1!0i;d

.

This system of equations characterizes the steady states for �i, but from here we can compute

the steady states for the fraction of adopters of each type �i and ultimately the overall fraction

of adopters �.

The objective is to �nd conditions for di¤usion. Note that � = 0 (i.e., (�1; �2:::�n) =

(0; 0; :::; 0)) is a steady state of the di¤usion dynamics. We must explore the stability of such

state. If � = 0 is not stable, following �xed-point arguments applied to monotone correspon-

dences on lattices, it can be shown that there exists another strictly positive steady state of the

dynamics (see Jackson and López-Pintado, 2013 for details on this argument). From (5) and
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(6) we �nd

�0i(t) =
X
j

�ij
X
d

Qj(d)
�
��j;d(t)rate1!0j;d (t) + (1� �j;d(t))rate0!1j;d (t)

�
.

Note that near � = 0 (and assuming that there is an upper bound on the degree of agents) we

have that:

rate1!0j;d (t) = � and (1� �j;d(t))rate0!1j;d (t) = dfjd(1)�j(t)

and thus we can rewrite

�0i(t) =
X
j

�ij
X
d

Qj(d)dfjd(1)�j(t)� �i(t)�;

which can be expressed in matricial form as

�0(t) = [A� � �] �

where

A =

0BBB@
�11x1 : : : �1mxm
... : : :

...

�m1x1 : : : �mmxm

1CCCA ;
and

xi =
X
d

Qi(d)d
fi;d(1)

�
.

The term xi can be interpreted as the relative growth of adoption due to type i and adjusted

by the relative rates at which agents of type i will be met by other agents.

With this information we can now state the following result.

Theorem 4 (Jackson and López-Pintado, 2013.) Di¤usion occurs if the largest eigenvalue

of A is larger than 1.

Note that if we only have one type in the population then we can drop subindex i and the

condition for di¤usion is

x =
X
d

Q(d)d
fd(1)

�
> 1

which coincides with the condition provided in Theorem 3.

Assume now that there are two types with symmetry in how introspective groups are in

their meetings. Therefore, �11 = �22 = �. The result in this case is the following:
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Proposition 4 (Jackson and López-Pintado, 2013) Let �0 = 1�x1x2
x1+x2�x1x2 . Di¤usion oc-

curs if and only if one of the following conditions hold:

1) x1x2 > 1 or

2) x1x2 < 1 and � > �0.

Note that if di¤usion occurs within each type when isolated, it would also occur when there

is interaction among the two (in such a case x1 > 1 and x2 > 1 and thus part (1) of the

proposition holds). If di¤usion does not occur among either type when isolated, then it would

not occur if there is interaction between them (note that � > �0 cannot occur if both x1 and

x2 are below 1). Finally, if di¤usion occurs among only one of the types when isolated, then

it would occur among the entire population if homophily is high enough. The intuition behind

this result is that having a higher rate of homophily allows the di¤usion to get started within the

more vulnerable type, and this can generate the critical mass necessary to di¤use the behavior

to the wider society.

5 Conclusions

In this chapter we have surveyed a series of stylized models of di¤usion in networks. In order

to make the analysis tractable, the interaction or in�uence structure is described by an explicit

sampling process where two extreme cases have been considered: the unbiased-degree and the

biased-degree case. In the former case out-degree (information level) and expected in-degree

(visibility level) of agents are uncorrelated, whereas in the latter case these two measures

coincide. López-Pintado (2012) and Jackson and López-Pintado (2013) extend this idea to

comprise a wide array of sampling options depending on the level of correlation assumed between

agent�s in and out degree. The main focus of most of the work surveyed in this chapter, however,

is to discuss the hypothesis that more dense and heterogeneous networks always favor di¤usion,

something which is true for standard epidemiology models but that does not generalize to other

models of di¤usion based on coordination and imitation behavioral rules.

We have also tried to understand the e¤ect that homophily has on di¤usion, concentrating

on the concept of the di¤usion threshold. That is, the spreading to a signi�cant fraction of

the population of a new behavior when starting with a small initial seed. Nevertheless, there

are other issues which are not addressed here, but that are relevant. For example, one could

evaluate the size of the adoption endemic state as a function of the homophily level.
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