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Abstract
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problems: continuity, no transfer paradox and stability. The combination of the three

axioms characterizes in the two-agent case a large family of rules, which we call threshold

rules. For each level of total income in society, a threshold is considered for each agent. It

is impossible for both agents to be below their respective thresholds. If an agent’s income

is below the threshold, the difference is redistributed from the other agent; otherwise, the
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1 Introduction

Economics is essentially about scarcity. The problem of dividing scarce resources is faced by

many on a daily basis, and the media is plagued with references to it, especially now in the

aftermath of the COVID-19 pandemic. Albeit to a lower extent, attention to this problem is also

being given within the scientific literature (e.g., Chambers and Moreno-Ternero, 2019). Income

taxation and redistribution are basic tools to alleviate the negative consequences of scarcity. In

this paper, we focus on the specific problem of income redistribution, which we approach with

the axiomatic method. We consider a stylized model in which an income profile reflects the

taxable and observable income of two agents. The issue is to construct rules that transform the

given income profile into another income profile, with the requirement that nothing is wasted

in the redistribution process, and that no agent ends up with a negative post-tax income. It is

thus reminiscent of the seminal model introduced by O’Neill (1982) to analyze claims problems,

surveyed by Thomson (2019). Young (1988) reinterpreted the same model to analyze taxation

problems.1 Here, we consider taxation problems with an important proviso: a zero tax revenue

to be raised, and thus, negative taxes are possible. As such, our problems could be considered

a case of the generalized claims problems as studied by Ju et al., (2007).2

We consider three basic and intuitive axioms for this model: continuity (small changes in

the data of a problem should not lead to large changes in the solution), no transfer paradox

(transferring some income before redistribution takes place does not increase income after

redistribution) and stability (no further redistribution takes place once a solution is obtained).

We show that the combination of the three axioms characterizes a large family, which we call

threshold rules, that guarantee partial redistribution for unequal incomes. Our rules therefore

convey a long-standing concern in the political philosophy literature that can be traced back

to Rawls (1971) or, more recently, to Van Parijs and Vanderborght (2017). Lower bounds also

have a long tradition within the literature on fair allocation (e.g., Thomson, 2011) and we have

also explored them recently for taxation problems (e.g, Chambers and Moreno-Ternero, 2017).

Each rule within the family we characterize is described by two functions (over aggregate

income) which determine the region where partial redistribution is imposed. The family is wide

enough to encompass (while considering specific functions) rules ranging from laissez-faire to

its polar fully egalitarian rule.

1See also Ju and Moreno-Ternero (2011) or Moreno-Ternero (2011), among others.
2See also Cowell (1985).

2

 
 

 
 

 
http://www.upo.es/econ 

 



2 The model

Two agents have non-negative (taxable) incomes y1 and y2. We refer to y = (y1, y2) as the

income profile and Y = y1 + y2 as its overall income. Given an income profile y ∈ R2
+, a tax

profile is a vector t = (t1, t2) ∈ R2 satisfying the following two conditions: (i) for each i = 1, 2,

ti ≤ yi and (ii) t1 + t2 = 0. A taxation scheme, T : R2
+ → R2, associates with each income

profile y ∈ R2
+ a tax profile T (y). For each taxation scheme, there is a corresponding income

redistribution rule (or, simply, rule), R : R2
+ → R2

+, which associates with each income profile

y ∈ R2
+ a post-tax income profile R(y) = y−T (y). Note that, in particular, R1(y)+R2(y) = Y.

An instance of rule is the so-called egalitarian rule RE, which ensures both agents end up

with the same (post-tax) income: for each y ∈ R2
+,

RE(y) ≡
(
Y

2
,
Y

2

)
.

The polar case is the identity rule RI , or laissez-faire rule, which taxes no agent, i.e.,

RI(y) = y for each y ∈ R2
+.

Between these two polar cases, there is room for implementing the idea of partial redistri-

bution. For instance, consider the family of rules imposing a flat tax rate and personalized

lump-sum transfers (e.g., Ju et al., 2007). Formally,

RF
i (y) = (1− F (Y )) yi +Gi(Y ),

where G1(Y ) + G2(Y ) = F (Y )Y . In these rules, F determines the flat tax rate F (Y ) as a

function of the overall income, Y , while G determines the reallocation scheme (G1(Y ), G2(Y ))

as a function of agents’ identities subject to the budget balance.

We now present another family of rules that guarantee partial redistribution based on an

endogenous portion of the aggregate income. We call them threshold rules. They behave as

follows. For each level of total income in society, a threshold is considered for each agent. It

is impossible for both agents to be below their respective thresholds. If an agent’s income is

below the threshold, the difference is redistributed from the other agent; otherwise, the rule

imposes laissez-faire.

Formally, let α : R+ → R2
+ and β : R+ → R2

+ be two continuous functions such that, for

each x ∈ R+,

α1(x) + α2(x) = x = β1(x) + β2(x),

and

α2(x) ≤ β2(x).
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We shall refer to the locus of the vectors chosen by the functions, i.e., (α1(x), α2(x)) and

(β1(x), β2(x)), as x varies from 0 to +∞, as the paths associated to the α and β functions. We

shall impose to these paths a minimal monotonicity requirement indicating that they cannot

intersect the lines of slope −1 more than once. Essentially, this implies an almost everywhere

bound on their slope.

Note that β reflects a threshold for agent 1, whereas α reflects a threshold for agent 2, as

illustrated in Figure 1 below.
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Figure 1: Threshold rules. This figure illustrates the threshold rule Rαβ . We first consider the paths

associated to α and β. That is, the locus of the vectors chosen by the functions: (α1(x), α2(x)) and (β1(x), β2(x)),

as x varies from 0 to +∞. For each x ∈ [0,+∞), we consider the segment determined by (α1(x), α2(x))

and (β1(x), β2(x)). If the starting income profile is ŷ, then it is located within the corresponding segment

determined by (α1(Ŷ ), α2(Ŷ )) and (β1(Ŷ ), β2(Ŷ )), and thus the rule suggests no redistribution. If the starting

profile is ỹ, which is not located within that segment, although it conveys the same aggregate income as ŷ,

then the rule suggests to redistribute from agent 2 to agent 1 until the former stays with β2(Ŷ ) (and the latter

reaches her threshold β1(Ŷ ) = Ŷ − β2(Ŷ )). For both y and ȳ the rule suggests the same solution; namely,

(α1(Y ), α2(Y )) = (β1(Y ), β2(Y )), where Y = ȳ1 + ȳ2. Finally, if the starting income profile is y∗, then the rule

suggests to redistribute from agent 2 to agent 1 until the former stays at β2(y∗1 + y∗2) (and the latter reaches her

threshold β1(y∗1 + y∗2)), whereas if the starting income profile is y?, then the rule suggests to redistribute from

agent 1 to agent 2 until the former stays with α1(y?1 + y?2) (and the latter reaches her threshold α2(y?1 + y?2)).
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Then, the corresponding rule Rαβ is defined as follows. For each y ∈ R2
+,

Rαβ (y) =


(α1(Y ), α2(Y )), if y2 ≤ α2(Y ).

y, if α2(Y ) ≤ y2 ≤ β2(Y ).

(β1(Y ), β2(Y )), if y2 ≥ β2(Y ).

(1)

Equivalently,

Rαβ (y) =


(α1(Y ), α2(Y )), if y1 ≥ α1(Y ).

y, if α1(Y ) ≥ y1 ≥ β1(Y ).

(β1(Y ), β2(Y )), if y1 ≤ β1(Y ).

In other words, the rule Rαβ behaves as laissez-faire in a somewhat middle range of income

distributions (determined by the α and β functions). For very unequal incomes, in which

one agent lies below the threshold (again, determined by the α and β functions), then the

rule imposes partial redistribution to guarantee the threshold for that agent. Note that the

threshold is endogenous, as it is determined by the overall income in the income profile. Figure

1 illustrates one of the rules within this family.

Note that, as also illustrated in Figure 1, the paths associated to the α and β functions do

not need to be strictly increasing.

Interesting members within this family are the so-called δ−threshold rules, obtained in the

above definition for each δ ∈ (0,+∞), and

α(x) =


(x, 0), if 0 ≤ x ≤ δ.

(δ, x− δ), if δ ≤ x ≤ 2δ.

(x− δ, δ), if x ≥ 2δ.

and

β(x) =


(0, x), if 0 ≤ x ≤ δ.

(x− δ, δ), if δ ≤ x ≤ 2δ.

(δ, x− δ), if x ≥ 2δ.

respectively.

A δ−threshold rule imposes partial redistribution for unequal income profiles in which one

agent lies below δ, whereas the other lies above. For those cases, the rule forces the latter agent

transfer to the former until she reaches δ. If both agents are above δ, or below it, the rule says

nothing.
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Figure 2: δ-threshold rules. This figure illustrates the δ-threshold rule Rδ. We first note that the paths

associated to α and β are made of three linear pieces each: a first one over one axis a second one parallel to

the other axis and a third one parallel to the first piece. That is, the locus of the vectors (α1(x), α2(x)) follows

the horizontal axis as x varies from 0 to δ, a vertical line as x varies from δ to 2δ, from where it follows again a

horizontal line. Similarly, the locus of the vectors (β1(x), β2(x)), follows the vertical axis as x varies from 0 to

δ, a horizontal line as x varies from δ to 2δ, from where it follows again a vertical line. If the starting income

profile is ŷ or ỹ, which both have the same aggregate income and none of the incomes is above δ, then the

rule suggests no redistribution. For both y and ȳ, which both have the same aggregate income (2δ), the rule

suggests the same solution; namely, (δ, δ). Finally, if the starting income profile is y∗, then the rule suggests to

redistribute from agent 2 to agent 1 until agent 1 reaches δ, whereas if the starting income profile is y?, then

the rule suggests to redistribute from agent 1 to agent 2 until agent 2 reaches δ.

Other somewhat focal members of the family are, precisely, the egalitarian rule and the

identity rule introduced above. Formally, if α(x) = β(x) = (x
2
, x
2
), for each x ∈ R+, then

Rαβ ≡ RE. Also, if α(x) = (x, 0) for each x ∈ R+ and β(x) = (0, x) for each x ∈ R+, then

Rαβ ≡ RI . In other words, both the egalitarian rule and the identity rule are (admittedly,

extreme) threshold rules.
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We now introduce our fundamental axioms in this context.

The first axiom says that small changes in the income profile should only produce small

changes in the solution. Besides being a technical axiom, it is also ethically attractive as it

models non-arbitrariness of the rule, or robustness to measurement errors.

Continuity. For each sequence yn ∈ R2
+, and each y ∈ R2

+, if yn converges to y, then R (yn)

converges to R(y).

The next axiom precludes the existence of a transfer paradox, i.e., a situation in which

an agent gets more income after redistribution, provided she has transferred some amount of

income to the other agent, before redistribution takes place.3

No Transfer Paradox. For each y ∈ R2
+, each i = 1, 2 and each ε ∈ [0, yi], then

Ri(y) ≥ Ri (yi − ε, yj + ε) .

The third axiom is a requirement of stability. It says that after a rule redistributes income

for a given income profile, the rule proposes no further redistribution for the resulting income

profile. In other words, after redistribution takes place, no more redistribution is optimal.

Stability. For each y ∈ R2
+, R (R(y)) = R(y).

3 The characterization result

Our main result states that the three previous axioms characterize the family of threshold rules.

Theorem 1. A rule satisfies continuity, no transfer paradox and stability if and only if it is a

threshold rule.

Proof. It is straightforward to show that the threshold rules satisfy the three axioms in the

statement. Conversely, let R be a rule satisfying continuity, no transfer paradox and stability.

For each x ≥ 0, let

E(x) =
{

(y1, y2) ∈ R2
+ such that Y = x

}
.

That is, E(x) is the set of profiles whose overall income is x. By the definition of rules,

R(E(x)) ⊆ E(x). By continuity, as E(x) is a compact and connected set, so is R(E(x)). By

3In two-agent exchange economies, the transfer paradox takes place when a transfer from one agent to the

other leads to a welfare gain for the donor and a welfare loss for the recipient. The concept has long been

studied within mathematical economics (e.g., Gale, 1974; Balasko, 1975; Demuynck et al., 2016).
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stability, R(E(x)) coincides with the set of fixed points of R (restricted to E(x)). Thus, there

exist a(x) ∈ R+ and b(x) ∈ R+ such that the projection of R(E(x)) over the horizontal axis is

given by the interval [a(x), b(x)]. In other words, for each y ∈ E(x), we have the following:

R1(y) = y1 for all y1 ∈ [a(x), b(x)],

and

R1(y) ∈ [a(x), b(x)] for all y1 /∈ [a(x), b(x)].

Now, by no transfer paradox,

R1(y) = a(x) for all y such that y1 < a(x),

and

R1(y) = b(x) for all y such that y1 > b(x).

Let α : R+ → R2
+ and β : R+ → R2

+ be the functions defined such that, for each x ∈ R+,

α(x) = (b(x), x− b(x)), and β(x) = (a(x), x− a(x)). By continuity, it follows that both α and

β are continuous functions. Furthermore, for each x ∈ R+, α1(x) + α2(x) = β1(x) + β2(x) = x,

and α2(x) ≤ β2(x). It then follows that R is the threshold rule Rαβ.

Theorem 1 says that the properties of continuity, no transfer paradox and stability force us

to redistribute (at least partially) on the quite unequal cases, while preserving the status quo

(i.e., laissez-faire) for the somewhat equal cases. In doing so, a certain income level is guaranteed

for each agent (albeit this income level may be zero in an extreme case). Nevertheless, this

level is endogenous and can be arbitrary small (as mentioned before, even 0, for the extreme

case of the identity rule) or as large as possible (even the mean income of the population, for

the case of the egalitarian rule, the other extreme threshold rule).

4 Further insights

4.1 Refining the family

We explore further the threshold rules, obtaining necessary and sufficient conditions on (α, β)

under which the corresponding rule Rαβ satisfies some additional (secondary) axioms introduced

below.
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First, two axioms of impartiality. On the one hand, the requirement that agents with equal

(pre-tax) income end up having the same (post-tax) income.

Equal treatment of equals. For each y ∈ R2
+ such that y1 = y2, R1(y) = R2(y).

On the other hand, the stronger requirement that the order of agents has no influence on

the outcome of the rule.

Anonymity. For each y ∈ R2
+, (R2(y), R1(y)) = (R1(y2, y1), R2(y2, y1)).

Then, an axiom indicating that if the income of one agent increases, ceteris paribus, the

agent cannot be hurt by it.

Agent monotonicity. For each y ∈ R2
+, and ε > 0, Ri(yi + ε, yj) ≥ Ri(y).

Alternatively, we could consider the axiom indicating that if the income of both agents

increase, none of the post-tax incomes can decrease.

Pair monotonicity. For each pair y, y′ ∈ R2
+, such that y ≥ y′, R(y) ≥ R(y′).

Finally, a standard technical axiom.

Homogeneity. For each y ∈ R2
+ and each λ ∈ R+, R (λy) = λR(y).

The performance of the threshold rules, with respect to the above axioms, is stated in the

following result, whose proof we relegate to the appendix.

Proposition 1. Let R satisfy continuity, stability, and no transfer paradox. Then,

1. R satisfies equal treatment of equals if and only if it is a threshold rule for which α2(x) ≤
x
2
≤ β2(x) for each x ∈ R+, i.e., the 450-line is comprised within the region determined

by the paths of α and β.

2. R satisfies anonymity if and only if it is a threshold rule for which α2(x) + β2(x) = x for

each x ∈ R+, i.e., the paths of α and β are symmetric with respect to the 450-line.

3. R satisfies agent monotonicity, or pair monotonicity, if and only if it is a threshold rule

for which α(x′) ≥ α(x) and β(x′) ≥ β(x) for each pair x, x′ ∈ R+ such that x′ ≥ x, i.e.,

the paths of α and β are non-decreasing.

4. R satisfies homogeneity if and only if it is a (proportional) threshold rule for which α2(x) =

λαx and β2(x) = λβx for some λα, λβ ∈ R+ such that λα ≤ λβ, i.e., the paths of α and β

are straight lines.
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4.2 The general case

The results above (and the model itself) are set for the case of two agents. To extend our analysis

to the case of n > 2, it is natural to consider a variable-population model. In such a setting, the

axiom formalizing a principle of solidarity stating that the arrival of new agents should affect

all original agents in the same direction (all gain, all lose, or all remain the same as before)

has strong normative appeal.4 It can be shown, for instance, that in this variable-population

setting, a rule satisfies continuity, stability, no transfer paradox, solidarity, and homogeneity if

and only if it is either the egalitarian rule or the identity rule. That is, among the two-agent

proportional threshold rules, characterized in Proposition 1.4, only the egalitarian rule and the

identity rule pass the solidarity test and admit extensions. If homogeneity is dropped from

that result, the analysis becomes more cumbersome.

For example, to move to the 3-agent setting, it would be natural to consider a 2-agent

coalition stability notion (implied by the solidarity axiom outlined above).5 If so, one might

think of the rule R(3)(y) = R(3)(y1, y2, y3) that satisfies

R(2)
(
R

(3)
i (y), R

(3)
j (y)

)
=
(
R

(3)
i (y), R

(3)
j (y)

)
for each pair i, j ∈ {1, 2, 3}, (2)

for some 2-agent redistribution rule R(2). We have shown that, under continuity, (2-agent) sta-

bility, and (2-agent) no-transfer paradox, R(2) must be a threshold rule with some α
(
R

(3)
i (y) +R

(3)
j (y)

)
and β

(
R

(3)
i (y) +R

(3)
j (y)

)
. If anonymity is further imposed (see Proposition 1.2 above), then

it suffices to work with a single α such that α1 defines a lower threshold with respect to the

first agent in R(2).

Thus, any R(3) that satisfies (2) should also verify

R
(3)
i (y) ≥ max

{
α1(Y −R(3)

k (y)), α1(Y −R(3)
j (y))

}
,

and

R
(3)
i (y) ≤ min

{
Y −R(3)

k (y)− α1(Y −R(3)
k (y)), Y −R(3)

j (y)− α1(Y −R(3)
j (y))

}
,

where Y = y1 + y2 + y3. From here it follows that, for each i = 1, 2, 3,

R
(3)
i (y) ≥ α1

(
R

(3)
i (y) + α1(Y −R(3)

i (y))
)
,

4See Moreno-Ternero and Roemer (2006, 2012) for a formalization of this axiom in a related setting. The

axiom is a strengthening of the so-called consistency axiom, which has played a central role in a large number

of recent axiomatic studies (see, for instance, Thomson (2012) and the literature cited therein).
5We thank an anonymous referee for providing this specific suggestion, presented next.
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which is a recursive inequality in α1. As α1 is continuous, it follows from the intermediate value

theorem that there exists γ(Y ) ∈ [0, Y ] such that

γ(Y ) = α1 (γ(Y ) + α1(Y − γ(Y ))) .

If we take the smallest of such γ(Y ) (if there are more than one), we have

γ(Y ) ≤ R
(3)
i (y) ≤ Y − 2γ(Y ),

thus defining the lower and upper thresholds for the 3-agent problem.

In words, in the three-agent case, the threshold rule would then behave as follows. Let

y = (y1, y2, y3) be a three-agent vector for which we assume, without loss of generality, that

y1 ≤ y2 ≤ y3. If all incomes are above the threshold, then the rule does nothing (i.e., it behaves

as the identity). If agent 1 is below the threshold then agent 3 will transfer income to agent

1 until either agent 1 achieves the threshold, or agent 3 ends up having the same income as

agent 2; whichever comes first. In the latter case, the process would continue by transferring

from both agents (2 and 3) equally to agent 1 until the threshold is achieved, either by 1, or

by 2 and 3. Finally, if two agents are below the threshold, then agent 3 will transfer (equal

amounts of) income to agents 1 and 2, until either agent 2 achieves the threshold, or agent 3

does so; whichever comes first. In the former case, the process would continue by transferring

from agent 3 to agent 1 until the threshold is achieved either by 1 or by 3. Again, whichever

comes first.

5 Discussion

We have studied a stylized model of income redistribution, from an axiomatic viewpoint. We

have shown that, in the bilateral case, three basic and intuitive axioms (continuity, no transfer

paradox and stability) characterize a large family, which we call threshold rules, that guaran-

tee partial redistribution for unequal incomes. More precisely, each rule within the family we

characterize is described by two functions (over aggregate income) which determine the region

where partial redistribution is imposed. The family is wide enough to encompass (while con-

sidering specific functions) rules ranging from laissez-faire to its polar fully egalitarian rule.

Adding extra axioms, formalizing basic principles of impartiality, monotonicity, or invariance,

we shrink the family in various meaningful ways. We have also explored how to extend these

results to a general context with more than two agents, which calls for a variable-population

axiom formalizing the principle of solidarity.
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Our work relates to recent, general interest, economics research. Income redistribution has

declined in most OECD countries over the past two decades. The role of policy factors (e.g.,

changes in the size and design of tax and transfer systems) and non-policy factors (e.g., the

impact of globalization, technological changes or population aging) in driving such a trend

during this period has been scrutinized (e.g., Causa et al., 2019). In general, within that

literature, income redistribution is measured as the relative reduction in the inequality of pre-

tax and transfer income (so-called market income) that is achieved by personal income taxes,

employees’ social security contributions and cash transfers, based on household-level data. Our

work is, thus, providing normative foundations for such a measurement process in a basic and

stylized model.

The social choice literature has also brought the axiomatic approach to analyze redistribu-

tion/taxation problems. In a series of influential papers (e.g., Young, 1987, 1988, 1990), Peyton

Young analyzed the problem of distributive justice in taxation, with a special emphasis on the

connection between the principle of equal sacrifice, which can be traced back to John Stuart

Mill, and progressive taxation. In Young (1988), he characterizes the family of equal-sacrifice

(tax) rules in a similar model to ours. The only basic difference between our model and Young’s

(which is itself a reinterpretation of the original model introduced by O’Neill (1982) to analyze

claims problems) is to consider a zero tax revenue, which thus allows for negative taxes (not

allowed in the O’Neill-Young setting). This motivates the use of our critical axiom of stability,

which does not have bite in the O’Neill-Young setting. The remaining axioms we consider (in-

cluding those introduced in Section 4) are either identical or straightforward adaptations from

existing axioms in that setting.

To the best our our knowledge, the only case where our same model was considered before is

in Ju et al., (2007). Therein, they study a general class of claims problems, one of which happens

to be O’Neill-Young setting with zero tax revenue (or, equivalently, an endowment equal to the

aggregate claim). They focus on the notion of reallocation-proofness and show that this axiom,

together with some other basic ones (including no transfer paradox ) characterize the family of

income-tax schedules with a flat tax rate and personalized lump-sum transfers, introduced in

Section 2.

We therefore believe that our threshold rules are new in the literature. They are, nev-

ertheless, reminiscent of some other rules considered in the literature. For instance, in the

O’Neill-Young setting, generalized equal-sacrifice rules have been characterized (e.g., Cham-

bers and Moreno-Ternero, 2017). Some of them impose constrained equal sacrifice with respect
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to some lower and upper bounds, allowing for a possible set of agents being exempted, to be in-

terpreted as agents below the poverty line. Those bounds/thresholds are exogenously described

by the brackets defining the rule, although the ones eventually being used are determined by

the characteristics (set of agents, claims and endowment) of the problem at hand.
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6 Appendix. Proof of Proposition 1

Let R satisfy continuity, stability, and no transfer paradox. Then, by Theorem 1, we know R

is a threshold rule Rαβ.

1. Suppose Rαβ satisfies equal treatment of equals too. Then, for each y ∈ R2
+ such that y1 =

y2, R
αβ(y) = y. Assume, by contradiction, that there exists x ∈ R+ such that α2(x) > x

2
.

Then, Rαβ(x
2
, x
2
) = (α1(x), α2(x)) 6= (x

2
, x
2
), which is a contradiction. Similarly, assume,

by contradiction, that there exists x ∈ R+ such that β2(x) < x
2
. Then, Rαβ(x

2
, x
2
) =

(β1(x), β2(x)) 6= (x
2
, x
2
), which is a contradiction. Conversely, if α2(x) ≤ x

2
≤ β2(x), for

each R+, it follows that α2(Y ) ≤ y2 ≤ β2(Y ), for each y ∈ R2
+ such that y1 = y2. Thus,

from (1), Rαβ(y) = y, which proves that Rαβ satisfies equal treatment of equals.

2. Suppose Rαβ satisfies anonymity instead. Then, for each y ∈ R2
+, (R2(y), R1(y)) =

(R1(y2, y1), R2(y2, y1)). Assume, by contradiction, that there exists x ∈ R+ such that

α2(x)+β2(x) < x. Let y ∈ R2
+ be such that y = (α1(x), α2(x)). Then, (Rαβ

2 (y), Rαβ
1 (y)) =

(α2(x), α1(x)) = (α2(x), x−α2(x)) 6= (x−β2(x), β2(x)) = (β1(x), β2(x)) = (Rαβ
1 (y2, y1), R

αβ
2 (y2, y1)),

which represents a contradiction. Similarly, assume, by contradiction, that there exists

x ∈ R+ such that α2(x) + β2(x) > x. Let y ∈ R2
+ be such that y = (β1(x), β2(x)).

Then, (Rαβ
2 (y), Rαβ

1 (y)) = (β2(x), β1(x)) = (β2(x), x − β2(x)) 6= (x − α2(x), α2(x)) =

(α1(x), α2(x)) = (Rαβ
1 (y2, y1), R

αβ
2 (y2, y1)), which represents a contradiction.

Conversely, if the condition α2(x) + β2(x) = x holds for each x ∈ R+ (and, therefore,

(β2(x), β1(x)) = (α1(x), α2(x)), for each x ∈ R+), it follows that Rαβ satisfies anonymity.

To show that, let y ∈ R2
+. We distinguish several cases.

Case 1. y2 ≥ β2(Y ). In this case, y is above the path of β and, therefore, Rαβ(y) =

β(Y ) = Y − α(Y ). Likewise, (y2, y1) is below the path of α, as y1 = Y − y2 ≤ Y −

β2(Y ) = α2(Y ) and, therefore, Rαβ(y2, y1) = α(Y ) = Y −β(Y ). Thus, (Rαβ
2 (y), Rαβ

1 (y)) =

(Rαβ
1 (y2, y1), R

αβ
2 (y2, y1)), as desired.

Case 2. α2(Y ) ≤ y2 ≤ β2(Y ). In this case, both y and (y2, y1) are within the paths of α

and β and, therefore, Rαβ(y) = y and Rαβ(y2, y1) = (y2, y1). Thus, (Rαβ
2 (y), Rαβ

1 (y)) =

(Rαβ
1 (y2, y1), R

αβ
2 (y2, y1)), as desired.

Case 3. α2(Y ) ≥ y2. In this case, y is below the path of α and, therefore, Rαβ(y) = α(Y ) =

Y − β(Y ). Likewise, (y2, y1) is above the path of β, as y1 = Y − y2 ≥ Y −α2(Y ) = β2(Y )

14
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and, therefore, Rαβ(y2, y1) = β(Y ). Thus, (Rαβ
2 (y), Rαβ

1 (y)) = (Rαβ
1 (y2, y1), R

αβ
2 (y2, y1)),

as desired.

3. Suppose Rαβ satisfies agent monotonicity instead. Then, for each y ∈ R2
+, and ε > 0,

Rαβ
i (yi + ε, yj) ≥ Rαβ

i (y).6

Assume, by contradiction, that there exist x, x′ ∈ R+, such that x′ < x and α1(x
′) >

α1(x). Let y = (x, 0) and y′ = (x′, 0). Then, y1 = y′1 + ε, where ε = x − x′ > 0, and

Rαβ
1 (y) = α1(x) < α1(x

′) = Rαβ
1 (y′), which is a contradiction.

Similarly, assume, by contradiction, that there exist x, x′ ∈ R+, such that x′ < x and

β1(x
′) > β1(x). By continuity, we can assume, without loss of generality, that x − x′ <

β1(x). Let y = (x−x′, x′) and y′ = (0, x′). Then, y2 = y′2, y1 = y′1+ε, where ε = x−x′ > 0,

and Rαβ
1 (y) = β1(x) < β1(x

′) = Rαβ
1 (y′), which is a contradiction.

Similarly, assume, by contradiction, that there exist x, x′ ∈ R+, such that x′ < x and

α2(x
′) > α2(x). By continuity, we can assume, without loss of generality, that x − x′ <

α2(x). Let y = (x′, x−x′) and y′ = (x′, 0). Then, y1 = y′1, y2 = y′2+ε, where ε = x−x′ > 0,

and Rαβ
2 (y) = α2(x) < α2(x

′) = Rαβ
2 (y′), which is a contradiction.

Finally, assume, by contradiction, that there exist x, x′ ∈ R+, such that x′ < x and

β2(x
′) > β2(x). Let y′ = β(x′) and y = (β1(x

′), x − β1(x′)). Then, y1 = y′1, y2 = y′2 + ε,

where ε = x− x′ > 0, and Rαβ
2 (y) = β2(x) < β2(x

′) = Rαβ
2 (y′), which is a contradiction.

Conversely, if Rαβ is such that α(x′) ≥ α(x) and β(x′) ≥ β(x) for each pair x, x′ ∈ R+

such that x′ ≥ x, it follows that Rαβ satisfies pair monotonicity.7 To show that, let

y, y′ ∈ R2
+ be such that y ≥ y′. We distinguish several cases.

Case 1. y′2 ≥ β2(Y
′). In this case, y′ is above the path of β and, therefore, Rαβ(y′) = β(Y ′).

As for y, it could be in any of the three regions defined by both paths. If above the path

of β, i.e., y2 ≥ β2(Y ), then, Rαβ
1 (y) = β1(Y ) ≥ β1(Y

′) = Rαβ
1 (y′). If below the path of α,

i.e., y2 ≤ α2(Y ), then, Rαβ(y) = α(Y ) ≥ β(Y ′) = Rαβ(y′). Finally, if within both paths,

i.e., β2(Y ) ≥ y2 ≥ α2(Y ), then Rαβ(y) = y ≥ β(Y ′) = Rαβ(y′).

Case 2. α2(Y
′) ≤ y′2 ≤ β2(Y

′). In this case, y′ is between the paths of α and β and,

therefore, Rαβ(y′) = y′. As for y, it could be in any of the three regions defined by both

paths. If above the path of β, i.e., y2 ≥ β2(Y ), then, Rαβ(y) = β(Y ) ≥ y′ = Rαβ(y′). If

6As pair monotonicity is a stronger axiom, it suffices to prove this implication.
7And, thus, agent monotonicity too, as it is a weaker axiom.
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below the path of α, i.e., y2 ≤ α2(Y ), then, Rαβ(y) = α(Y ) ≥ y′ = Rαβ(y). Finally, if

within both paths, i.e., β2(Y ) ≥ y2 ≥ α2(Y ), then Rαβ(y) = y ≥ y′ = Rαβ(y′).

Case 3. α2(Y
′) ≥ y′2. In this case, y′ is below the path of α and, therefore, Rαβ(y′) =

α(Y ′). As for y, it could be in any of the three regions defined by both paths. If above

the path of β, i.e., y2 ≥ β2(Y ), then, Rαβ(y) = β(Y ) ≥ α(Y ′) = Rαβ(y′). If below the

path of α, i.e., y2 ≤ α2(Y ), then, Rαβ(y) = α(Y ) ≥ α(Y ′) = Rαβ(y). Finally, if within

both paths, i.e., β2(Y ) ≥ y2 ≥ α2(Y ), then Rαβ(y) = y ≥ α(Y ′) = Rαβ(y′).

4. Suppose Rαβ satisfies homogeneity instead. Then, for each y ∈ R2
+ and each λ ∈ R+,

Rαβ (λy) = λRαβ(y). Assume, by contradiction, that there exist x, x′ ∈ R+, such that

α2(x)
x
6= α2(x′)

x′
. Let λ = x′

x
. Then, by homogeneity,

(α1(x
′), α2(x

′)) = R((x′, 0)) = R((λx, 0)) = λR((x, 0)) = λ((α1(x), α2(x)),

which implies that α2(x)
x

= α2(x′)
x′

, a contradiction. Similarly, assume, by contradiction,

that there exist x, x′ ∈ R+, such that β2(x)
x
6= β2(x′)

x′
. Let λ = x′

x
. Then, by homogeneity,

(β1(x
′), β2(x

′)) = R((0, x′)) = R((0, λx)) = λR((0, x)) = λ((β1(x), β2(x)),

which implies that β2(x)
x

= β2(x′)
x′

, a contradiction.

The above shows that, for each x ∈ R+, α2(x) = λαx and β2(x) = λβx, for some

λα, λβ ∈ R+. As α2(x) ≤ β2(x), by the definition of Rαβ, it follows that λα ≤ λβ.

Conversely, if Rαβ is such that α2(x) = λαx and β2(x) = λβx, for some λα, λβ ∈ R+ such

that λα ≤ λβ, it follows that Rαβ satisfies homogeneity. To show that, let y ∈ R2
+ and

λ ∈ R+. We distinguish several cases.

Case 1. y2 ≥ β2(Y ). In this case, Rαβ(y) = β(Y ). As λy2 ≥ λβ2(Y ) = β2(λY ), it follows

that Rαβ(λy) = (β1(λY ), β2(λY )) = λ(β1(Y ), β2(Y )) = λRαβ(y), as desired.

Case 2. α2(Y ) ≤ y2 ≤ β2(Y ). In this case, Rαβ(y) = y. As α2(λY ) = λα2(Y ) ≤ λy2 ≤

λβ2(Y ) = β2(λY ), it follows that Rαβ(λy) = λy = λRαβ(y), as desired.

Case 3. y2 ≤ α2(Y ). In this case, Rαβ(y) = α(Y ). As λy2 ≤ λα2(Y ) = α2(λY ), it follows

that Rαβ(λy) = (α1(λY ), α2(λY )) = λ(α1(Y ), α2(Y )) = λRαβ(y), as desired.
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