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1 Introduction

In the era of streaming, sports has become the cornerstone to television programming. The

popularity of televised sports events keeps increasing and, for sports organizations, the sale

of broadcasting and media rights is currently their biggest source of revenue. This sale is

often collective, which generates an interesting problem of resource allocation, akin to well-

known problems already analyzed in the game-theory literature. Instances are airport problems

(e.g., Littlechild and Owen, 1973; Hu et al., 2012), bankruptcy problems (e.g., O’Neill, 1982;

Thomson, 2019), telecommunications problems (e.g., van den Nouweland et al., 1996), museum

pass problems (e.g., Ginsburgh and Zang, 2003; Bergantiños and Moreno-Ternero, 2015), cost

sharing in minimum cost spanning tree problems (e.g., Bergantiños and Vidal-Puga, 2007;

Trudeau, 2012), or labelled network games (e.g., Algaba et al., 2019a, 2019b).

In a recent paper (Bergantiños and Moreno-Ternero, 2020), we introduced a formal model

to analyze the problem of sharing the revenues from broadcasting sports leagues among par-

ticipating teams. Two main rules were highlighted therein. On the one hand, the so-called

equal-split rule, which splits the revenue generated from each game equally among the partic-

ipating players (teams). On the other hand, the so-called concede-and-divide, which concedes

each player (team) the revenues generated from its fan base (properly estimated) and divides

equally the residual. Among other things, we showed that both rules are similarly characterized

by just three properties. Two properties are common in both characterizations. One (equal

treatment of equals) states that two teams with the same audiences should receive the same

amount; another (additivity) that revenues should be additive on the audience table. The third

property in each characterization comes from a pair of polar properties modeling the effect of

null or essential teams. The null team property states that if each game played by a team has

no audience, then such a team (called null) receives nothing. The essential team property states

that if only the games played by one team have positive audience, then such a team (called

essential) receives all its audience. In a follow-up paper (Bergantiños and Moreno-Ternero,

2019) we show that a third axiom (maximum aspirations) stating that each team receives at

most the revenue generated by its overall audience, together with equal treatment of equals

and additivity, characterizes the family of all rules generated by convex combinations of the

equal-split rule and concede-and-divide.

A natural third rule (outside from the previous family) can also be considered for this model.
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It is the rule that divides the overall revenues generated in the tournament equally among all

participating teams. We refer to it as the uniform rule. This rule is used quite often in practice.

For instance, the football competitions of England, Italy and Spain divide around one half of

the revenues generated by TV broadcasting equally among all teams.

In this paper, we further explore the axiomatic approach to this problem and derive new

interesting results that uncover the structure of this stylized model further. To do so, we

consider new axioms that formalize alternative ways of allocating the extra revenue obtained

from additional viewers.

On the one hand, we consider a group of axioms stating different ways in which a rule

should react when additional viewers of some specific team appear. More precisely, assume

that a given tournament has more viewers than another tournament just because the games

involving a specific team (i) have more viewers. How should a rule allocate those extra viewers?

Our axioms consider three possible answers. The first axiom just ignores the fact that all viewers

come from games involving team i. Then, all teams should equally share the extra benefits.

We show that this axiom, together with equal treatment of equals, characterizes the uniform

rule. The second axiom considers that team i and the rest of the teams are in a symmetric

position because the audience of team i has increased the same amount as the audience of the

rest of the teams (combined). Then, the extra benefits of team i should be equal to the sum

of the extra benefits of the remaining teams. We show that this second axiom together with

equal treatment of equals characterizes the equal-split rule. The third axiom says that team i

is fully credited for such an improvement. We show that this third axiom, together with equal

treatment of equals, characterizes concede-and-divide.

On the other hand, we consider an axiom referring to the incremental effect of adding

additional viewers to a game. The axiom (equal benefits from additional viewers) states that

the involved teams in the game should be affected in the same amount. The same should

happen for the non-involved teams. Our last three results show that the combination of this

axiom with some other basic axioms also characterize the three rules mentioned above. More

precisely, equal benefits from additional viewers, together with aggregate monotonicity (more

aggregate revenues cannot hurt any team) and non negativity, characterize the uniform rule.

If, instead, we add to equal benefits from additional viewers the null team axiom (mentioned

above), we characterize the equal-split rule, whereas if we add the essential team axiom (also
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mentioned above), we characterize concede-and-divide.

The rest of the paper is organized as follows. We introduce the model, axioms and rules

in Section 2. In Section 3, we provide the characterization results. First, those involving equal

treatment of equals. Then, those involving equal benefits from additional viewers. We conclude

in Section 4.

2 The model

We consider the model introduced by Bergantiños and Moreno-Ternero (2020). Let N describe

a finite set of teams. Its cardinality is denoted by n. Without loss of generality, we usually

take N = {1, 2, . . . , n}. We assume n ≥ 3.

For each pair of teams i, j ∈ N , we denote by aij the broadcasting audience (number of

viewers) for the game played by i and j at i’s stadium. We use the notational convention that

aii = 0, for each i ∈ N . Let A ∈ An×n denote the resulting matrix of broadcasting audiences

generated in the whole tournament involving the teams within N .1

Let αi (A) denote the total audience achieved by team i, i.e.,

αi (A) =
∑
j∈N

(aij + aji).

Without loss of generality, we normalize the revenue generated from each viewer to 1 (to be

interpreted as the “pay per view” fee). Thus, we sometimes refer to αi (A) as the claim of team

i. When no confusion arises, we write αi instead of αi (A).

For each A ∈ An×n, let ||A|| denote the total audience of the tournament. Namely,

||A|| =
∑
i,j∈N

aij =
1

2

∑
i∈N

αi.

A (broadcasting) problem is a matrix A ∈ An×n defined as above. The family of all the

problems is denoted by P .

1We are therefore assuming a tournament in which each team plays each other team twice: once home,

another away. Our model could be extended to tournaments in which some teams play other teams a different

number of times. In such a case, aij would denote the broadcasting audience in all games played by i and j at

i’s stadium.
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2.1 Rules

A (sharing) rule R is a mapping that associates with each problem an allocation indicating the

amount each team gets from the total revenue generated by broadcasting games. As we have

normalized the revenue generated from each viewer to 1, R : P → RN is such that, for each

A ∈ P , ∑
i∈N

Ri (A) = ||A||.

We consider three focal rules. First, the one that divides the total audience equally among

the teams. Formally,

Uniform, U : for each A ∈ P , and each i ∈ N ,

Ui (A) =
||A||
n

.

The uniform rule is applied in many practical situations. For instance, the football compe-

titions of England, Italy and Spain divide an important part of the revenues generated by TV

broadcasting (50%, 40% and 50%, respectively), following the uniform rule.

Another focal rule for this problem is the so-called equal-split rule, which splits equally the

audience of each game. Formally,

Equal-split, ES: for each A ∈ P , and each i ∈ N ,

ESi (A) =
αi
2
.

The equal-split rule has game-theoretical foundations as, among other things, it coincides

with the Shapley value of a suitably associated TU-game to broadcasting problems (e.g.,

Bergantiños and Moreno-Ternero, 2020).

The third focal rule is concede-and-divide, which compares the audience of a team with the

average audience of the other teams. More precisely, it subtracts from the total audience of a

team an amount associated to each of the remaining n − 1 teams: the average audience per

game that the remaining teams yield.2 Formally,

2Consequently, the rule might yield negative awards for teams with very poor audiences (with respect to the

remaining teams). The interpretation for the negative awards is that those teams are free riding on the prestige

of the tournament and, thus, should be taxed for it.
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Concede-and-divide, CD: for each A ∈ P , and each i ∈ N ,

CDi (A) = αi − (n− 1)

∑
j,k∈N\{i}

(ajk + akj)

(n− 2)(n− 1)
=

(n− 1)αi − ||A||
n− 2

.

This rule can be rationalized by an intuitive statistical approach (e.g., Bergantiños and

Moreno-Ternero, 2020). More precisely, for each pair of teams i, j ∈ N, with i 6= j, we can

write aij = b0 + bi + bj + εij, where b0 denotes the number of generic sport fans, who watch

all games in the tournament, bk denotes the number of fans of team k = i, j, who watch all

games of team k in the tournament, and εij denotes the residual number of viewers. Let b̂0 and{
b̂i

}
i∈N\{k}

denote the solutions to the minimization problem of
∑

ij ε
2
ij, after (hypothetically)

removing team k from the tournament. If we then impose a concede-and-divide procedure to

allocate aij, in which b̂0 is divided equally among all teams, b̂l is assigned to team l, for each

l ∈ N \ {k} and ε̂ij is divided equally among teams i and j, for each pair i, j ∈ N, with i 6= j,

then we obtain precisely the above expression for concede-and-divide.

2.2 Axioms

We now consider several axioms of rules. First, the most basic form of impartiality, which is

formalized by the following axiom. It says that if two teams have the same audiences, then

they should receive the same amount.

Equal treatment of equals: For each A ∈ P , and each pair i, j ∈ N such that aik = ajk,

and aki = akj, for each k ∈ N \ {i, j},

Ri(A) = Rj(A).

The next axiom, which is inspired by the notion of solidarity, refers to the incremental effect

of adding additional viewers to a game. It states that the involved teams should be affected in

the same amount. The same should happen for the non-involved teams. Formally,

Equal benefits from additional viewers: For each pair A, A′ ∈ P such that aij = a′ij,

for each pair (i, j) 6= (i0, j0), and ai0,j0 < a′i0,j0 , we have

Ri0(A
′)−Ri0(A) = Rj0(A

′)−Rj0(A),
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and

Ri(A
′)−Ri(A) = Rj(A

′)−Rj(A),

when {i, j} ⊂ N\ {i0, j0}.

We also consider a group of axioms that are closely related, as they state how a rule should

react when additional viewers (of some specific team) appear. More precisely, let A, A′ ∈ P

and i ∈ N such that aij ≤ a′ij and aji ≤ a′ji for each j ∈ N \ {i} and ajk = a′jk when i /∈ {j, k}.

Note that tournament A′ has more viewers than tournament A just because the games involving

team i have more viewers. How should a rule allocate those extra viewers? Our axioms consider

three possible answers.3

First, we just ignore the fact that all viewers come from games involving team i and assume

that all teams should equally share those additional viewers. Formally,

Equal sharing of additional team viewers: For each pair A, A′ ∈ P , and each i ∈ N

such that aij ≤ a′ij and aji ≤ a′ji for each j ∈ N \ {i} and ajk = a′jk when i /∈ {j, k}, then there

exists c ∈ R such that

Rl (A
′)−Rl (A) = c,

for each l ∈ N .

Second, we consider that team i and the rest of the teams are in a symmetric position

because the audience of team i has increased the same amount than the audience of the rest

of the teams (combined). Namely, αi (A
′) − αi (A) =

∑
j∈N\{i}

(αj (A′)− αj (A)). Thus, team i

should increase as much as the rest of the teams combined. Formally,

Half sharing of additional team viewers: For each pair A, A′ ∈ P , and each i ∈ N

such that aij ≤ a′ij and aji ≤ a′ji for each j ∈ N \ {i} and ajk = a′jk when i /∈ {j, k}, then

Ri (A
′)−Ri (A) =

∑
l∈N\{i}

(Rl (A
′)−Rl (A)) .

Third, we assume that team i is fully credited for such an improvement. Formally,

No sharing of additional team viewers: For each pair A, A′ ∈ P , and each i ∈ N such

that aij ≤ a′ij and aji ≤ a′ji for each j ∈ N \ {i} and ajk = a′jk when i /∈ {j, k}, then

Ri (A
′)−Ri (A) = ||A′|| − ||A|| .

3Note that the three axioms are mutually exclusive.
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Finally, we also introduce four additional axioms.4

The first one says that if a team has a null audience, then such a team gets no revenue.

Formally,

Null team: For each A ∈ P , and each i ∈ N , such that for each j ∈ N , aij = 0 = aji,

Ri(A) = 0.

The second one is sort of dual to the first one as it says that if only the games played by one

team have positive audience, then such an essential team should receive all its claim. Formally,

Essential team: For each A ∈ P , and each i ∈ N such that ajk = 0 for each pair

{j, k} ⊆ N\ {i},

Ri(A) = αi.

The next axiom says that if the overall audience in a tournament is higher than in another,

then no team can lose from it. Formally,

Aggregate Monotonicity: For each A, A′ ∈ P such that ||A|| ≤ ||A′||, we have that

Ri (A) ≤ Ri (A
′) ,

for each i ∈ N .

The last axiom simply states that no team can receive a negative amount.

Non negativity: For each A ∈ P and each i ∈ N ,

Ri (A) ≥ 0.

Many of the above axioms have a flavor of existing axioms in the theories of cooperative

games and fair division. Equal treatment of equals is a quite standard axiom formalizing the

principle of impartiality in fair division (and, also, closely related to the symmetry axiom in

cooperative games). The null team axiom is inspired by the null player axiom for cooperative

games. The essential team axiom parallels the notion of necessary/veto player for cooperative

games. Aggregate monotonicity is a special form of the standard axiom of resource monotonic-

ity used in fair division. Finally, the axioms of marginalism in cooperative games state how

the allocation to an agent should change when his/her marginal contribution to the problem

changes. In our setting, equal benefits from additional viewers, equal sharing of additional team

viewers, half sharing of additional team viewers, and no sharing of additional team viewers could

be considered as axioms of marginalism.

4The first two were introduced in Bergantiños and Moreno-Ternero (2020).
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3 Characterizations

We divide this section in two parts. In the first part, we show that the combination of equal

treatment of equals with each of the three axioms modeling the allocation of the extra revenues

generated from a specific team, leads to a characterization of each of the three focal rules

defined above. In the second part, we consider equal benefits from additional viewers, instead of

equal treatment of equals, and show that we also characterize the same three rules with different

combinations of the axioms presented above.

3.1 With equal treatment of equals

We first show that the axioms of equal treatment of equals and equal sharing of additional team

viewers characterize the uniform rule.

Theorem 1 A rule satisfies equal treatment of equals and equal sharing of additional team

viewers if and only if it is the uniform rule.

Proof. It is straightforward to show that the uniform rule satisfies the two axioms in the

statement. Conversely, let R be a rule satisfying equal treatment of equals and equal sharing of

additional team viewers. Let A ∈ P . For each i = 1, ..., n− 1 we define the matrix Ai obtained

from A by considering only the audiences of the teams {1, ..., i}. Namely,

aijk =

 ajk if min {j, k} ≤ i

0 otherwise.

Notice that An−1 = A. Let A0 be the matrix where all entries are 0. As R satisfies equal

treatment of equals, Rj (A0) = 0 for each j ∈ N.

Let i ∈ N\ {n} . As Ai−1 and Ai are under the hypothesis of equal sharing of additional

team viewers, we deduce that, for each j ∈ N ,

Rj

(
Ai
)
−Rj

(
Ai−1

)
= c =

||Ai|| − ||Ai−1||
n

.
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Thus, for each j ∈ N ,

Rj (A) =
n−1∑
i=0

(
Rj

(
Ai
)
−Rj

(
Ai−1

))
=

n−1∑
i=0

||Ai|| − ||Ai−1||
n

=
||An−1||

n
=
||A||
n

= Uj (A) .

Remark 1 The axioms of Theorem 1 are independent.

Let δ ≡ {δi}i∈N be such that
∑

i∈N δi = 0 and δi > 0 for some i ∈ N. For each A and i ∈ N,

we define the rule RU,δ as follows:

RU,δ
i (A) = δi + Ui (A) .

Then, RU,δ satisfies equal sharing of additional team viewers, but violates equal treatment of

equals.

The equal-split rule satisfies equal treatment of equals, but violates equal sharing of additional

team viewers.

The next result characterizes the equal-split rule as a result of replacing equal sharing of

additional team viewers by half sharing of additional team viewers in Theorem 1.

Theorem 2 A rule satisfies equal treatment of equals and half sharing of additional team view-

ers if and only if it is the equal-split rule.

Proof. It is straightforward to show that the equal-split rule satisfies equal treatment of equals.

We now prove that it also satisfies half sharing of additional team viewers. Let A, A′ and i as

in the definition of the axiom. Then,∑
j∈N\{i}

(ESj (A′)− ESj (A)) =
1

2

∑
j∈N\{i}

(αj (A′)− αj (A))

=
1

2

∑
j∈N\{i}

(
a′ij + a′ji − (aij + aji)

)
=

1

2
[αi (A

′)− αi (A)]

= ESi (A
′)− ESi (A) .
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Conversely, let R be a rule satisfying equal treatment of equals and half sharing of additional

team viewers. We proceed by induction on the number of pairs of teams with positive audience.

Formally, let

s = |{(i, j) ∈ N ×N such that aij > 0}| .

If s = 0 then A = 0 and, by equal treatment of equals, Ri (0) = 0 for each i ∈ N.

Assume now that s ≥ 1. Let i ∈ N be such that there exists i′ ∈ N such that aii′ + ai′i > 0.

We consider the problem Aii
′

defined as follows:

aii
′

jk =

 ajk if {j, k} 6= {i, i′}

0 otherwise.

By half sharing of additional team viewers,

Ri (A)−Ri

(
Aii

′
)

=
∑

j∈N\{i}

(
Rj (A)−Rj

(
Aii

′
))

As ∑
j∈N

(
Rj (A)−Rj

(
Aii

′
))

= aii′ + ai′i,

we have that

Ri (A)−Ri

(
Aii

′
)

=
∑

j∈N\{i}

(
Rj (A)−Rj

(
Aii

′
))

=
aii′ + ai′i

2
.

Thus,

Ri (A) = Ri

(
Aii

′
)

+
aii′ + ai′i

2
.

By the induction hypothesis, Ri

(
Aii

′)
= ESi

(
Aii

′)
. Then,

Ri (A) = ESi

(
Aii

′
)

+
aii′ + ai′i

2
= ESi (A) .

We now consider the partition of N between null teams and non-null teams. Formally, let

M = {i ∈ N : aii′ + ai′i > 0 for some i′ ∈ N} , and

M c = {i ∈ N : aii′ = ai′i = 0 for each i′ ∈ N} .

If M c = ∅ then the above proves that R (A) = ES (A). Suppose now that M c 6= ∅. Let

i ∈M .5 Then, all agents in M c have the same audiences (actually, 0) in A and Aii
′
. Then, by

5As s ≥ 1 we have that M 6= ∅.
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equal treatment of equals, Rj (A) = Rk (A) and Rj

(
Aii

′)
= Rk

(
Aii

′)
, for each j, k ∈M c. Thus,

we can define x = Rj (A)−Rj

(
Aii

′)
for each j ∈M c.

Now,

aii′ + ai′i = ||A|| −
∣∣∣∣∣∣Aii′∣∣∣∣∣∣ =

∑
j∈N

Rj (A)−
∑
j∈N

Rj

(
Aii

′
)

=
∑
j∈M

(
Rj (A)−Rj

(
Aii

′
))

+
∑
j∈Mc

(
Rj (A)−Rj

(
Aii

′
))

=
∑
j∈M

(
Rj (A)−Rj

(
Aii

′
))

+ |M c|x. (1)

We have proven above that, for each j ∈M , Rj (A) = ESj (A) . By the induction hypothesis,

Rj

(
Aii

′)
= ESj

(
Aii

′)
, for each j ∈ M. As ESj (A) = ESj

(
Aii

′)
for each j ∈ N\ {i, i′} and

{i, i′} ⊂M we have that∑
j∈M

(
Rj (A)−Rj

(
Aii

′
))

=
∑

j∈{i,i′}

(
Rj (A)−Rj

(
Aii

′
))

= aii′ + ai′i.

Then, 0 = |M c|x, which implies that x = 0. Thus, for each j ∈M c, Rj (A) = Rj

(
Aii

′)
.

As, by induction, Rj

(
Aii

′)
= ESj

(
Aii

′)
for each j ∈M c and ESj

(
Aii

′)
= ESj (A) for each

j ∈M c, we deduce that Rj (A) = ESj (A) for each j ∈M c.

Remark 2 The axioms of Theorem 2 are independent.

Let δ ≡ {δi}i∈N be such that
∑

i∈N δi = 0 and δi > 0 for some i ∈ N. For each A and i ∈ N,

we define the rule RES,δ as follows.

RES,δ
i (A) = δi + ESi (A) .

Then, RES,δ satisfies half sharing of additional team viewers, but violates equal treatment of

equals.

The uniform rule satisfies equal treatment of equals, but violates half sharing of additional

team viewers.

The next corollary shows that we can replace equal treatment of equals by null team in the

statement of Theorem 2.

Corollary 1 A rule satisfies null team and half sharing of additional team viewers if and only

if it is the equal-split rule.
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Proof. It is straightforward to show that the equal-split rule satisfies null team. Conversely,

one just has to notice that, in the proof of Theorem 2, equal treatment of equals is used twice.

First, to obtain that Ri (0) = 0 for each i ∈ N . The same conclusion could be obtained with

null team. Second, to prove that Rj (A) = ESj (A) for each j ∈ M c. With null team, such a

proof is obvious because each j ∈ M c is a null team in A and, thus, Rj (A) = 0 = ESj (A) for

each j ∈M c.

Remark 3 The axioms of Corollary 1 are independent.

RES,δ satisfies half sharing of additional team viewers, but violates null team.

Consider the rule that divides ||A|| equally among the non-null teams. Such a rule satisfies

null team, but violates half sharing of additional team viewers.

Finally, the next theorem gives a characterization of concede-and-divide resorting to no

sharing of additional team viewers.

Theorem 3 A rule satisfies equal treatment of equals and no sharing of additional team viewers

if and only if it is concede-and-divide.

Proof. It is straightforward to show that concede-and-divide satisfies equal treatment of equals.

We now prove that it also satisfies no sharing of additional team viewers. Let A, A′ and i as in

the definition of the axiom. Then,

CDi (A
′)− CDi (A) = αi (A

′)−

∑
j,k∈N\{i}

(
a′jk + a′kj

)
n− 2

− αi (A) +

∑
j,k∈N\{i}

(ajk + akj)

n− 2

= αi (A
′)− αi (A)

=
∑

j∈N\{i}

[
a′ij + a′ji − (aij + aji)

]
= ||A′|| − ||A|| .

Conversely, let R be a rule satisfying the two axioms. We proceed by induction on the

number of pairs of teams with positive audience. Formally, let

s = |{(i, j) ∈ N ×N such that aij > 0}| .

If s = 0 then A = 0 and, by equal treatment of equals, Ri (0) = 0 = CDi (0) for each i ∈ N.
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Assume now that s ≥ 1. Let i ∈ N be such that there exists i′ ∈ N such that aii′ + ai′i > 0.

We consider the problem Aii
′

defined as in the proof of Theorem 2.

By no sharing of additional team viewers,

Ri (A)−Ri

(
Aii

′
)

= ||A|| −
∣∣∣∣∣∣Aii′∣∣∣∣∣∣ = aii′ + ai′i.

Equivalently,

Ri (A) = Ri

(
Aii

′
)

+ aii′ + ai′i.

By the induction hypothesis, Ri

(
Aii

′)
= CDi

(
Aii

′)
. Then,

Ri (A) = CDi

(
Aii

′
)

+ aii′ + ai′i = CDi (A) .

We consider the partition {M,M c} of N as in the proof of Theorem 2.

If M c = ∅ then the above proves that R (A) = CD (A) . Suppose now that M c 6= ∅. Let

x be defined as in the proof of Theorem 2. We can prove that equation (1) also holds in this

case.

We have proven above that, for each j ∈M, Rj (A) = CDj (A) . By the induction hypothesis,

Rj

(
Aii

′)
= CDj

(
Aii

′)
, for each j ∈M.

We now consider two cases:

1. j ∈ {i, i′} . Then,

Rj (A)−Rj

(
Aii

′
)

=
(n− 1)αj (A)− ||A||

n− 2
−

(n− 1)αj
(
Aii

′)− ∣∣∣∣Aii′∣∣∣∣
n− 2

=
(n− 1)

(
αj (A)− αj

(
Aii

′))
n− 2

−
||A|| −

∣∣∣∣Aii′∣∣∣∣
n− 2

=
(n− 1) (aii′ + ai′i)

n− 2
− aii′ + ai′i

n− 2

= aii′ + ai′i.

2. j ∈M\ {i, i′} . Then,

Rj (A)−Rj

(
Aii

′
)

=
(n− 1)

(
αj (A)− αj

(
Aii

′))
n− 2

−
||A|| −

∣∣∣∣Aii′∣∣∣∣
n− 2

= −aii
′ + ai′i
n− 2

.

Then,
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aii′ + ai′i = 2 (aii′ + ai′i)− |M\ {i, i′}|
aii′ + ai′i
n− 2

+ |M c|x.

As |M c| = n− 2− |M\ {i, i′}| we have that

x = −aii
′ + ai′i
n− 2

.

Let j ∈M c. Then,

Rj (A) = Rj

(
Aii

′
)
− aii′ + ai′i

n− 2
.

By induction, Rj

(
Aii

′)
= CDj

(
Aii

′)
. Then,

Rj (A) = CDj

(
Aii

′
)
− aii′ + ai′i

n− 2
= CDj (A) .

Remark 4 The axioms of Theorem 3 are independent.

Let δ = {δi}i∈N be such that
∑

i∈N δi = 0 and δi > 0 for some i ∈ N. For each A and i ∈ N,

we define the rule RCD,δ as follows.

RCD,δ
i (A) = δi + CDi (A) .

Then, RCD,δ satisfies no sharing of additional team viewers, but violates equal treatment of

equals.

The uniform rule satisfies equal treatment of equals, but violates no sharing of additional

team viewers.

Recently, Casajus (2018) shows that equal treatment of equals can be weakened to axiom-

atize Shapley’s value in Young’s axiomatics (e.g., Young, 1985). Casajus (2018) introduces the

so called sign symmetry axiom that says that the sign of the allocation received by two sym-

metric agents should be the same. This axiom could be defined in the same way in our setting.

It is not difficult to see that Theorems 1 and 2 also hold with the (weaker) sign axiom instead

of equal treatment of equals. For Theorem 3, we know that the proof cannot be adapted. It

remains an open question to know whether Theorem 3 holds with the (weaker) sign axiom

instead of equal treatment of equals.
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3.2 With equal benefits from additional viewers

We now provide a second set of characterization results, replacing equal treatment of equals by

equal benefits from additional viewers in the results from the previous section, and resorting to

some other axioms.

The first result in this set characterizes the uniform rule.

Theorem 4 A rule satisfies equal benefits from additional viewers, aggregate monotonicity and

non negativity if and only if it is the uniform rule.

Proof. It is straightforward to show that the uniform rule satisfies equal benefits from additional

viewers, aggregate monotonicity and non negativity. Conversely, let R be a rule satisfying the

three axioms. We proceed by induction on the number of pairs of teams with positive audience.

Formally, let

s = |{(i, j) ∈ N ×N such that aij > 0}| .

If s = 0 then A = 0 and, by non negativity, Ri (0) = 0 = Ui (0) for each i ∈ N.

Let s ≥ 1. Let (i1, i2) such that ai1i2 > 0. And let i3 be such that i3 /∈ {i1, i2} . We consider

the problems A∗, A1, and A2 defined as follows.

a∗kk′ =

 ||A|| − ai1i2 if (k, k′) = (i1, i3)

0 otherwise.

a1kk′ =


ai1i2 if (k, k′) = (i1, i2)

||A|| − ai1i2 if (k, k′) = (i1, i3)

0 otherwise.

a2kk′ =


ai1i2 if (k, k′) = (i2, i3)

||A|| − ai1i2 if (k, k′) = (i1, i3)

0 otherwise.

By equal benefits from additional viewers,

Rk

(
A1
)
−Rk (A∗) =

 x1 k ∈ {i1, i2}

y1 otherwise,
and

Rk

(
A2
)
−Rk (A∗) =

 x2 k ∈ {i2, i3}

y2 otherwise.
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As we can apply the induction hypothesis to A∗,

Ri1
(
A1
)

= Ri1 (A∗) +Ri1
(
A1
)
−Ri1 (A∗) = Ui1 (A∗) + x1, and

Ri1
(
A2
)

= Ri1 (A∗) +Ri1
(
A2
)
−Ri1 (A∗) = Ui1 (A∗) + y2.

By aggregate monotonicity, R (A1) = R (A2) . Thus, x1 = y2. If we proceed with i3 instead

of i1 we can obtain that x2 = y1. If we proceed with i2 instead of i1 we can obtain that x1 = x2.

Then, x1 = x2 = y1 = y2.

Now,

ai1i2 =
∑
k∈N

(
Rk

(
A1
)
−Rk (A∗)

)
= 2x1 + (n− 2) y1 = nx1,

which implies that

x1 =
ai1i2

n
.

Let i ∈ N. By aggregate monotonicity, Ri (A) = Ri (A
1) . Then,

Ri (A) = Ri

(
A1
)

= Ri (A
∗) +Ri

(
A1
)
−Ri (A

∗) = Ui (A
∗) +

ai1i2

n
= Ui (A) .

Remark 5 The axioms of Theorem 4 are independent.

RU,δ satisfies equal benefits from additional viewers and aggregate monotonicity but violates

non negativity.

The equal-split rule satisfies equal benefits from additional viewers and non negativity, but

violates aggregate monotonicity.

Let β ∈ ∆\
{(

1
n
, ..., 1

n

)}
where ∆ is the unit simplex. Then, the weighted version of the uni-

form rule according to β, (Uβ
i (A) = βi ||A||) satisfies aggregate monotonicity and non negativity

but violates equal benefits from additional viewers.

The next result characterizes the equal-split rule.

Theorem 5 A rule satisfies equal benefits from additional viewers and null team if and only if

it is the equal-split rule.

Proof. It is straightforward to show that the equal-split rule satisfies equal benefits from

additional viewers, and null team. Conversely, let R be a rule satisfying the two axioms. We

proceed by induction on the number of pairs of teams with positive audience. Formally, let

s = |{(i, j) ∈ N ×N such that aij > 0}| .
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If s = 0 then A = 0 and, by null team, Ri (0) = 0 = ESi (0) for each i ∈ N.

If s = 1, there exists (i1, j1) such that ai1j1 > 0 and aij = 0 otherwise. By null team,

Ri (A) = 0 for each i ∈ N\ {i1, j1} .

By equal benefits from additional viewers,

Ri1 (A)−Ri1 (0) = Rj1 (A)−Rj1 (0) .

As Ri1 (0) = Rj1 (0) = 0 we have that Ri1 (A) = Rj1 (A) . Thus, Ri1 (A) = Rj1 (A) =
ai1j1

2

and hence R (A) = ES (A) .

Let s ≥ 2. Let (i1, j1) and (i2, j2) such that ai1j1 > 0 and ai2j2 > 0. Two cases are possible.

First, (i1, j1) = (j2, i2) . Let A′ be obtained from A by making ai2j2 = 0. By the induction

hypothesis, R (A′) = ES (A′) . Using similar arguments as in the case s = 1 (with A′ instead

of 0) we can deduce that R (A) = ES (A) .

Second, (i1, j1) 6= (j2, i2) . Then, there exist i, j ∈ N such that i ∈ {i1, j1} \ {i2, j2} ,

j ∈ {i2, j2} \ {i1, j1} and i 6= j. We consider the problems A−1, A−2, and A−12 defined as

follows:

a−1kk′ =

 0 (k, k′) = (i1, j1)

akk′ otherwise

a−2kk′ =

 0 (k, k′) = (i2, j2)

akk′ otherwise

a−12kk′ =

 0 (k, k′) ∈ {(i1, j1) , (i2, j2)}

akk′ otherwise

By equal benefits from additional viewers,

Rk (A)−Rk

(
A−1

)
=

 x1 k ∈ {i1, j1}

y1 otherwise
and

Rk (A)−Rk

(
A−2

)
=

 x2 k ∈ {i2, j2}

y2 otherwise

By equal benefits from additional viewers, and the induction hypothesis

Ri (A)−Ri

(
A−12

)
= Ri (A)−Ri

(
A−1

)
+Ri

(
A−1

)
−Ri

(
A−12

)
= x1

Ri (A)−Ri

(
A−12

)
= Ri (A)−Ri

(
A−2

)
+Ri

(
A−2

)
−Ri

(
A−12

)
= y2 +

ai1j1

2

Rj (A)−Rj

(
A−12

)
= Rj (A)−Rj

(
A−1

)
+Rj

(
A−1

)
−Rj

(
A−12

)
= y1 +

ai2j2

2

Rj (A)−Rj

(
A−12

)
= Rj (A)−Rj

(
A−2

)
+Rj

(
A−2

)
−Rj

(
A−12

)
= x2.
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Thus, we have the following equations:

x1 − y2 =
ai1j1

2
, (2)

x2 − y1 =
ai2j2

2
. (3)

As ∑
k∈N

(
Rk (A)−Rk

(
A−1

))
= ai1j1 , and∑

k∈N

(
Rk (A)−Rk

(
A−2

))
= ai2j2 ,

we have the following equations too:

2x1 + (n− 2) y1 = ai1j1 , (4)

2x2 + (n− 2) y2 = ai2j2 . (5)

Straightforward algebraic computations allow us to show that the system of the four equa-

tions listed above has an unique solution, which is given by

x1 =
ai1j1

2
, x2 =

ai2j2

2
, and y1 = y2 = 0.

By the induction hypothesis, R (A−1) = ES (A−1). Given k ∈ {i1, j1} ,

Rk (A) = Rk

(
A−1

)
+
[
Rk (A)−Rk

(
A−1

)]
= ES

(
A−1

)
+
ai1j1

2

= ESk (A) .

Similarly, we can prove that, given k ∈ N\ {i1, j1} , Rk (A) = ESk (A) .

Remark 6 The axioms of Theorem 5 are independent.

The uniform rule satisfies equal sharing of additional team viewers, but not null team.

Let Rlowest be the rule in which, for each game (i, j) ∈ N ×N the revenue goes to the team

with the lowest number of the two. Namely, for each problem A ∈ P, and each i ∈ N,

Rlowest
i (A) =

∑
j∈N :j>i

(aij + aji).

Rlowest satisfies null team, but violates equal sharing of additional team viewers.
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Our final result is a counterpart characterization for concede-and-divide.

Theorem 6 A rule satisfies equal benefits from additional viewers and essential team if and

only if it is concede-and-divide.

Proof. It is straightforward to show that concede-and-divide satisfies equal benefits from addi-

tional viewers and essential team. Conversely, let R be a rule satisfying the two axioms. We

proceed by induction on the number of pairs of teams with positive audience. Formally, let

s = |{(i, j) ∈ N ×N such that aij > 0}| .

If s = 0 then A = 0 and, by essential team, Ri (0) = 0 = ESi (0) for each i ∈ N.

If s = 1, there exists (i1, j1) such that ai1j1 > 0 and aij = 0 otherwise. By essential team,

Ri (A) = ai1j1 for each i ∈ {i1, j1} .

By equal benefits from additional viewers, for each i, j ∈ N\ {i1, j1},

Ri (A)−Ri (0) = Rj (A)−Rj (0) .

As Ri (0) = Rj (0) = 0 we have that Ri (A) = Rj (A) . As
∑
i∈N

Ri (A) = ai1j1 we deduce that

Ri (A) = −ai1j1

n−2 for each i ∈ N\ {i1, j1}. Thus, R (A) = CD (A) .

Let s ≥ 2. Let (i1, j1) and (i2, j2) such that ai1j1 > 0 and ai2j2 > 0. We consider two cases:

First, (i1, j1) = (j2, i2) . Let A′ be obtained from A by making ai2j2 = 0. By the induction

hypothesis, R (A′) = CD (A′) . By essential team, Ri (A) = ai1j1 + ai2j2 = CDi (A) for each

i ∈ {i1, j1}. Using similar arguments as in the case s = 1 (with A′ instead of 0) we can deduce

that Ri (A) = CDi (A) for each i ∈ N\ {i1, j1}.

Second, (i1, j1) 6= (j2, i2) . Then, there exists i, j ∈ N such that i ∈ {i1, j1} \ {i2, j2} ,

j ∈ {i2, j2} \ {i1, j1} and i 6= j. We consider the problems A−1, A−2, and A−12, x1, y1, x2 and

y2 defined as in the proof of Theorem 5. Similarly to such a proof we can obtain the following

system of equations 

x1 − y2 = ai1j1 −
ai2j2

n−2 ,

x2 − y1 = ai2j2 −
ai1j1

n−2 ,

2x1 + (n− 2) y1 = ai1j1 ,

2x2 + (n− 2) y2 = ai2j2 .

The unique solution to this system is

x1 = ai1j1 , x
2 = ai2j2 , y

1 = −
ai1j1

n− 2
, and y2 = −

ai2j2

n− 2
.
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By the induction hypothesis, R (A−1) = CD (A−1). Given k ∈ {i1, j1} ,

Rk (A) = Rk

(
A−1

)
+
[
Rk (A)−Rk

(
A−1

)]
= CD

(
A−1

)
+ ai1j1

= CDk (A) .

Similarly, we can prove that, given k ∈ N\ {i1, j1} , Rk (A) = CDk (A) .

Remark 7 The axioms of Theorem 6 are independent.

The uniform rule satisfies equal sharing of additional team viewers, but not essential team.

We consider the rule defined as CD (A) when the problem A has essential teams and ES (A)

when there are no essential teams in A. This rule satisfies essential team but not equal sharing

of additional team viewers.

3.3 Summary

The next table summarizes our findings.

Axioms / Rules U ES CD

Equal treatment of equals YESTh1 YESTh2 YESTh3

Equal sharing of additional team viewers YESTh1 NO NO

Half sharing of additional team viewers NO YESTh2,Cor1 NO

No sharing of additional team viewers NO NO YESTh3

Equal benefits from additional viewers YESTh4 YESTh5 YESTh6

Null team NO YESTh5,Cor1 NO

Essential team NO NO YESTh6

Aggregate monotonicity YESTh4 NO NO

Non negativity YESTh4 YES NO

Most of the statements of the table have been proven in the text. The remaining are

straightforward.
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4 Discussion

We have explored in this paper new axioms (mostly referring to the allocation of extra resources)

for the problem of sharing the revenues from broadcasting sports leagues. These axioms provide

normative support for three focal rules in this setting. Two of these rules had been characterized

already in Bergantiños and Moreno-Ternero (2020). The main novelty of the results presented

here, with respect to those, is to dismiss additivity, an axiom with long tradition in axiomatic

work (e.g., Shapley, 1953), but also with strong implications. More precisely, the additivity

requirement in our setting precludes the allocation of revenue aij to depend on any other

information contained in the matrix A. Our results here demonstrate that this feature is also

a by-product of the combination of more fundamental axioms.

We note that the rules we consider in the paper treat equally aij and aji. But we should

stress that the model does not preclude different (asymmetric) treatment of those audiences.

One could, for instance, easily think of asymmetric generalizations of our rules in which aij and

aji are not equally treated. A canonical case would be that in which teams fully collect the

revenue (audience) from their home (or, dually, away) games. This rule would be natural for

the (related) problem of sharing the revenue collected from selling tickets to attend games at

stadiums.

To conclude, we note that one could also be interested into approaching our problems with a

(cooperative) game-theoretical approach. This is a typical course of action in some of the related

problems listed in the introduction. In Bergantiños and Moreno-Ternero (2020), we associate

to our problems a natural optimistic cooperative TU game in which, for each subset of teams,

we define its worth as the total audience of the games played by the teams in that subset. The

Shapley value (e.g., Shapley, 1953) of such a game yields the same solutions as the equal-split

rule for the original problem. It is straightforward to show that the egalitarian value (e.g., van

den Brink, 2007) of that game yields the same solutions as the uniform rule considered (and

characterized) here. Casajus and Huettner (2013), van den Brink et al., (2013) and Casajus

and Yokote (2019) characterize the family of values arising from the convex combination of the

Shapley value and the egalitarian value. In our setting, this would correspond to the following

family of rules:
{
EUλ

}
λ∈[0,1] where, for each λ ∈ [0, 1], and each A ∈ P , EUλ (A) = λES (A) +

(1−λ)U (A) . In the three papers mentioned above, the characterizations are obtained without

using the axiom of additivity (as in this paper). Besides, they use some axioms specifying how
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payoffs vary when some input changes (as in this paper). A natural question that arises is then

whether it is possible to characterize the family of rules
{
EUλ

}
λ∈[0,1] by adapting some of the

axioms from those papers to our setting. The answer is beyond the objective of this paper and

is left for further research.

It is also left for further research to explore the logical implications of other axioms related to

the principle of solidarity, with a strong tradition in the theory of justice (e.g., Moreno-Ternero

and Roemer, 2006). We have used in this paper one of the axioms within this group, aggregate

monotonicity, which is a special form of the standard axiom of resource monotonicity in fair

allocation (e.g., Moreno-Ternero and Roemer, 2012). Other monotonicity notions, reflecting,

for instance, the effect on each team when the audiences of a given team increase, would be

interesting to analyze as they might provide normative foundations for new rules.
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