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1 Introduction

We consider the so-called bankruptcy problem in which a group of creditors have claims on

the liquidation value of a (bankrupt) firm that is not enough to honor all claims. How should

this value be allocated? A “rule” is a function that associates with each bankruptcy problem

an allocation of the liquidation value, called an “awards vector”.1 A well-known rule is the

Talmud rule (Aumann and Maschler, 1985), so-called because it rationalizes several numerical

examples in the ancient Jewish document.2 This rule has mostly been studied from an axiomatic

perspective. However, little attention has been paid to it from a strategic perspective, in

contrast with other bankruptcy rules.3 Our goal in this paper is to further our understanding

of the Talmud rule by o↵ering another strategic justification of this rule. To do so, we apply

the so-called Nash program,4 and construct a game with the following property: it has a unique

equilibrium allocation, and this allocation corresponds to the one dictated by the Talmud rule.

Our game relies on several properties that the Talmud rule satisfies.5 First is “bilateral

consistency”, which says that if the rule chooses an awards vector for a bankruptcy problem,

then for the associated “two-creditor reduced problem” derived by imagining that all the other

creditors leave with their components of the vector, and reassessing the situation from the

viewpoint of the two remaining creditors, it chooses the corresponding awards of the vector to

that subgroup. Suppose that for each problem and each proper two-creditor subgroup, given

an awards vector, the rule chooses the corresponding awards of the vector to this subgroup

for the reduced problem it faces. “Converse consistency” says that the rule should choose the

1O’Neill (1982) initiates this literature. For surveys, see Thomson (2003, 2015, 2019).
2See Moreno-Ternero (2018) for a specific survey on the Talmud rule and its ramifications within the literature

on bankruptcy problems.
3See, for instance, Chun (1989), Dagan et al. (1997), Chang and Hu (2008), or Hagiwara and Hanato (2019).
4Nash (1953) initiates the study on strategic justifications of cooperative solutions and is the first instance of

this program. For references, see Maschler and Owen (1989), Serrano (1993, 1995), Krishna and Serrano (1995),

Yan (2002), Vidal-Puga (2004), Hu et al. (2012, 2018), or Chun et al. (2017), among others. For surveys, see

Serrano (2005, 2008).
5This is in line with Krishna and Serrano (1996), who suggest that the properties of a rule should play

important roles to strategically justify the rule.
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awards vector for the initial problem.6 Finally, we exploit a lower bound on creditors’ awards in

designing our game. In the literature, Tsay and Yeh (2019) construct a game that strategically

justifies the Talmud rule based on a lower bound on creditors’ awards, called the minimal right

of a creditor (Aumann and Maschler, 1985), and its dual. We consider another one, called the

“average truncated claim lower bounds on awards” (Moreno-Ternero and Villar, 2004), and its

dual. Average truncated claim lower bounds on awards says that no creditor should receive less

than the amount obtained by dividing the minimum of her claim and the liquidation value by

the number of creditors.7

Specifically, we consider the following three-stage extensive form game G.

Stage 1 : Each creditor announces an awards vector and a permutation (it is a function

mapping from the set of creditors to itself). The composition of the permutations selects a

creditor as the “coordinator”. If all creditors, except possibly for the coordinator, announce

the same awards vector, it is the “proposal”; otherwise, the awards vector announced by the

coordinator is the proposal.

Stage 2 : The coordinator either accepts the proposal, in which case it is the outcome, or

rejects the proposal, in which case she picks one creditor to negotiate their awards in the next

stage, and all others receive their awards as specified in the proposal.

Stage 3 : Nature chooses one of the two remaining creditors as the “initiator”. The initiator

decides to adopt one of the two possible perspectives: gain or loss.

If the initiator chooses gain, the responder chooses an amount (to be interpreted as what

she would like to divide with the initiator) out of these two numbers: the remaining liquidation

value and the claim of the creditor with the smaller claim. The responder also proposes a

6For a survey on these two related properties, and the important roles they have played in the axiomatic

literature, see Thomson (2016).
7This property is introduced by Moreno-Ternero and Villar (2004) under the name of “securement”. It

has also been used later by Dominguez and Thomson (2006), Moreno-Ternero (2006), Moreno-Ternero and

Villar (2006a,b) and Yeh (2008), among others. More recently, Harless (2017) has connected it to the concept

of guarantees, which measures the “worst case” scenario for (incumbent) creditors after adding new creditors

to a problem, without increasing the liquidation value.

3

 
 

 
 

 
http://www.upo.es/econ 

 



division of the chosen amount. Namely, she proposes to the initiator two numbers whose sum

is equal to the chosen amount. The initiator then picks one of the two numbers as her award

and the responder takes the residual.

If the initiator chooses loss, the responder chooses an amount out of these two numbers: the

shortfall (the di↵erence between the sum of the claims of the two creditors and the remaining

liquidation value) and the claim of the creditor with the smaller claim. The responder also

proposes a division of the chosen amount. Namely, she proposes to the initiator two numbers

whose sum is equal to the chosen amount. The initiator then picks one of the two numbers

and leaves the other to the responder. Finally, the responder receives the di↵erence between

her claim and the number left to her, and the initiator takes the residual.

We show that for each problem, there is a unique Nash Equilibrium outcome of the game G

and that moreover, it is the Talmud awards vector. Namely, the game G strategically justifies

the Talmud rule.

The paper is organized as follows. In Section 2, we introduce the model, the Talmud rule,

and the properties. In Section 3, we formally introduce the above game and prove our results.

We provide some concluding remarks in Section 4.

2 The model

There is an infinite set of “potential” creditors, indexed by the natural numbers N. Let N be

the class of non-empty and finite subsets of N. Given N 2 N and i 2 N , let ci be creditor i’s

claim and c ⌘ (ci)i2N the claims vector. The liquidation value E of a bankrupt firm has to

be divided among its creditors N . A bankruptcy problem for N , or simply a problem for N ,

is a pair (c, E) 2 RN
+ ⇥ R+ such that

P
i2N ci � E. Let BN be the class of all problems for N .

An awards vector for (c, E) 2 BN is a vector x 2 RN such that 0 5 x 5 c and
P

i2N xi = E.8

Let X (c, E) be the set of awards vectors of (c, E). A rule is a function defined on
S

N2N BN

that associates with each N 2 N and each (c, E) 2 BN a vector in X (c, E). Our generic

8By RN
+ , we denote the Cartesian product of |N | copies of R+, indexed by the elements of N . Vector

inequalities: x = y, x � y, and x > y.
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notation for rules is '. For each N 0 ⇢ N , we write cN 0 for (ci)i2N 0 , 'N 0 (c, E) for ('i (c, E))i2N 0 ,

and so on.

We now introduce the rule and the properties that are central to our analysis. The Talmud

rule was proposed by Aumann and Maschler (1985) to rationalize the suggestions made in the

Talmud for numerical examples. Formally,

Talmud rule, T : For each N 2 N , each (c, E) 2 BN , and each i 2 N ,

Ti(c, E) ⌘

8
<

:
min

�
ci
2 ,�
 

if
P

i2N
ci
2 � E;

ci
2 +max

�
ci
2 � �, 0

 
otherwise,

where � 2 R+ is chosen so that
P

i2N Ti (c, E) = E.

It will be useful to have an explicit expression of the Talmud rule in the two-creditor case.9

For each N ⌘ {i, j} 2 N and each (c, E) 2 BN with ci  cj,

T (c, E) ⌘

8
>>><

>>>:

�
E
2 ,

E
2

�
if E  ci

�
ci
2 , E � ci

2

�
if ci  E  cj⇣

ci � (ci+cj�E)
2 , cj � (ci+cj�E)

2

⌘
if cj  E

.

Consider a problem and the awards vector x chosen by a rule for it. The rule is “bilaterally

consistent” if for each two-creditor reduced problem, it chooses the restriction of x to this

subgroup.

Bilateral consistency: For each N 2 N , each (c, E) 2 BN , and each N 0 ⇢ N with |N 0| = 2,

if x = ' (c, E), then xN 0 = ' (cN 0 ,
P

N 0 xi).

Suppose that an awards vector x is such that for each two-creditor reduced problem, a rule

chooses the restriction of x to this subgroup. The rule is “conversely consistent” if it chooses x

for the initial problem.

9Thomson (2003) coined the indicative name of concede-and-divide for the rule in this case.
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Converse consistency: For each N 2 N , each (c, E) 2 BN , and each x 2 X (c, E), if for each

N 0 ⇢ N with |N 0| = 2, we have xN 0 = ' (cN 0 ,
P

N 0 xi), then x = ' (c, E).

We next introduce a property related to lower bounds. A creditor can never get an amount

above her e↵ective claim, by which we refer to the minimum of her claim and the liquidation

value. The following lower bound property states that each creditor should receive at least one

n-th of her e↵ective claim.

Average truncated claim lower bounds on awards: For each N 2 N , each (c, E) 2 BN ,

and each i 2 N , 'i (c, E) � min{ci,E}
|N | .

We can also consider a “dual” property referring to losses:10

Average truncated claim upper bounds on awards: For each N 2 N , each (c, E) 2 BN ,

and each i 2 N , 'i (c, E)  ci �
min{ci,

P
j2N cj�E}
|N | .

Note that, for each creditor i, min{ci, E} can be interpreted as her truncated claim

from gains and min{ci,E}
|N | can be seen as her minimal award; similarly,min{ci,

P
j2N cj � E}

can be interpreted as her truncated claim from losses and
min{ci,

P
j2N cj�E}
|N | can be re-

garded as her minimal loss. Thus, ci �
min{ci,

P
j2N cj�E}
|N | can be interpreted as creditor i’s

maximal award after experiencing her minimal loss just defined.

It is well known that the Talmud rule satisfies all the properties introduced in this section

(e.g., Thomson, 2019).

10The dual of a property can be defined as follows. Given a rule ', its dual 'd treats the problem of dividing

what is available in the same way as ' treats the problem of dividing what is missing. Formally, for each N 2 N

and each (c, E) 2 BN , 'd (c, E) ⌘ c� '
�
c,
P

i2N ci � E
�
. We say that two properties are dual whenever a rule

' satisfies one of them, 'd satisfies the other. Clearly, the average truncated claim lower bounds on awards and

the average truncated claim upper bounds on awards are dual. For a study of duality relations among rules and

among properties, see Thomson and Yeh (2008).

6

 
 

 
 

 
http://www.upo.es/econ 

 



3 A strategic justification of the Talmud rule

Our objective is to o↵er another strategic justification of the Talmud rule. As suggested by

Krishna and Serrano (1996), the property of a rule plays an important role in strategically

justifying the rule. Recently, Tsay and Yeh (2019) constructed a game that strategically justifies

the Talmud rule based on a lower bound on creditors’ awards, called the minimal right of a

creditor (Aumann and Maschler, 1985), and its dual. Here, we consider instead the dual pair of

bounds introduced above to construct a game that, as we will show, also justifies the Talmud

rule strategically.

3.1 Preliminaries in the two-agent case

We first show that the Talmud rule can be represented by the following formula in two-creditor

cases, which is interesting by itself, and highlights the connection to the dual pair of bounds

we shall consider.

Proposition 1. For each N ⌘ {i, j} 2 N with i 6= j, and each (c, E) 2 BN with ci  cj,

Ti(c, E) = max

(
min {ci, E}

2
, ci �

min
�
ci,
P

k2N ck � E
 

2
�
 
X

k2N

ck � E �min

(
ci,
X

k2N

ck � E

)!)
, (1)

and Tj(c, E) = E � Ti(c, E).

Proof. Let N ⌘ {i, j} 2 N with i 6= j and (c, E) 2 BN with ci  cj. Without loss of generality,

assume that i = 1 and j = 2. As T1(c, E) + T2(c, E) = E, it su�ces to show that Equation (1)

holds for i = 1. We consider three cases.

Case 1: E  c1. In this case, T1(c, E) = T2(c, E) = E
2 . As min {c1, E} = E and min

�
c1,
P

k2N ck � E
 
=

c1 it follows that

c1 �
min

�
c1,
P

k2N ck � E
 

2
�
 
X

k2N

ck � E �min

(
c1,
X

k2N

ck � E

)!

=
c1
2
� (c2 � E)

 E

2
.

Thus, the right-hand side of Equation (1) is E
2 , which is equal to T1(c, E).
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Case 2: c1 < E  c2. In this case, T1(c, E) = c1
2 and T2(c, E) = E � c1

2 . As min {c1, E} = c1

and min
�
c1,
P

k2N ck � E
 
= c1, it follows that

c1 �
min

�
c1,
P

k2N ck � E
 

2
�
 
X

k2N

ck � E �min

(
c1,
X

k2N

ck � E

)!

=
c1
2
� (c2 � E)

 c1
2
.

Thus, the right-hand side of Equation (1) is c1
2 , which is equal to T1(c, E).

Case 3: c2 < E. In this case, T1(c, E) = c1 � c1+c2�E
2 and T2(c, E) = c2 � c1+c2�E

2 . As

min {c1, E} = c1 and min
�
c1,
P

k2N ck � E
 
=
P

k2N ck � E, it follows that

c1 �
min

�
c1,
P

k2N ck � E
 

2
�
 
X

k2N

ck � E �min

(
c1,
X

k2N

ck � E

)!

= c1 �
c1 + c2 � E

2

� c1
2
.

It follows that the right-hand side of Equation (1) is c1 � c1+c2�E
2 , which is equal to T1(c, E).

Q .E .D .

Proposition 1 says that in two-creditor cases, the awards vector prescribed by the Talmud

rule can be obtained as follows. First, the creditor with the smaller claim, called the small

creditor, is asked to compare her average truncated claim lower bound with the di↵erence

between her average truncated claim upper bound and the residual loss (the di↵erence between

the total loss and her truncated claim from losses). The small creditor picks the maximum of

the two amounts as her award. The other creditor, called the big creditor, then receives the

residual.

Interestingly, Proposition 1 suggests the following non-cooperative procedure. First, the

small creditor is designed to choose a perspective between gains and losses. Next, the big

creditor is called up. If the perspective of gains (losses) is chosen, then the big creditor chooses

an amount between the small creditors claim and the liquidation value (the total loss), and
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in addition, proposes a division of her chosen amount, namely she proposes two numbers such

that the sum of the proposed numbers is equal to her chosen amount. Then, the small creditor

chooses a number from the proposed division as her award (chooses a number from the proposed

division and leaves the last number to the big creditor as the big creditor’s loss11), and the big

(small) creditor receives the residual.

It can be shown that in two-creditor cases, the Talmud rule can be strategically justified by

this non-cooperative procedure. However, by doing so, the strategy spaces of the two creditors

are di↵erent. Thus, the creditors are not treated symmetrically. To avoid such an asymmetric

treatment, we introduce Nature in the following bilateral negotiation game in which the two

creditors negotiate on how to divide the liquidation value. Formally, let N ⌘ {k, l} and

(c, E) 2 BN with ck  cl.

Ḡ(c, E) : First, Nature selects one of the two creditors as “initiator”, say creditor i 2 {k, l},

who chooses a perspective u 2 {gain, loss}.

If u = gain, then the other creditor (�i) as “responder” chooses q 2 {ck, E} and proposes

a division Dq = {a, b} such that a, b 2 R+ and a+ b = q. Creditor i then picks xi 2 Dq as her

award, and creditor �i receives the remainder, i.e., E � xi.

If u = loss, then creditor �i chooses q 2 {ck, ck+cl�E} and proposes a division Dq = {a, b}

such that a, b 2 R+ and a+ b = q. Creditor i then picks xi 2 Dq. Finally, creditor �i gets the

remainder (q � xi) as her loss (namely, her award is c�i � (q � xi)) and creditor i receives the

remainder, i.e., E � c�i + (q � xi).

3.2 Our mechanism

We now consider, for the general case of n � 3 agents, the following three-stage extensive form

game G of which Ḡ is the final stage. Its tree is depicted in Figure 1. As we shall show, G

strategically justifies the Talmud rule.

Stage 1: Each creditor j 2 N announces an awards vector yj and a permutation ⇡j : N ! N .

For ease of exposition, assume N = {1, 2, . . . , n} and c1  c2  · · ·  cn. Let ⇡ be the

11The big creditor receives the amount obtained by subtracting her loss from her claim.
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composition of these permutations according to the order of agents’ labels, i.e., ⇡ ⌘ ⇡1 � · · ·�⇡n

and let ⇡ (1) = k 2 N be the coordinator.12 If each creditor j 2 N \ {k} announces the same

awards vector, say y⇤, then the proposal y is y⇤; otherwise, y = yk.

Stage 2: The coordinator decides either to Accept y (which we refer as taking action A) in

which case y is the outcome, or Reject y. In the case of a rejection, the coordinator takes a

creditor, say creditor l 2 N \ {k} (which we refer as taking action (R, l)), to negotiate the

awards of her and her chosen creditor in the next stage. Each creditor j 2 N \ {k, l} receives

yj.

Stage 3: Creditors l and k play the game Ḡ((ck, cl) , yk + yl).

3.3 Existence

Our first result is that, for each problem, the awards vector provided by the Talmud rule can

be obtained as a Nash Equilibrium (NE) of game G.

Theorem 1. Let N 2 N and (c, E) 2 BN . There exists a Nash Equilibrium of G(c, E) with

outcome T (c, E).

The following lemma, which is independently interesting, is necessary to prove the theorem.

Lemma 1. Let N 2 N and (c, E) 2 BN . Suppose that y 2 X(c, E) is the proposal in Stage

1 of G(c, E), and creditor k 2 N is the coordinator. For each l 2 N \ {k}, if creditor k takes

(R, l) in Stage 2 of G(c, E), then
�
yN\{k,l}, T ((ck, cl), yk + yl)

�
is a Subgame Perfect Equilibrium

(SPE) outcome of the subgame Ḡ ((ck, cl), yk + yl).

Proof. Let N 2 N and (c, E) 2 BN . Let y 2 X(c, E) be the proposal in Stage 1 of G(c, E)

and creditor k 2 N be the coordinator. Suppose that creditor k takes creditor l 2 N \ {k}

to Stage 3. Without loss of generality, let ck  cl. Let ⌘gain ⌘ min{ck, yk + yl} and ⌘loss ⌘

min{ck, ck + cl � yk � yl}. We show that the following strategy profile constitutes an SPE

12The permutation mechanism has been considered by Serrano and Vohra (2002) and Thomson (2005), among

others. Our results hold even when a di↵erent order of the compositions is considered.
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of Ḡ ((ck, cl), yk + yl) with outcome
�
yN\{k,l}, T ((ck, cl), yk + yl)

�
. Formally, let i 2 {k, l} and

j ⌘ {k, l} \ {i}.

• i is chosen as the initiator. If yk + yl  cj then she chooses ūi = gain; otherwise, she

chooses ūi = loss. Moreover, given a chosen aspect u and the responder’s (creditor j) proposal

(q,Dq), she chooses maxDq if u = gain and minDq otherwise.

• i is chosen as the responder. She proposes (q̄, D̄q̄) = (⌘u, {⌘u

2 ,
⌘u

2 }), for each u 2

{gain, loss}.

We denote the above strategy by

�̄ = (�̄k, �̄l) .

By definition of the game ⌦T , each creditor h 2 N\{k, l} receives yh. It is not di�cult to see that

the above strategy guarantees creditors k and l receive the components of T ((ck, cl), yk + yl).

We next show �̄ is an SPE of Ḡ ((ck, cl), yk + yl).

To do so, we note first that the last part of the initiator’s strategy (namely, picking maxDq

if u = gain and minDq otherwise) is a best response to the responder’s proposal (q,Dq).

We next show that the responder’s strategy is also a best response. Let i 2 {k, l} and

j ⌘ {k, l} \ {i}. We consider three cases.

Case 1: yk + yl  ck. Suppose that creditors i and j are the initiator and the respon-

der, respectively. In this case, the initiator proposes ūi = gain and the responder selects

(q̄, Dq̄) = (⌘gain, {⌘gain

2 , ⌘
gain

2 }) = (yk + yl, {yk+yl
2 , yk+yl

2 }), which grants her yk+yl
2 . Suppose that

the responder deviates to (q,Dq) 6= (q̄, Dq̄). Then, as minDq +maxDq = q, she would end up

with minDq + ((yk + yl)� q)  q
2 + (yk + yl)� q = (yk + yl)� q

2  yk+yl
2 , which implies that she

would not be better o↵.13

Case 2: ck < yk + yl  cl. Suppose first that l is the initiator. Then, ūl = loss and

the responder (k) selects (q̄, Dq̄) = (⌘loss, {⌘loss

2 , ⌘
loss

2 }) = (ck, { ck
2 ,

ck
2 }), which grants her ck

2 .

13As yk + yl  ck, it follows that yk + yl  q.
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Suppose that k deviates to propose (q,Dq) 6= (q̄, Dq̄). Then, as minDq + maxDq = q, she

would end up with ck �maxDq  ck � q
2  ck

2 , which implies that she is not better o↵.14

Next, suppose that k is the initiator. Then, ūk = gain and the responder (l) selects

(q̄, Dq̄) = (⌘gain, {⌘gain

2 , ⌘
gain

2 }) = (ck, { ck
2 ,

ck
2 }), which grants her ck

2 + (yk + yl � ck). Suppose

that l deviates to propose (q,Dq) 6= (q̄, Dq̄). Then, as minDq +maxDq = q, she would end up

with minDq + ((yk + yl)� q)  q
2 + (yk + yl)� q  ck

2 + (yk + yl � ck), which implies that she

is not better o↵.

Case 3: yk + yl > cl. Suppose that creditors i and j are the initiator and the responder,

respectively. In this case, the initiator proposes ūi = loss and the responder selects (q̄, Dq̄) =

(⌘loss, {⌘loss

2 , ⌘
loss

2 }), where ⌘loss = ck+ cl� (yk+yl), which grants her cj � ck+cl�(yk+yl)
2 . Suppose

that the responder deviates to (q,Dq) 6= (q̄, Dq̄). Then, as minDq + maxDq = q, she would

end up with cj �maxDq  cj � q
2  cj � ck+cl�(yk+yl)

2 , which implies that she is not better o↵.15

Finally, we show that the first part of the initiator’s strategy is also a best response. We

distinguish the same three cases as above.

Case I: yk + yl  ck. Suppose that creditors i and j are the initiator and the responder,

respectively. In this case, the initiator proposes ūi = gain, and the responder selects (q̄, Dq̄) =

(⌘gain, {⌘gain

2 , ⌘
gain

2 }) = (yk+yl, {yk+yl
2 , yk+yl

2 }), which grants the initiator yk+yl
2 . Suppose that the

initiator deviates and chooses u = loss. Then, as the responder proposes (⌘loss, {⌘loss

2 , ⌘
loss

2 }) =
�
ck, { ck

2 ,
ck
2 }
�
, the initiator picks ck

2 , which grants her ck
2 � cj + yk + yl  yk+yl

2 . This implies

that she is not better o↵.

Case II: ck < yk + yl  cl. Suppose first that l is the initiator. Then, ūl = loss and the

responder (k) selects (q̄, Dq̄) = (⌘loss, {⌘loss

2 , ⌘
loss

2 }) = (ck, { ck
2 ,

ck
2 }), which grants l (the initiator)

yk + yl � ck
2 . Suppose that the initiator deviates to choose ul = gain. Then, as the responder

would propose (⌘gain, {⌘gain

2 , ⌘
gain

2 }) = (ck, { ck
2 ,

ck
2 }), the initiator would pick ck

2 , which would

grant her ck
2  yk + yl � ck

2 . This implies that she would not be better o↵.

Next, suppose first that k is the initiator. Then, ūk = gain and the responder (l) se-

14As ck < yk + yl  cl, it follows that ck  ck + cl � (yk + yl)  cl and, therefore, q � ck.
15As yk + yl > cl, it follows that cl + ck � (yk + yl) < ck, and, therefore, q � cl + ck � (yk + yl).
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lects (q̄, Dq̄) = (⌘gain, {⌘gain

2 , ⌘
gain

2 }) = (ck, { ck
2 ,

ck
2 }), which grants k (the initiator) ck

2 . Sup-

pose that the initiator deviates to choose uk = loss. Then, as the responder would pro-

pose (⌘loss, {⌘loss

2 , ⌘
loss

2 }) = (ck, { ck
2 ,

ck
2 }), the initiator would pick ck

2 , which would grant her

yk + yl � (cl � ck
2 ) 

ck
2 . This implies that she would not be better o↵.

Case III: yk + yl > cl. Suppose that creditors i and j are the initiator and the responder,

respectively. In this case, the initiator proposes ūi = loss and the responder selects (q̄, Dq̄) =

(⌘loss, {⌘loss

2 , ⌘
loss

2 }), where ⌘loss = ck + cl � (yk + yl). This would grant the initiator ci �
ck+cl�(yk+yl)

2 . Suppose that the initiator deviates to choose u = gain. Then, as the responder

would propose (⌘gain, {⌘gain

2 , ⌘
gain

2 }) = (ck, { ck
2 ,

ck
2 }), the initiator would pick ck

2 , which would

grant her ck
2  ci � ck+cl�(yk+yl)

2 . This implies that she would not be better o↵. Q .E .D .

With the help of Lemma 1, we are now ready to prove Theorem 1.

Proof of Theorem 1. Let N 2 N and (c, E) 2 BN . Without loss of generality, let N ⌘

{1, · · · , n} and c1  · · ·  cn. We show that the following strategy profile �⇤ = (�⇤
1, · · · , �⇤

n)

constitutes a NE of G(c, E) with outcome T (c, E).

Stage 1: Each creditor i 2 N proposes (yi⇤, ⇡i⇤) = (T (c, E), ⇡Id), where ⇡Id : N ! N is the

identity permutation (i.e., for each i 2 N , ⇡Id(i) = i).

Stage 2: Suppose that ⇡(1) = i and y is the proposal in Stage 1. Creditor i accepts y (takes

action A) if yi � maxk2N\{i} Ti ((ci, ck), yi + yk); otherwise, i rejects y and chooses one creditor,

say creditor j 2 N \ {i} (i takes action (R, j)), where j 2 argmaxk2N\{i} Ti ((ci, ck), yi + yk).

Stage 3: Suppose that y is the proposal in Stage 1, and creditor i is the coordinator and

chooses creditor j 6= i in Stage 2. Creditors i and j adopt the strategy profile �̄ defined in the

proof of Lemma 1 with k = i and l = j (k = j and l = i) if i  j (j < i).

It is not di�cult to see that the strategy profile �⇤ guarantees that the game ends with

the outcome T (c, E). We now show that �⇤ is an SPE of G(c, E), which implies that �⇤ is a

NE of G(c, E). Suppose that y is the proposal in Stage 1, and creditor i is the coordinator

and chooses creditor j 6= i in Stage 2. By the proof of Lemma 1, it is clear that �⇤ is an

SPE of the subgame Ḡ((ci, cj) , yi + yj)) and the outcome is
�
yN\{i,j}, T ((ci, cj), yi + yj)

�
. By
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subgame perfection, if yi � maxk2N\{i} Ti ((ci, ck), yi + yk), creditor i takes action A; otherwise,

she takes action (R, j), where j 2 argmaxk2N\{i} Ti ((ci, ck), yi + yk). We now claim that no

creditor i 2 N is better o↵ by deviating from announcing (T (c, E), ⇡Id). Note that following

�⇤, creditor 1 is the coordinator and T (c, E) is the proposal in Stage 1. Suppose that creditor i

deviates to announce (yi, ⇡i). We consider two cases.

Case 1: Creditor i is the coordinator. As for each k 2 N \ {i}, yk = T (c, E), then

y = T (c, E). By bilateral consistency of the Talmud rule, for each j 2 N \ {i}, Ti(c, E) =

Ti ((ci, cj), Ti(c, E) + Tj(c, E)). By subgame perfection, creditor i receives Ti(c, E), which im-

plies that she is not better o↵.

Case 2: Creditor k 2 N \ {i} is the coordinator. Suppose that yi = T (c, E). Thus,

y = T (c, E). By bilateral consistency of the Talmud rule and subgame perfection, creditor i

receives Ti(c, E), which implies that she is not better o↵. Suppose now that yi 6= T (c, E).

Then, y = yk = T (c, E). By bilateral consistency of the Talmud rule and subgame perfection,

creditor i receives Ti(c, E), which implies that she is not better o↵. Q .E .D .

3.4 Uniqueness

Our second result states that, for each problem, the awards vector provided by the Talmud rule

is the only Nash equilibrium outcome of our game.

Theorem 2. Let N 2 N and (c, E) 2 BN . T (c, E) is the unique Nash Equilibrium outcome

of the game G(c, E).

The following lemmata, which are independently interesting, are used to prove the theorem.

Lemma 2. Let N 2 N and (c, E) 2 BN . Suppose that � is a NE of G(c, E) with outcome z�,

and y� is the proposal following �. Then, for each i, j 2 N with i 6= j, z�i � Ti

�
(ci, cj), y�i + y�j

�
.

Proof. LetN 2 N and (c, E) 2 BN . Suppose that � is a NE ofG(c, E) with outcome z�, and y�

is the proposal following �. We show that for each i, j 2 N with i 6= j, z�i � Ti

�
(ci, cj), y�i + y�j

�
.

Suppose, by contradiction, that there are i, j 2 N with i 6= j such that z�i < Ti

�
(ci, cj), y�i + y�j

�
.

We show that creditor i is better o↵ by deviating to the following strategy �0
i.
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Stage 1: Creditor i announces (y�
0
i , ⇡�0

i) such that y�
0
i = y� and ⇡�0

(1) ⌘
�
⇡�1 � · · · � ⇡�i�1 � ⇡�0

i � ⇡�i+1 � · · · � ⇡�n
�
(1) =

i.

Stage 2: If creditor i is the coordinator and the proposal is y�, then she takes (R, j); otherwise,

she follows �i.

Stage 3: Suppose that y is the proposal. If creditors i and j are involved in Stage 3, then

creditor i adopts the strategy �̄i defined in the proof of Lemma 1 with k = i (l = i) if i  j

(j < i); otherwise, she follows �i.

Let �0 be the strategy profile after creditor i’s deviation. Namely, for each l 2 N\{i}, �0
l = �l.

Let z�
0
be the outcome of G(c, E) by following �0. Note that by following �0, the proposal y�

0
in

Stage 1 is still y�.16 As y�
0
= y�, by following �0, each creditor l 2 N \ {i, j} receives z�

0
l = y�l ,

and creditors i and j play Ḡ
�
(ci, cj), y�i + y�j

�
in Stage 3. By the game rule, z�

0
i + z�

0
j =

y�i + y�j . As creditor i adopts �̄i, by the proof of Lemma 1, z�
0

j  Tj

�
(ci, cj), y�i + y�j

�
. As

Ti

�
(ci, cj), y�i + y�j

�
+Tj

�
(ci, cj), y�i + y�j

�
= y�i +y�j , it follows that z

�0
i � Ti

�
(ci, cj), y�i + y�j

�
>

z�i , which implies that creditor i is better o↵. This violates that � is a NE of G(c, E). Q .E .D .

Lemma 3. Let N 2 N and (c, E) 2 BN . Suppose that � is a NE of G(c, E) with outcome z�

and y� is the proposal following �. Then, for each i 2 N , z�i � y�i .

Proof. Let N 2 N and (c, E) 2 BN . Suppose that � is a NE of G(c, E) with outcome z�

and y� is the proposal following �. We show that for each i 2 N , z�i � y�i . Suppose, by

contradiction, that there is i 2 N such that z�i < y�i . We claim that creditor i is better o↵ by

deviating to the following strategy �0
i.

Stage 1: Creditor i announces (y�
0
i , ⇡�0

i) such that y�
0
i = y� and ⇡�0

(1) ⌘
�
⇡�1 � · · · � ⇡�i�1 � ⇡�0

i � ⇡�i+1 � · · · � ⇡�n
�
(1) =

i.

Stage 2: If creditor i is the coordinator and y = y�, then she takes action A (accepts y);

otherwise, she follows �i.

16To see this, if ⇡�(1) = i, then obviously y�
0
= y�. If ⇡�(1) = k 6= i, then by the game rule, either

y� = y�i 6= y�k or y� = y�k . In the former case, since for each l 2 N \ {k}, y�0
l = y� 6= y�k = y�

0
k , then

y�
0
= y�

0
i = y�. In the latter case, if there is l 2 N \ {k} such that y�l 6= y�k , then y�

0
= y�

0
i = y�; otherwise,

y�
0
= y�k = y�. Thus, y�

0
= y�.
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Stage 3: Creditor i follows �i.

Let �0 be the strategy profile of G(c, E) after creditor i’s deviation. Namely, for each

j 2 N \ {i}, �0
j = �j. After deviation, creditor i is the coordinator and the proposal is still

y�.17 Thus, following �0
i, creditor i receives y

�
i > z�i , which implies that creditor i is better o↵.

This violates that � is a NE of G(c, E). Q .E .D .

With the help of the previous lemmata, we are now ready to prove Theorem 2.

Proof of Theorem 2. Let N 2 N and (c, E) 2 BN . Without loss of generality, let N ⌘

{1, · · · , n} and c1  · · ·  cn. Suppose that � = (�1, · · · , �n) is a NE of G(c, E) whose outcome

is denoted by z� = (z�1 , · · · , z�n). For each i 2 N , let

�Ti ⌘ max

⇢
y�i , max

j2N\{i}
Ti((ci, cj), y

�
i + y�j )

�
.

By Lemma 2 and Lemma 3, we conclude that, for each i 2 N , z�i � �Ti . We next claim that,

for each i, j 2 N with i 6= j,

z�i = y�i = Ti((ci, cj), y
�
i + y�j ).

To show the first equality, note that, for each i 2 N , z�i � �Ti . It follows that, for each

i 2 N , z�i � y�i . As
P

h2N z�h = E =
P

h2N y�h , then, for each i 2 N , z�i = y�i .

To show the second equality, suppose, by contradiction, that there exists a pair of agents

i, j 2 N with i 6= j such that z�i > Ti((ci, cj), y�i + y�j ). As, for each h 2 N , z�h = y�h ,

then y�i > Ti((ci, cj), y�i + y�j ). Thus, z�j = y�j < Tj((ci, cj), y�i + y�j ), which contradicts the

fact that for each h 2 N \ {j}, z�j � Tj((ch, cj), y�h + y�j ). It follows that for each i, j 2 N

with i 6= j, z�i = y�i = Ti((ci, cj), y�i + y�j ). By converse consistency of the Talmud rule,

z� = T (c, E). Q .E .D .

17To see this, suppose that by following �, creditor k 2 N is the coordinator. If for each l, h 2 N , y�l = y�h ,

then the original proposal (y�) coincides with the new proposal (y�
0
= y�

0
i = y�). If for each l, h 2 N \ {k},

y�l = y�h and y�k 6= y�i , then the original proposal (y�) still coincides with the new proposal (y�
0
= y�

0
i = y�).

If for each l, h 2 N \ {i}, y�l = y�h and y�k 6= y�i , then the original proposal (y�) again coincides with the new

proposal (y�
0
= y�

0
i = y�). If for some l, h 2 N \ {i, k}, y�l 6= y�h , then the original proposal (y�) coincides

with the new proposal (y�
0
= y�

0
i = y�).
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4 Concluding remarks

We have introduced in this paper a game (G) that strategically justifies the Talmud rule,

one of the classical rules to solve bankruptcy problems. As G exploits bilateral consistency

and converse consistency, the bilateral negotiation game (Ḡ) plays an important role in our

analysis. The design of Ḡ exploits the average truncated claim lower bounds on awards and

the average truncated claim upper bounds on awards. To see this, let N ⌘ {k, l} 2 N with

k 6= l and (c, E) 2 BN with ck  cl. As |N | = 2, the average truncated claim lower bounds on

awards requires that each creditor i 2 N should receive at least min{ci,E}
2 . To embed this lower

bound requirement into Ḡ, when the initiator chooses the gain perspective, the responder is

allowed to pick a number q within {ck, E} and propose a division of q (namely, Dq = {a, b}

such that a + b = q). The number q is interpreted as the amount the responder would like to

divide with the initiator. After the initiator picks a number x from Dq, the responder receives

q� x as well as E � q, i.e., E � x overall. Note that the responder proposes the division but is

the last creditor to pick. This is the so-called divide-and-choose mechanism.18 Therefore, the

responder will select q = min{ck, E} and propose Dq = { q
2 ,

q
2}. Analogously, in the case when

the initiator chooses the loss perspective, it can be seen that Ḡ exploits the average truncated

claim upper bounds on awards.

Our analysis closely relates to Tsay and Yeh (2019). The two papers exploit bilateral con-

sistency and converse consistency of the Talmud rule and obtain (exact) strategic justifications

of the rule. More precisely, the game proposed in this paper is based on the general game ⌦'

introduced by Tsay and Yeh (2019). We keep Stages 1 and 2 of ⌦' unchanged, but replace

Stage 3 of ⌦' by Ḡ. Stage 3 of Tsay and Yeh (2019) is based on Dagan’s (1996) character-

ization of the Talmud rule, as it exploits the fact that the rule satisfies “equal treatment of

equals”, “invariance under claims truncation”, and “minimal rights first”. Our Stage 3 instead

is based on Moreno-Ternero and Villar’s (2004) characterization of the Talmud rule and thus

exploits the two lower bounds conditions mentioned above. These di↵erent properties lead to

18See Brams and Taylor (1996) for a survey and Tsay and Yeh (2019) or Li and Ju (2016) for recent instances

in this context.
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di↵erent bilateral negotiations in Stage 3 of both games. In Tsay and Yeh’s (2019) game, the

responder picks one process between the “minimal awards first” process and the“minimal losses

first” process rather than an amount within the liquidation value (the shortfall) and the smaller

claim between two creditors in Stage 3 if the divider picks the gain aspect (the loss aspect).

Serrano (1995), Dagan et al. (1997), and Chang and Hu (2008) also o↵er strategic justifica-

tions of the Talmud rule. However, their results rely on exogenously given bankruptcy rules to

solve bilateral negotiation games.19 From our viewpoint, this design leaves some room for im-

provement as the purpose of the Nash program is to strategically justify cooperative solutions

through non-cooperative procedures, and ideally, no cooperative solution should get involved

in the details of non-cooperative procedures. Our result and Tsay and Yeh’s (2019) result of

the Talmud rule do not have such a design.

We stress that, somewhat in contrast with the literature (see, for instance, Serrano (2005)),

we do not invoke any rule to solve bilateral negotiations. Instead, we introduce strategic

interaction in bilateral negotiations.20 Thus, the design of our game enhances our understanding

of the non-cooperative features of the Talmud rule.

To conclude, the Talmud rule is a hybrid between equal awards and equal losses. It focusses

on one or the other notion, depending on whether the endowment falls short or exceeds one

half of the aggregate claim, using half-claims instead of claims. A natural generalization is

obtained by considering any possible fraction (of the aggregate and individual claims). The

resulting family of rules, known as the TAL-family, was introduced by Moreno-Ternero and

Villar (2006a). In the taxation jargon, the rules within the TAL-family would yield two types

of tax schedules: for tax revenues below a fraction ✓ of the aggregate income, the tax rate would

be ✓ up to some income level, and zero afterwards. For tax revenues above such a fraction, the

tax rate would be ✓ first and then one. A more general family can be obtained by allowing

for other minimum and maximum tax rates, instead of always imposing zero and one for those

19Serrano (1995) mentions that the exogenous bankruptcy rule in his game can be obtained as the equilibrium

outcome of a random dictator bargaining game. In this case, he obtains an expected strategic justification of

the Talmud rule. In contrast, our result and Tsay and Yeh’s (2019) result are exact strategic justifications of

the Talmud rule.
20This feature is also shared by Tsay and Yeh (2019).
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values (e.g., Moreno-Ternero (2011)). It is left for further research to explore whether the

mechanism introduced in this paper could be extended to provide strategic justifications for

such families of generalized Talmud rules.

19

 
 

 
 

 
http://www.upo.es/econ 

 



References

[1] Aumann, R.J., Maschler, M., 1985. Game theoretic analysis of a bankruptcy problem from

the Talmud. Journal of Economic Theory 36, 195-213.

[2] Brams, S. J., Taylor, A. D., 1996. Fair Division: From cake-cutting to dispute resolution.

Cambridge University Press.

[3] Chang, C., Hu, C.-C., 2008. A non-cooperative interpretation of the f -just rules of

bankruptcy problems. Games and Economic Behavior 63, 133- 144.

[4] Chun, Y., 1989. A noncooperative justification for egalitarian surplus sharing. Mathematical

Social Sciences 17, 245-261.

[5] Chun, Y., Hu, C.-C., Yeh, C.-H., 2017. A Strategic Implementation of the Shapley Value

for the Nested Cost-Sharing Problem. Journal of Public Economic Theory 19, 219-233

[6] Dagan, N., Serrano, R., Volij, O., 1997. A noncooperative view of consistent bankruptcy

rules. Games and Economic Behavior 18, 55-72.

[7] Dagan, N., 1996. New characterization of old bankruptcy rules. Social Choice and Welfare

13, 51-59.

[8] Dominguez, D., Thomson, W., 2006. A new solution to the problem of adjudicating con-

flicting claims. Economic Theory 28, 283-307.

[9] Hagiwara, M., Hanato, S., 2019. Strategic justification in claims problems: Procedurally

fair and multilateral bargaining game. Mimeo, Department of Industrial Engineering and

Economics, Tokyo Institute of Technology, Tokyo, Japan.

[10] Harless, P., 2017. Wary of the worst: Maximizing award guarantees when new claimants

may arrive. Games and Economic Behavior 105, 316-328.

[11] Hu, C.-C., Tsay, M.-H., Yeh, C.-H., 2012. Axiomatic and strategic justifications for the

constrained equal benefits rule in airport problems. Games and Economic Behavior 75,

185-197.

20

 
 

 
 

 
http://www.upo.es/econ 

 



[12] Hu, C.-C., Tsay, M.-H., Yeh, C.-H., 2018. A study of the nucleolus in the nested cost

sharing problem: axiomatic and strategic perspectives. Games and Economic Behavior 109,

82-98.

[13] Ju, Y., Chun, Y., van den Brink, R., 2014. Auctioning and selling positions: A non-

cooperative approach to queueing conflicts, Journal of Economic Theory 153, 33-45.

[14] Krishna, V., Serrano, R., 1995. Perfect equilibria of a model of n-person non-cooperative

bargaining. International Journal of Game Theory 24, 259-272.

[15] Krishna, V., Serrano, R., 1996. Multilateral bargaining. Review of Economic Studies 63,

61-80.

[16] Li, J., Ju, Y., 2016. Divide and choose: a strategic approach to bankruptcy problems.

Mimeo. University of York. UK.

[17] Maschler, M., Owen, G., 1989. The consistent Shapley value for hyperplane games. Inter-

national Journal of Game Theory 18, 389-407.

[18] Moreno-Ternero, J.D., 2006. Composition, securement, and concede-and-divide. Spanish

Economic Review 8, 227-237.

[19] Moreno-Ternero, J.D., 2011. Voting over piece-wise linear tax methods. Journal of Math-

ematical Economics 47, 29-36.

[20] Moreno-Ternero J.D., 2018. A Talmudic Approach to Bankruptcy Problems. In: Mueller

D., Trost R. (eds) Game Theory in Management Accounting. Contributions to Management

Science. Springer, Cham.

[21] Moreno-Ternero, J.D., Villar, A., 2004. The Talmud rule and the securement of creditors’

awards. Mathematical Social Sciences 47, 245-257.

[22] Moreno-Ternero, J.D., Villar, A., 2006a The TAL-family of rules for bankruptcy problems.

Social Choice and Welfare, Vol. 27, No. 2, 231-249.

21

 
 

 
 

 
http://www.upo.es/econ 

 



[23] Moreno-Ternero, J.D., Villar, A., 2006b. New characterizations of a classical bankruptcy

rule. Review of Economic Design 10, 73-84.

[24] Nash, J.F., 1953. Two person cooperative games. Econometrica 21, 128-140.

[25] O’Neill, B., 1982. A problem of rights arbitration from the Talmud. Mathematical Social

Sciences 2, 345-371.

[26] Serrano, R., 1993. Non-cooperative implementation of the nucleolus: The 3-Player Case.

International Journal of Game Theory 22, 345-357.

[27] Serrano, R., 1995. Strategic bargaining, surplus sharing problems and the nucleolus. Jour-

nal of Mathematical Economics 24, 319-329.

[28] Serrano, R., 2005. Fifty years of the Nash program. 1953-2003. Investigaciones Economicas

29, 219-258.

[29] Serrano, R., 2008. Nash program. In Durlauf, S. and Blume, L. (Eds.), The New Palgrave

Dictionary of Economics, 2nd edition. London: McMillan, 256-262.

[30] Serrano, R., Vohra, R., 2002. Bargaining and bargaining sets. Games and Economic Be-

havior 39, 292-308.

[31] Thomson, W., 2003. Axiomatic and game-theoretic analysis of bankruptcy and taxation

problems: a survey, Mathematical Social Sciences 45, 249-297.

[32] Thomson, W., 2005. Divide-and-permute. Games and Economic Behavior 52, 186-200.

[33] Thomson, W., 2015. Axiomatic and game-theoretic analysis of bankruptcy and taxation

problems: an update, Mathematical Social Sciences 74, 41-59.

[34] Thomson W., 2016. Consistent allocation rules, Monograph Series of the Econometric

Society, Cambridge University Press, Cambridge. Forthcoming.

22

 
 

 
 

 
http://www.upo.es/econ 

 



[35] Thomson W., 2019. How to divide when there isn’t enough: From Aristotle, the Talmud,

and Maimonides to the axiomatics of resource allocation, Monograph Series of the Econo-

metric Society, Cambridge University Press, Cambridge, MA.

[36] Thomson, W., Yeh, C.-H., 2008. Operators for the adjudication of conflicting claims.

Journal of Economic Theory 143, 177-198.

[37] Tsay, M.-H., Yeh, C.-H., 2019. Relations between the central rules in bankruptcy problems:

a strategic justification perspective. Games and Economic Behavior 113, 515-532.

[38] Vidal-Puga, J., 2004. Bargaining with commitments. International Journal of Game The-

ory 33, 129-144.

[39] Yan, J., 2002. Non-cooperative selection of the core. International Journal of Game Theory

31, 527-540.

[40] Yeh, C.-H., 2008. Secured lower bound, composition up, and minimal rights first for

bankruptcy problems. Journal of Mathematical Economics 44, 925-932.

23

 
 

 
 

 
http://www.upo.es/econ 

 



 

Stage 1: 
Each creditor 𝑝 ∈ 𝑁 announces 
(𝑦𝑝, 𝜋𝑝). Let 𝜋 ≡ 𝜋1 ∘ ⋯ ∘ 𝜋𝑛 and 
𝜋(1) = 𝑘. Let 𝑦 be the proposal.  
If for each 𝑝, ℎ ∈ 𝑁\{𝑘}, 𝑦𝑝 = 𝑦ℎ, 
then 𝑦 = 𝑦𝑝; otherwise, 𝑦 = 𝑦𝑘. 

Stage 2: 
Creditor k either takes A (accepts 
𝑦) or (R, l) (rejects 𝑦 and chooses 
creditor 𝑙 ∈ 𝑁\{𝑘}). 

𝑦 ≡ ൫𝑦𝑝൯
𝑝∈𝑁

 

(R, l) 

A

Stage 3: 
Let 𝐸𝑔𝑎𝑖𝑛 ≡ 𝑦𝑘 + 𝑦𝑙 and 
𝐸𝑙𝑜𝑠𝑠 ≡ 𝑐𝑘 + 𝑐𝑙 − 𝐸𝑔𝑎𝑖𝑛. 

Creditor k  

 Nature  

Creditor j ∈ {𝒌, 𝒍}\{𝒊} 

Pick 𝑥𝑖 ∈ 𝐷𝑞 

Creditor i  

Creditor i  

Select creditor 𝑖 ∈ {𝑘, 𝑙} 

 𝑢 = 𝑔𝑎𝑖𝑛  𝑢 = 𝑙𝑜𝑠𝑠 

Propose (𝑞, 𝐷𝑞) 

with 𝑞 ∈ {min{𝑐𝑘, 𝑐𝑙} , 𝐸𝑔𝑎𝑖𝑛}  
and 𝐷𝑞 = {𝑎, 𝑞 − 𝑎}  𝑠. 𝑡.  𝑎 ∈ ℝ+. 

 

  

Creditor j∈ {𝒌, 𝒍}\{𝒊}  

Propose (𝑞, 𝐷𝑞) 

with 𝑞 ∈ {min{𝑐𝑘, 𝑐𝑙} , 𝐸𝑙𝑜𝑠𝑠}  
and 𝐷𝑞 = {𝑎, 𝑞 − 𝑎}  𝑠. 𝑡.  𝑎 ∈ ℝ+. 

Pick 𝑥𝑖 ∈ 𝐷𝑞
 

൫𝑥𝑖, 𝑞 − 𝑥𝑖, (𝑦𝑝)𝑝∈𝑁\{𝑘,𝑙}൯ ൫𝑐𝑖 − 𝑥𝑖 − (𝐸𝑙𝑜𝑠𝑠 − 𝑞), 𝑐𝑗 − (𝑞 − 𝑥𝑖), (𝑦𝑝)𝑝∈𝑁\{𝑘,𝑙}൯ 

Creditor i  
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