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1 Introduction

How should we divide when there is not enough? Although this question
can be traced back to ancient sources, the scientific literature dealing with
it was initiated by O’Neill (1982). For an excellent, fully comprehensive,
and recent survey on that fast-expanding literature, the reader is referred to
Thomson (2019).

An obvious way to solve these so-called bankruptcy problems, or claims

problems, is to implement the Aristotelian view that awards should be pro-
portional to claims. But the literature went far beyond the basic principle of
proportionality and many alternative rules have been suggested. The most
salient are the so-called Constrained Equal Awards (CEA) rule (Aumann and
Maschler, 1985; Dagan, 1996), Constrained Equal Losses (CEL) rule (Au-
mann and Maschler, 1985), and Talmud rule (Aumann and Maschler, 1985).
Moreno-Ternero and Villar (2006) introduced a family of rules, called the
TAL-family, which generalizes the latter and encompasses a wide variety of
rules ranging, precisely, from the CEA rule to the CEL rule. More precisely,
the family is defined by means of a parameter θ ∈ [0, 1] that captures a cer-
tain degree of the distributive power of the rule. If the amount to divide is
below θ times the aggregate claim, then the corresponding rule will guaran-
tee nobody gets more than θ times her claim. If, otherwise, the amount to
divide is above θ times the aggregate claim, then the corresponding rule will
guarantee nobody gets less than θ times her claim. Given θ, the correspond-
ing rule is referred to as the T θ rule. T 0 rule is the CEL rule; T

1

2 rule is the
Talmud rule; T 1 rule is the CEA rule.

The TAL-family has mostly been explored from an axiomatic viewpoint
(e.g., Moreno-Ternero and Villar, 2006; Moreno-Ternero, 2011a; Thomson,
2019). It has attracted less attention from a strategic viewpoint. Our goal
in this paper is to deepen our understanding of the TAL-family of rules by
establishing solid strategic justifications of this family of rules. To do so, we
apply the Nash program, and construct a game with respect to the parameter
θ in which there is one and only one equilibrium allocation, and this allocation
corresponds to the one dictated by the corresponding T θ rule.1

1The Nash program deals with studying strategic justifications of cooperative solutions,
and it was initiated by Nash (1953) himself. Serrano (2020) refers to it as “bargaining
design”. It is a successful research field, which has flourished during almost seven decades
by now. Recent instances are Hu et al. (2012, 2018), Tsay and Yeh (2019), and Moreno-
Ternero et al. (2020). For excellent surveys on the related literature, readers are referred
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The Nash program has been used for bankruptcy problems before. For
instance, Dagan et al. (1997) introduced a game that captures a noncooper-
ative dimension of the bilateral consistency property, defined below. Their
game, together with a bilateral principle, yields the corresponding bilaterally
consistent bankruptcy rule as a result of a unique outcome of Nash equilibria.
Tsay and Yeh (2019) introduced games in which bilateral negotiations are re-
solved by non-cooperative bargaining procedures and show that these games
strategically justify the CEA rule, the CEL rule, the proportional rule, and
the Talmud rule. Moreno-Ternero et al. (2020) modified one of the previous
games to provide an alternative strategic justification of the Talmud rule.2

Our starting point is the axiomatic characterization of the T θ rule by
Moreno-Ternero and Villar (2006). The authors remark (and indeed can be
verified) that the axiomatization of the T θ rule can be obtained by consider-
ing the following three properties. First is bilateral consistency, which says
that if the rule chooses an awards vector for a bankruptcy problem, then for
the associated “two-creditor reduced problem” derived by imagining that all
the other creditors leave with their components of the vector, and reassessing
the situation from the viewpoint of the two remaining creditors, it chooses the
corresponding awards of the vector to that subgroup. The other two prop-
erties are related to lower and upper bounds to all creditors. Lower bounds
protect those creditors with relatively small claims from receiving too little;
whereas upper bounds protect those creditors with relatively big claims from
receiving too little.3 By specifying different degrees of the protection offered
to small and large creditors, through the parameter θ, the TAL-family is gen-
erated. Lower bound of degree θ says that if each creditor receives at least
either a fraction θ of her claim or an equal share of the endowment. Upper

bound of degree θ says that each creditor receives at most either a fraction
θ of her claim or an equal share of the shortfall (the difference between the
sum of the claims of the creditors and the endowment).4

to Serrano (2005, 2020).
2Aumann and Maschler (1985) introduced an orderly step-by-step procedure, according

to which the creditors empower each other, leading towards the Talmud rule. Moreno-
Ternero (2011b) generalizes it to lead to the whole TAL-family of rules. However, there is
no strategic interaction among creditors in those designs.

3Bounds have a long tradition of use in fair allocation (e.g., Thomson, 2011). In
bankruptcy problems, they were introduced by Moreno-Ternero and Villar (2004) and
explored, among others, by Dominguez and Thomson (2006).

4When θ = 1

2
, the properties become, respectively, average truncated claim lower
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Krishna and Serrano (1996) suggest that the properties of a rule should
play important roles to establish a strategic justification of the rule.5 We
follow the same tradition here. As a matter of fact, the main design of our
game (which will provide strategic justifications of the TAL-family of rules)
is in line with the above-mentioned axiomatization of the T θ rule.

More precisely, for each θ ∈ [0, 1], we consider the following correspond-
ing three-stage extensive form game, which is based on the properties intro-
duced above.

Stage 1 : Each creditor announces an awards vector and a permutation.
The composition of permutations selects the “coordinator”. If all creditors,
except possibly for the coordinator, announce the same awards vector, it is
the “proposal”, and then the game proceeds to the next stage; otherwise, the
awards vector announced by the coordinator is the outcome.

Stage 2 : The coordinator picks another creditor to negotiate their awards in
the next stage. All the others take their awards, as specified in the proposal,
and leave the game.

Stage 3 : Nature chooses one of the two remaining creditors. We call “ini-
tiator” to the chosen creditor. The initiator adopts one of the two possible
perspectives for bankruptcy problems: gain or loss.6

In the case of gain, the other creditor chooses either the remaining en-
dowment or 2θ times the small claim (namely, 2θ times the minimum of the
claims of the two creditors), and proposes to the initiator two numbers whose
sum is equal to the chosen amount. The initiator then picks one of the two
numbers as her award, and the other creditor receives the residual.

In the case of loss, the other creditor chooses either the remaining shortfall
or 2(1− θ) times the small claim, and proposes to the initiator two numbers
whose sum is equal to the chosen amount. The initiator then picks one of
the two numbers. The other creditor takes the remaining number as her loss
and receives the amount obtained by subtracting her loss from her claim.
Finally, the initiator receives the residual.

bounds, and average truncated claim upper bounds, which, together with bilateral con-
sistency, characterize the Talmud rule (e.g., Moreno-Ternero and Villar, 2004).

5The use of axiomatizations of solutions in the Nash program is discussed at great
length by Serrano (2005).

6Aumann and Maschler (1985) mention that a bankruptcy problem can be handled
from either the gain perspective or the loss perspective. The gain perspective focuses on
dividing the endowment, and the loss perspective on dividing the shortfall.
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Stage 1 adopts a permutation mechanism, which is common and has a
long tradition in the literature.7 We consider this mechanism because it is
endogenous and offers each creditor an equal force to influence the selection
of the coordinator. This levels the playing field among creditors.

Stage 2 exploits bilateral consistency, moving the negotiation to a bilat-
eral setting, which is a basic negotiation situation that takes place at Stage 3.
Now, due to the nature of the game, the bilateral negotiation at Stage 3 plays
the crucial role in our analysis. Stage 3 of our game closely relates to Stage 3
of Tsay and Yeh (2019) and Moreno-Ternero et al. (2020). More precisely,
Stage 3 of the game in Tsay and Yeh (2019) is based on Dagan’s (1996) axiom-
atization of the Talmud rule as it exploits two operational properties known
as “invariance under claims truncation” and “minimal rights first”. Stage 3
of the game in Moreno-Ternero et al. (2020) is based on Moreno-Ternero
and Villar’s (2004) axiomatization of the Talmud rule as it exploits “aver-
age truncated claim lower bounds on awards” and “average truncated claim
upper bounds on awards”. Our Stage 3 is based instead on Moreno-Ternero
and Villar’s (2006) axiomatization of the T θ rule and exploits lower bound of

degree of θ and upper bound of degree of θ, which are natural extensions of
average truncated claim lower bounds on awards and average truncated claim

upper bounds on awards.

A remarkable aspect of our game is that it does not invoke any rule to
solve bilateral negotiations. Instead, we introduce strategic interaction in
bilateral negotiations.8 This is in contrast with previous strategic justifica-
tions of the rules for bankruptcy problems, which rely on exogenously given
bankruptcy rules to solve bilateral negotiations.9 From our viewpoint, that
kind of design leaves room for improvement as the purpose of the Nash pro-

gram is to strategically justify cooperative solutions through non-cooperative
procedures, and, ideally, no cooperative solution should get involved in the
details of non-cooperative procedures.

7See, for instance, Serrano and Vohra (2002), Thomson (2005), Tsay and Yeh (2019),
Moreno-Ternero et al. (2020).

8This feature is also shared by Tsay and Yeh (2019) and Moreno-Ternero et al. (2020).
9See Serrano (1995), Dagan et al. (1997), and Chang and Hu (2017). In the case of

Serrano (1995), the exogenous bankruptcy rule is actually obtained as the equilibrium
outcome of a random dictator bargaining game, which could be considered as an expected

strategic justification of the Talmud rule.
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2 The model

There is an infinite set of “potential” creditors, indexed by the natural num-
bers N. Let N be the class of non-empty and finite subsets of N. Given
N ∈ N and i ∈ N , let ci be creditor i’s claim and c ≡ (ci)i∈N the claims
vector. The endowment E of a bankrupt firm has to be divided among its
creditors in N . A bankruptcy problem for N , or simply a problem for N ,
is a pair (c, E) ∈ R

N
+ ×R+ such that

∑

i∈N ci ≥ E. Let BN be the class of all
problems for N . Let L ≡

∑

i∈N ci − E denote the shortfall of (c, E) ∈ BN .
An awards vector for (c, E) ∈ BN is a vector x ∈ R

N such that 0 ≦ x ≦ c

and
∑

i∈N xi = E. Let X (c, E) be the set of awards vectors of (c, E). A
rule is a function defined on

⋃

N∈N BN that associates with each N ∈ N and
each (c, E) ∈ BN a vector in X (c, E). Our generic notation for rules is ϕ.
For each N ′ ⊂ N , we write cN ′ for (ci)i∈N ′ , ϕN ′ (c, E) for (ϕi (c, E))i∈N ′ , and
so on. Without loss of generality, in the remainder of this paper, we assume
that, for each N ∈ N , and each (c, E) ∈ BN , mini∈N ci > 0. For ease of
exposition, we also assume that N ≡ {1, · · · , n} and c1 ≤ · · · ≤ cn.

We now formally introduce the rules and the central properties, whose
verbal definitions were provided in Section 1.

2.1 Rules

First, the constrained equal awards rule (Aumann and Maschler, 1985), which
makes awards as equal as possible subject to no one receiving more than her
claim.

Constrained Equal Awards rule, CEA: For each N ∈ N , each (c, E) ∈
BN , and each i ∈ N ,

CEAi(c, E) ≡ min {ci, λ} ,

where λ ∈ R+ is chosen such that
∑

i∈N CEAi (c, E) = E.

The constrained equal losses rule (Aumann and Maschler, 1985) makes
losses (a creditor’s loss is the difference between her claim and her award) as
equal as possible, subject to no one receiving a negative amount.

Constrained Equal Losses rule, CEL: For each N ∈ N , each (c, E) ∈
BN , and each i ∈ N ,

CELi(c, E) ≡ max {ci − λ, 0} ,

6
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where λ ∈ R+ is chosen such that
∑

i∈N CELi(c, E) = E.

The Talmud rule (Aumann and Maschler, 1985), defined to rationalize
some numerical examples in the Talmud, is a “hybrid” of the CEA and CEL
rules, depending on whether the endowment falls below or above one half the
aggregate claim.

Talmud rule, T : For each N ∈ N , each (c, E) ∈ BN , and each i ∈ N ,

Ti(c, E) ≡

{

min
{

1
2
ci, λ

}

if
∑

i∈N
1
2
ci ≥ E;

1
2
ci +max

{

1
2
ci − λ, 0

}

otherwise,

where λ ∈ R+ is chosen such that
∑

i∈N Ti (c, E) = E.

The TAL-family of rules was proposed by Moreno-Ternero and Villar
(2006) to generalize the Talmud rule and include both the constrained equal
awards rule and the constrained equal losses rule as two special cases. Each
rule in this family is determined by a parameter θ ∈ [0, 1], which can be
described as a measure of the distributive power of the rule.

TAL-family of rules, {T θ|θ ∈ [0, 1]}: For each θ ∈ [0, 1], each N ∈ N ,
each (c, E) ∈ BN , and each i ∈ N ,

T θ
i (c, E) ≡

{

min {θci, λ} if
∑

i∈N θci ≥ E;
θci +max {(1− θ)ci − λ, 0} otherwise,

where λ ∈ R+ is chosen such that
∑

i∈N T θ
i (c, E) = E.

It will be interesting for the ensuing analysis to provide the two-agent
expression of the family. Let N ≡ {1, 2} and c1 ≤ c2. Then, we have the
following:

T θ (c, E) =











(

E
2
, E
2

)

if E ≤ 2θc1;
(θc1, E − θc1) if 2θc1 ≤ E ≤ c2 − c1 + 2θc1;
(

c1 −
(c1+c2−E)

2
, c2 −

(c1+c2−E)
2

)

if c2 − c1 + 2θc1 ≤ E.

2.2 Axioms

We now introduce the axioms for rules we shall consider in this paper. First,
bilateral consistency, which says that if the rule chooses an awards vector for
a problem, then for the associated “two-creditor reduced problem” derived
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by imagining that all the other creditors leave with their components of the
vector, and reassessing the situation from the viewpoint of the two remaining
creditors, it chooses the corresponding awards of the vector to that subgroup.

Bilateral consistency: For each N ∈ N , each (c, E) ∈ BN , and each
N ′ ⊂ N with |N ′| = 2, if x = ϕ (c, E), then xN ′ = ϕ (cN ′ ,

∑

N ′ xi).

Then, two properties related to lower and upper bounds. Lower bound of

degree θ says that if each creditor receives at least either a fraction θ of her
claim or an equal share of the endowment. Upper bound of degree θ says that
each creditor receives at most either a fraction θ of her claim or an equal
share of the shortfall (the difference between the sum of the claims of the
creditors and the endowment).

Lower bound of degree of θ: For each N ∈ N , each (c, E) ∈ BN , each
θ ∈ [0, 1], and each i ∈ N , ϕi (c, E) ≥ min{θci,

E
|N |

}.

Upper bound of degree of θ: For each N ∈ N , each (c, E) ∈ BN , each
θ ∈ [0, 1], and each i ∈ N , ϕi (c, E) ≤ min{θci, ci −

L
|N |

}.

3 The results

We first consider a strategic implementation for the TAL-family of rules in
two-creditor problems. Let N ∈ N with |N | = 2, (c, E) ∈ BN and θ ∈ [0, 1].
Without loss of generality, assume that N = {1, 2} and c1 ≤ c2. Consider
the following two-creditor negotiation procedure Γθ

2 (c, E) (see Figure 1):

Stage 1. Nature randomly picks one of the two creditors, say i, as “initiator”,
who chooses a perspective u ∈ {gain, loss} to divide E.

Stage 2. Given the perspective u chosen in Stage 1:
If u = gain, then the other creditor r, as “responder” chooses q ∈

{2θmin{c1, c2}, E} and proposes a division Dq = {a, b} such that a, b ∈ R+

and a+ b = q. Then, i picks xi ∈ Dq as her award, and r receives E − xi.
If u = loss, then r chooses q ∈ {2(1 − θ)min{c1, c2}, c1 + c2 − E} and

proposes a division Dq = {a, b} such that a, b ∈ R+ and a + b = q. Then, i
picks xi ∈ Dq. Finally, r gets the remainder (q− xi) as her loss (namely, her
award is cr − (q − xi)), and i receives the remainder, i.e., E − cr + (q − xi).

8
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(𝑥𝑖 , 𝑥𝑟 + (𝐸 − 𝑞)) 

Creditor i  

Nature 

Select creditor 𝑖 ∈ 𝑁 

Propose (𝑞, 𝐷𝑞) 
with 𝑞 ∈ ሼ2𝜃 × minሼ𝑐1, 𝑐2}, 𝐸} 

and 𝐷𝑞 ≡ ሼ𝑎, 𝑏} such that 𝑎, 𝑏 ∈ ℝ+ and 𝑎 + 𝑏 = 𝑞 

 

Creditor i  

Pick 𝑥𝑖 ∈ 𝐷𝑞, and then  𝑥𝑟 ∈ 𝐷𝑞\ሼ𝑥𝑖} 

Creditor r  

 𝑢 = 𝑔𝑎𝑖𝑛 𝑢 = 𝑙𝑜𝑠𝑠 

Creditor 𝒓 ∈ 𝑵\ሼ𝒊}  

Propose (𝑞, 𝐷𝑞) 
with 𝑞 ∈ ሼ2(1 − 𝜃) × minሼ𝑐1, 𝑐2}, 𝑐1 + 𝑐2 − 𝐸} 

and 𝐷𝑞 ≡ ሼ𝑎, 𝑏} such that  𝑎, 𝑏 ∈ ℝ+ and 𝑎 + 𝑏 = 𝑞 

 

Creditor i  

Pick 𝑥𝑖 ∈ 𝐷𝑞, and then  𝑥𝑟 ∈ 𝐷𝑞\ሼ𝑥𝑖} 
 

(𝑐𝑖 − 𝑥𝑖 − (𝑐1 + 𝑐2 − 𝐸 − 𝑞), 𝑐𝑟 − 𝑥𝑟)+ (𝐸 − 𝑞))
Figure 1: The game tree of Γθ

2(N, c) for the TAL-family
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We show that for each θ ∈ [0, 1], the two-creditor game Γθ
2 strategically

implements the rule T θ.

Proposition 1. For each N ∈ N with |N | = 2, each (c, E) ∈ BN and each
θ ∈ [0, 1], the unique Nash Equilibrium (NE) outcome of the game Γθ

2 (c, E) is
T θ (c, E). Moreover, it can be supported by a pure strategy Subgame-Perfect
Nash Equilibrium (SPE).

Proof. Let N ∈ N with |N | = 2, (c, E) ∈ BN and θ ∈ [0, 1]. We first prove
the existence part. Let Gθ ≡ min{2θmin{c1, c2}, E} and Lθ ≡ min{2(1 −
θ)min{c1, c2}, c1 + c2 − E}. Consider the following strategy profile for the
game Γθ

2 (c, E), σ̄θ(c, E) = (σ̄θ
j (c, E))j∈N .

In Stage 1, if creditor 1 is the initiator, then she chooses uθ
1 = gain if

E ≤ c2 + (2θ − 1)c1; uθ
1 = loss, otherwise. Similarly, if creditor 2 is the

initiator, then she chooses uθ
2 = gain if E ≤ 2θc1; u

θ
2 = loss, otherwise.

In Stage 2, let i, r ∈ N with i 6= r. If creditor i is the initiator, then given
creditor r’s proposal (q,Dq), she picks maxDq if u = gain is chosen in Stage
1; minDq, otherwise. Now, if creditor r is the responder, then she proposes

(qθ, Dq,θ) =







(

Gθ,
{

Gθ

2
, G

θ

2

})

if u = gain;
(

Lθ,
{

Lθ

2
, L

θ

2

})

otherwise.

We claim that σ̄θ(c, E) is a SPE of Γθ
2(c, E) with outcome T θ(c, E). First,

it is easy to see that by following σ̄θ(c, E), the outcome of Γθ
2(c, E) is T θ(c, E).

Next, we show σ̄θ(c, E) is a SPE of Γθ
2(c, E). In Stage 2, suppose that

creditor i ∈ N is the initiator. Then, given σ̄θ
i (c, E) by the game rule, it

is clear that picking maxDq when u = gain and minDq when u = loss,
respectively, is a best response of creditor i to (q,Dq).

Next, suppose that creditor r ∈ N is the responder. In the case of
u = gain, creditor r follows σ̄θ

r(c, E) to choose (qθ, Dq,θ) = (Gθ, {Gθ

2
, G

θ

2
}),

which grants her Gθ

2
+(E−Gθ) = E− Gθ

2
. If creditor r deviates to (q,Dq) 6=

(qθ, Dq,θ), then as minDq + maxDq = q, she would end up with minDq +

(E − q) ≤ q

2
+ (E − q) = E − q

2
≤ E − Gθ

2
, which implies that she is not

better off. In the other case of u = loss, creditor r follows σ̄θ
r(c, E) to choose

(qθ, Dq,θ) = (Lθ, {Lθ

2
, L

θ

2
}), which grants her cr −

Lθ

2
. If creditor r deviates

10
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to (q,Dq) 6= (qθ, Dq,θ), then as minDq + maxDq = q, she ends up with

cr −maxDq ≤ cr −
Lθ

2
, which implies that she is not better off.

Finally, we show that the initiator can not benefit by deviating from
σ̄θ(c, E) in Stage 1. The following two cases complete the proof.

Case 1: credtior 1 is the initiator. We consider two subcases.

Subcase 1.1: E ≤ c2 + (2θ − 1)c1. By following σ̄θ
1(c, E) to pick uθ

1 =

gain, subgame perfection implies that creditor 1 obtains Gθ

2
. Suppose that

creditor 1 deviates to pick u = loss, then subgame perfection implies that
she obtains:

c1 −
Lθ

2
− (c1 + c2 − E − Lθ) = c1 − (1− θ)c1 − {(c1 + c2 − E)− 2(1− θ)c1}

= θc1 + {E − c2 − (2θ − 1)c1}

≤ θc1

≤
Gθ

2
,

where the first equality and the inequalities follow from the hypothesis E ≤
c2 + (2θ − 1)c1. This implies that she is not better off deviating.

Subcase 1.2: E > c2 + (2θ − 1)c1. By following σ̄θ
1(c, E), creditor 1

picks uθ
1 = loss. Subgame perfection implies that creditor 1 obtains c1 −

Lθ

2
−

{

(c1 + c2 − E)− Lθ
}

= c1 −
c1+c2−E

2
. Suppose that creditor 1 deviates

to pick u = gain, then subgame perfection implies that she obtains

Gθ

2
= θc1 ≤ c1 −

c1 + c2 − E

2
,

where the equality and the inequality follow from the hypothesis E > c2 +
(2θ − 1)c1. This implies that she is not better off deviating.

Case 2: credtior 2 is the initiator. We consider two subcases.

Subcase 2.1: E ≤ 2θc1. By following σ̄θ
2(c, E), creditor 2 picks uθ

2 = gain.

Subgame perfection implies that creditor 2 obtains Gθ

2
= E

2
. Suppose that

creditor 2 deviates to pick u = loss, then subgame perfection implies that
she obtains

c2 −
Lθ

2
− (c1 + c2 − E − Lθ) = c1 − (1− θ)c1 − {(c1 + c2 − E)− 2(1− θ)c1}

= θc1 + {E − c2 − (2θ − 1)c1}

≤
E

2
,
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where the first equality and the inequality follow from the hypothesis E ≤
2θc1. This implies that she is not better off deviating.

Subcase 2.2: E > 2θc1. By following σ̄θ
2(c, E) to pick uθ

2 = loss, subgame

perfection implies that creditor 2 obtains c2 −
Lθ

2
−

{

(c1 + c2 − E)− Lθ
}

.
Suppose that creditor 2 deviates to pick u = gain, then subgame perfection
implies that she obtains Gθ

2
= θc1. As

c2 −
Lθ

2
−

{

(c1 + c2 − E)− Lθ
}

=

{

c2 − (1− θ)c1 − {(c1 + c2 − E)− 2(1− θ)c1} if c1 + c2 − E ≥ 2(1− θ)c1;
c2 −

c1+c2−E
2

if c1 + c2 − E < 2(1− θ)c1,

=

{

E − θc1 if c1 + c2 − E ≥ 2(1− θ)c1;
c2 −

c1+c2−E
2

if c1 + c2 − E < 2(1− θ)c1,

≥ θc1,

where the inequality follows from the hypothesis E > 2θc1, she is not better
off deviating.

Thus, σ̄θ(c, E) is a SPE of the game Γθ
2(c, E), and generates T θ(c, E) as

outcome.

We next show the uniqueness part. First, as a SPE is a NE, the above
implies that σ̄θ(c, E) is a NE of the game Γθ

2(c, E) with outcome T θ(c, E).
Next, for each N ∈ N with |N | = 2, each (c, E) ∈ BN , and each θ ∈ [0, 1],
it is clear that the sum of each possible outcome of Γθ

2 (c, E) is always the
endowment E. Thus, the proof can be completed in the same way as the
proof of the uniqueness part at Proposition 1 in Tsay and Yeh (2019). Q .E .D .

We next extend Proposition 1 to the case of more than two creditors.
To do so, we consider a three-stage extensive form game Γθ of which Γθ

2 is
the final stage. We then resort to the analysis in Tsay and Yeh (2019) to
show that the corresponding game strategically justifies the T θ rule in the
general case of n agents. Key to this result is the fact that all rules within
the TAL-family satisfy consistency (and not just the bilateral version of the
axiom stated above) as well as “endowment monotonicity”.10

10Endowment monotonicity says that if E increases, no creditor receives a smaller
amount.
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Stage 1: 
Each creditor 𝑖 ∈ 𝑁 announces (𝑦𝑖 , 𝜋𝑖). Let 𝜋 ≡ 𝜋1 ∘ ⋯ ∘ 𝜋𝑛 and 𝜋(1) = 𝑘. 

l 

∃𝑖, ℎ ∈ 𝑁\{𝑘},  𝑦𝑖 ≠ 𝑦ℎ 

i1 in-1 

𝑦𝑘 

Stage 3: 
Each creditor 𝑖 ∈ 𝑁\{𝑘, 𝑙}  

receives 𝑦𝑖, and creditors k and l 
play the game Γ2𝜃((𝑐𝑘 , 𝑐𝑙), 𝑦𝑘 + 𝑦𝑙). 

∀𝑖, ℎ ∈ 𝑁\{𝑘},  𝑦𝑖 = 𝑦ℎ 

Stage 2: 
Let 𝑦 ≡ 𝑦𝑖 with 𝑖 ∈ 𝑁\{𝑘}. 
Creditor k chooses one creditor 
from 𝑁\{𝑘}, say creditor l. 

((𝑦𝑖)𝑖∈𝑁\{𝑘,𝑙}, Γ2𝜃((𝑐𝑘 , 𝑐𝑙), 𝑦𝑘 + 𝑦𝑙)) 

Figure 2: The game tree of Γθ(N, c) for the TAL-family
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Formally, the game is described as follows (see Figure 2).11 Let N ∈ N ,
(c, E) ∈ BN and θ ∈ [0, 1].

Stage 1: Each creditor i ∈ N simultaneously announces an awards vector
yi and a permutation πi : N → N . For simplicity, let π ≡ π1 ◦ · · · ◦ πn and
π (1) = k ∈ N be the coordinator. If the creditors except the coordinator
do not have a consensus, that is, there exist h, j ∈ N \{k} such that yh 6= yj,
then the game ends up with the allocation yk, announced by the coordinator;
otherwise, the game moves forward to the next stage.

Stage 2: Let y = yj for some j 6= k. The coordinator takes a creditor, say
creditor l 6= k (i.e., takes action l), to negotiate their awards in the next
stage, and each creditor i ∈ N \ {k, l} receives yi.

Stage 3: Creditors k and l play the game Γθ
2(c{k,l}, yk + yl).

We first show the outcome existence result.

Proposition 2. For each N ∈ N , each (c, E) ∈ BN and each θ ∈ [0, 1], the
game Γθ(c, E) has a SPE with outcome T θ(c, E).

Proof. Given N ∈ N , (c, E) ∈ BN and θ ∈ [0, 1], we show that the following
strategy profile σθ(c, E) = (σθ

i (c, E))i∈N constitutes a SPE of Γθ(c, E) with
outcome T θ(c, E).

Stage 1: Each creditor i ∈ N proposes (πiθ, yiθ) = (πId, T θ(c, E)), where
πId : N → N is the identity permutation, that is, for each i ∈ N , πId(i) = i.

Stage 2: Suppose that π(1) = k and there is y such that yi = y for each
i 6= k. Creditor k chooses one creditor, say creditor l, from N \ {k} (i.e.,
takes action l), where l ∈ argmaxi∈N\{k} T

θ
k

(

c{i,k}, yi + yk
)

.

Stage 3: Suppose that π(1) = k. Then, there exists y such that yi = y for
each i 6= k, and the coordinator chooses creditor l 6= k in Stage 2. Creditors k
and l adopt σ̄θ(c{k,l}, yk + yl) = (σ̄θ

i (c{k,l}, yk + yl))i∈{k,l} defined in the proof
of Proposition 1.

11The main difference between our game and Tsay and Yeh’s (2019) is the following.
When the proposal in Stage 1 is the awards vector announced by the coordinator, it would
be reasonable for her just to accept it as the outcome of the game. This is exactly Stage 1
of our game. However, in their game, to make the proposal the outcome, the coordinator
has to take an extra action by accepting the proposal in Stage 2. It can be shown that
our Theorem 1 also holds if we replace our design of Stages 1 and 2 with theirs.
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It is easy to see that following σθ(c, E), the game ends with outcome
T θ(c, E). We now show that σθ(c, E) is a SPE of the game Γθ(c, E). Suppose
that π(1) = k, and there exists y such that for each i 6= k, yi = y. Moreover,
suppose that the coordinator chooses creditor l 6= k in Stage 2. By Proposi-
tion 1, creditors k and l are not better off deviating from σθ

k(c, E) and σθ
l (c, E)

in Stage 3, respectively. Moreover, the outcome is
(

T θ
(

c{k,l}, yk + yl
)

, yN\{k,l}

)

in this case. Thus, by subgame perfection, creditor k takes action l, where
l ∈ argmaxi∈N\{k} T

θ
k

(

c{i,k}, yi + yk
)

, that is, σθ
k(c, E) is a best response for

her in Stage 2. Finally, we complete the proof by showing that no cred-
itor i ∈ N is better off deviating from announcing (πId, T θ(c, E)). Note
that following σθ(c, E), creditor 1 is the coordinator and all creditors have a
consensus on T θ(c, E) in Stage 1.

Suppose that creditor i ∈ N deviates from (πId, T θ(c, E)) to (πi, yi). As
after deviation the creditors N\{i} have a consensus on T θ(c, E), by subgame
perfection and bilateral consistency of the T θ rule, the game ends up with
the outcome T θ(c, E). This implies that creditor i is not better off deviating.
Thus, σθ(c, E) is a SPE of the game Γθ(c, E). Q.E.D.

We now show the outcome uniqueness result.

Proposition 3. For each N ∈ N , each (c, E) ∈ BN and each θ ∈ [0, 1],
T θ(c, E) is the unique NE outcome of the game Γθ(c, E).

Proof. Given N ∈ N , (c, E) ∈ BN and θ ∈ [0, 1], suppose that σ∗(c, E) =
(σ∗

i (c, E))i∈N is a NE of Γθ(c, E) with outcome x∗ = (x∗
i )i∈N . For each i ∈ N ,

let yi∗ be her announced awards vector in Stage 1 by following σ∗
i (c, E).

We first claim that by following σ∗(c, E), each creditor i ∈ N receives an
award no less than her award prescribed by T θ(c, E) in the game, namely
x∗
i ≥ T θ

i (c, E). We consider the following two cases.

Case 1: |N | = 2. By the game rule and Proposition 1, we conclude that
for each i ∈ N , x∗

i ≥ T θ
i (c, E).

Case 2: |N | > 2. Suppose, by contradiction, that there is i ∈ N such that
x∗
i < T θ

i (c, E). We complete this case by the following two subcases.

Subcase 2.1: There exists a pair j, h ∈ N \ {i} such that yj∗ 6= yh∗.

Suppose that creditor i deviates from σ∗
i (c, E) to a strategy such that, after

deviation, she is chosen as the coordinator and announces an awards vector
yi such that yii = min{ci, E}. Then, by the game rule, creditor i receives
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yii = min{ci, E} ≥ T θ
i (c, E) > x∗

i in the game, which violates that σ∗(c, E) is
a NE.

Subcase 2.2: For each pair j, h ∈ N \ {i}, yj∗ = yh∗.

Let y∗ ≡ yj∗ for some j 6= i. We first claim that for each j ∈ N ,

x∗
j ≥ max

{

y∗j , arg max
h∈N\{j}

T θ
j

(

c{j,h}, y
∗
j + y∗h

)

}

.

Suppose, by contradiction, that there is j ∈ N such that either (i) x∗
j < y∗j ,

or (ii) x∗
j < argmaxh∈N\{j} T

θ
j (c{j,h}, y

∗
j + y∗h). First, suppose that (i) holds.

If for each h 6= j, yh∗ = y∗, then consider that creditor j deviates from
σ∗
j (c, E) to a strategy such that after deviation, she is not the coordinator

and announces an awards vector yj 6= y∗. By the game rule, after deviation,
creditor j receives y∗j > x∗

j at the end of the game, a contradiction. Other-
wise, consider that creditor j deviates from σ∗

j (c, E) to a strategy such that
after deviation, she is chosen as the coordinator and announces the awards
vector y∗. Then, by the game rule, after deviation, creditor j receives y∗j > x∗

j

in the end of the game, a contradiction. Next, suppose that (ii) holds. If for
each h 6= j, yh∗ = y∗, then consider that creditor j deviates from σ∗

j (c, E)
to a strategy such that after deviation, she is chosen as the coordinator, and
chooses l ∈ argmaxh∈N\{j} T

θ
j

(

c{j,h}, y
∗
j + y∗h

)

in Stage 2. Moreover, she fol-
lows σ̄θ

j (c{j,l}, y
∗
j +y∗l ) defined in the proof of Proposition 1 in Stage 3. By the

game rule and the proof of Proposition 1, after deviation creditor j receives
T θ
j

(

c{j,l}, y
∗
j + y∗l

)

> x∗
j in the end of the game, a contradiction. Otherwise,

consider that creditor j deviates from σ∗
j (c, E) to a strategy such that after

deviation, she is chosen as the coordinator and announces an awards vector
yj in which y

j
j = min{cj, E}. Then, by the game rule, after deviation, cred-

itor j receives y
j
j = min{cj, E} ≥ argmaxh∈N\{j} T

θ
j (c{j,h}, y

∗
j + y∗h) > x∗

j at
the end of the game, a contradiction. Thus, we conclude that for each j ∈ N ,

x∗
j ≥ max

{

y∗j , arg max
h∈N\{j}

T θ
j

(

c{j,h}, y
∗
j + y∗h

)

}

.

We next claim that for each pair j, h ∈ N with j 6= h,

x∗
j = y∗j = T θ

j (c{j,h}, y
∗
j + y∗h).

First, for each j ∈ N , as the game rule implies that both x∗ and y∗ are
awards vectors, x∗

j = y∗j . Next, for each pair j, h ∈ N with j 6= h, as
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x∗
j ≥ T θ

j (c{j,h}, y
∗
j + y∗h) and y∗j = x∗

j , y
∗
j ≥ T θ

j (c{j,h}, y
∗
j + y∗h). Hence, x∗

j =
y∗j = T θ

j (c{j,h}, y
∗
j + y∗h). Therefore, by bilateral consistency and “endowment

monotonicity” of the T θ rule, it follows from Proposition 5 of Chun (1999)
that x∗ = T θ(c, E).12 This contradicts with the hypothesis x∗

i < T θ
i (c, E).

Thus, for each i ∈ N , x∗
i ≥ T θ

i (c, E). As both x∗ and T θ(c, E) are awards
vectors, x∗ = T θ(c, E). Q.E.D.

4 Concluding remarks

We have presented in this paper strategic justifications of the TAL-family of
rules for bankruptcy problems. Such a family arises as a generalization of the
Talmud rule, which is a hybrid between the CEA and CEL rules. It considers
one or the other rule, depending on whether the endowment falls short or
exceeds one half of the aggregate claim, using half-claims instead of claims.
A sort of reverse protocol to the one provided by the Talmud rule, switching
the roles between the equal awards and equal losses principles, has been
proposed in the literature, giving rise to the so-called “Reverse Talmud rule”
(e.g., Chun et al., 2001). Formally, for each N ∈ N and each (c, E) ∈ BN ,
the Reverse Talmud rule, RT , selects the vector

RT (c, E) =

{

CEL(1
2
c, E) if E ≤

∑

i∈N
1
2
ci;

1
2
c+ CEA(1

2
c, E −

∑

i∈N
1
2
ci) if E ≥

∑

i∈N
1
2
ci.

Thus, the same natural idea mentioned above to generalize the Talmud
rule has been adopted to generalize the reverse Talmud rule, giving rise to a
new family of rules: the reverse TAL-family (e.g., van den Brink and Moreno-
Ternero, 2017). Such a family also consists of a one-parameter set of piece-
wise linear rules, ranging from the CEA rule to the CEL rule, but this time
having the reverse Talmud rule in the middle. Formally, for each N ∈ N and
each (c, E) ∈ BN , the Reverse TAL-family of rules, {RT θ|θ ∈ [0, 1]}
selects the vector such that for each i ∈ N ,

RT θ
i (c, E) =

{

max {θci − λ, 0} if E ≤
∑

i∈N θci;
θci +min {(1− θ)ci, µ} if E ≥

∑

i∈N θci,

12Endowment monotonicity says that if E increases, no creditor receives a smaller
amount. The fact that each T

θ rule satisfies this axiom is shown at Proposition 4 in
Moreno-Ternero and Villar (2006).
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where λ and µ are chosen so that
∑

i∈N RT θ
i (c, E) = E.

Alternatively, the reverse TAL-family can be expressed as follows. For
each N ∈ N and each (c, E) ∈ BN ,

RT θ (c, E) =

{

CEL(θc, E) if E ≤
∑

i∈N θci;
θc+ CEA((1− θ)c, E −

∑

i∈N θci) if E ≥
∑

i∈N θci,

or, equivalently,

RT θ (c, E) = CEL(θc,min{E,
∑

i∈N

θci})+CEA((1−θ)c,max{E−
∑

i∈N

θci, 0}).

It would be worthwhile to offer strategic justifications of this family of
rules. A characterization of the reverse Talmud rule is established by van den
Brink et al. (2013). We conjecture that such a result would be a natural first
step towards constructing non-cooperative games that strategically justify
the reverse TAL-family of rules.

Finally, we should mention that the TAL-family is included within a more
general family, known as the ICI-family of rules introduced by Thomson
(2008). All ICI rules require that the evolution of each claimant’s award, as
a function of the endowment, is increasing first, constant next and finally
increasing again. It turns out that when one imposes bilateral consistency,
which is central to our analysis, as well as the mild notion of scale invariance,
the ICI-family of rules shrinks precisely to the TAL-family of rules. In this
sense, one might interpret our results as a partial strategic justification of
the ICI-family of rules too.
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