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Abstract

We study the optimal management of evolving hierarchies of revenue-generating agents.

The initiator invests into expanding the hierarchy by adding another agent, who will bring

revenues to the joint venture and who will invest herself into expanding the hierarchy fur-

ther, and so on. The higher the investments (which are private information), the higher

the probability of expanding the hierarchy. An allocation scheme specifies how revenues

are distributed, as the hierarchy evolves. We obtain schemes that are socially optimal

and initiator-optimal respectively. Our results have potential applications for blockchain,

cryptocurrencies, social mobilization and multi-level marketing.
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1 Introduction

It has long been argued that the basic structure (or order) of the world is a hierarchical structure

(e.g., Salthe, 1985). Hierarchies seem to be a pervasive feature of the organization of natural

and artificial systems (e.g., Corominas-Murtra et al., 2013), and hierarchical systems are fre-

quent, for instance, in large scale industrial automation (Mesarovic et al., 1970), clinical trials

(e.g., Azoulay, 2004), decentralized computer networks (e.g., Furth, 2010) or decision making

and planning (e.g., Saaty, 1986; Harker and Vargas, 1987). Hierarchies influenced the survival

of prisoners of war during World War II (e.g., Holderness and Pontiff, 2012). Social hierarchies

influence primate health (e.g., Sapolsky, 2005). Top-down (hierarchical) mechanisms are im-

plemented for memory retrieval and assimilation (e.g., Rajasethupathy et al., 2015). And even

the brain could be modeled as a hierarchical system (e.g., Brocas and Carrillo, 2008).

In this paper, we study how to manage incentives in an evolving hierarchy of agents. In

our stylized model, the first agent (the initiator) invests resources in order to add a second

(revenue-generating) agent to the hierarchy. This second agent, if added, invests herself in

adding a third (revenue-generating) agent, and so on. The more an agent invests, the higher

the probability that she adds another agent. An agent’s incentive to invest is determined by her

expected return, comprising what is potentially obtained from the next agent, and from further

agents added later to the hierarchy. Thus, a transfer of revenues generated by lower-ranked (i.e.,

newer) agents to higher-ranked (i.e., older) agents is essential for incentivizing investments (and,

thus, potentially expanding the hierarchy). Our main research question is how this process can

be optimally managed through appropriately allocating the revenues obtained in the hierarchy.

Potential areas of application include mining in blockchains (Schrijvers et al., 2017), social

mobilization (Pickard et al., 2011), and multi-level marketing (Emek et al., 2011). In the first

case, miners perform (costly) computations as part of the “proof-of-work” protocol in order to

add another block to the blockchain. If a miner is successful solving the cryptographic puzzle

of the hash functions, and a new block is added, a reward is paid. The issue is to optimally

allocate this reward among the successful miner and her predecessors. In the case of social

mobilization, a task has to be solved and an initiator exerts effort in recruiting (mobilizing)

agents to help solving this task, who exert effort themselves to recruit more agents, and so

on. Mobilizing agents increases the probability of solving the task, thus adding value to the

recruitment hierarchy. In multi-level marketing, the initiator can generate a revenue and recruit

a sales partner, that also generate a revenue and recruit another sales partner, and so on.
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1.1 Our Results

In our model, a planner, or system designer, could aim at maximizing the expected payoff

of the initiator (in particular, if the initiator is the planner herself), but could also consider

a social objective and maximize the overall expected value of the hierarchy. Our first result

(Theorem 1) actually shows that a first-best socially optimal investment profile exists, and is

unique. Moreover, as agents are identical (except, obviously, by their position in the hierarchy)

so is the optimal investment of each agent.

We then move to a decentralized framework where each allocation scheme induces a game

in which agents choose their investment level strategically. The induced game is supermodular

(i.e., the marginal value of one player’s action is increasing in the other players’ actions) so

there always exists at least one Nash equilibrium in pure strategies. We consider two natural

optimality notions for allocation schemes: an allocation scheme is decentralized socially optimal

if it induces investments yielding the highest possible overall expected value of the hierarchy;

an allocation scheme is initiator-optimal if it induces investments yielding the highest possible

expected payoff for the initiator.

Concerning decentralized social optimality, our Theorem 2 shows that there is a unique

socially optimal allocation scheme characterized by imposing full transfers to the immediate

predecessors. In other words, transferring the full value of recruiting a new agent for the

hierarchy to the immediate predecessor gives maximal incentive to invest and thereby maximizes

the expected length of the hierarchy. The corresponding equilibrium investment profile is

constant (i.e., agents invest the same amount), and leads to under-investment compared to the

first-best social optimum, as shown in Proposition 1.

Concerning initiator-optimality, we show that there exist multiple optimal schemes, but we

focus on a particularly interesting one, which comes in the form of a one-parameter family. It

imposes to each member a full transfer to only two recipients: the immediate predecessor and

the initiator. Furthermore, a constant ratio among the transfers is imposed for all members.

More precisely, there exists a parameter α ∈ (0, 1) such that each agent transfers 100α% of her

revenue to her immediate predecessor and the residual percentage 100(1−α)% to the initiator.

This scheme is remarkably simple. Another advantage of it, as shown in the proof Theorem 3,

is that all agents (except for the initiator) have a dominant strategy in the induced game. As

mentioned above, it is not uniquely determined though. We can actually find other transfers

yielding the same equilibrium investment profile and expected payoff to the initiator. In fact, the
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main characteristic of an initiator-optimal allocation scheme is that it yields the same expected

payoff to all agents except for the initiator. We exemplify this feature with a reinterpretation

of the class of bubbling-up (or geometric) schemes characterized in Hougaard et al., (2017), as

described in Proposition 2. Our result confirms and elaborates on the claim made in Pickard et

al (2011), that using a bubbling-up scheme to reallocate a reward provides optimal incentives

for mobilization. In our setting, we actually show that a planner can actually choose optimal

allocation schemes from a much broader class, including the simpler one-parameter family from

Theorem 3.

A remarkable feature, shared by all of our results described above, is that we obtain clean

comparative statics for a general specification of probability functions, which is surprising. In

other words, we do not need to specify a particular probability function to obtain our results.

1.2 Related literature

Our model of managing evolving hierarchies is somewhat related to a specific network inter-

vention known in the literature as induction. The term network interventions describes the

process of using social network data to accelerate behavior change or improve organizational

performance (e.g., Valente, 2012). Induction interventions stimulate peer-to-peer interaction to

create cascades in behavioral diffusion, implicitly endorsing that secondary incentives can be

more efficient and effective than primary incentives, at least in some contexts. For instance,

media marketing campaigns often rely on word-of mouth strategies, such as encouraging users

to recommend products to their connections, who would do the same themselves (e.g., Aral

and Walker, 2011). In respondent-driven sampling (e.g., Heckathorn, 1997), a form of chain-

referral sampling also known as “snowball methods”, individuals recruit others to receive an

intervention, who subsequently encourage additional people to participate, and so on.1

Our analysis focusses on the dichotomy between centralized and decentralized management

of hierarchies. In that sense, we are close to a literature dealing with search and organizational

hierarchy, in which it has been argued that a hierarchy with a central decision maker at the

top can speed up problem solving, but possibly at the cost of solution quality compared with

results of a decentralized search (e.g., Rivkin, 2000; Mihm et al., 2010).

Regarding the decentralized management of hierarchies, our analysis of optimal allocation

1Goldlücke (2017) also deals with the strategic recruiting in ongoing hierarchies. Her emphasis is on analyzing

the effect of skill-based promotions on incentives to recruit, exploring how the management rule “A’s hire A’s

and B’s hire C’s” can make sense in a game-theoretic model.
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schemes is somewhat reminiscent of the analysis in Galeotti et al., (2019), who design and

evaluate welfare-enhancing tax policy schemes in complex supply chains consisting of primary

and final good producers.2

From a different vantage point, there has been a growing interest in the literature dealing

with resource allocation in the presence of a hierarchical structure (see, for instance, Hougaard

(2018) and the references cited therein). This interest can be traced back to Claus and Kleitman

(1973) and Bird (1976), with their canonical cost sharing problem within a rooted tree, or

Littlechild and Owen (1973) with the so-called airport problem, in which the runway cost has to

be shared among different types of airplanes with a linear graph representing the runway. More

recently, Hougaard et al., (2017) consider the problem of distributing the proceeds generated

from a joint venture in which the participating agents are hierarchically organized.3 They

characterize a family of allocation rules where revenue ‘bubbles up’ in the hierarchy, ranging

from the no-transfer rule (where no revenue bubbles up) to the full-transfer rule (where all

the revenues bubble up to the top of the hierarchy). Intermediate rules within that family are

reminiscent of popular incentive mechanisms for social mobilization or multi-level marketing

(e.g., Pickard et al., 2011; Emek et al., 2011) and can also be seen as specific geometric (incentive

tree) mechanisms (e.g., Lv and Moscibroda, 2013) that are usually considered in the computer

science literature.

In Juarez et al., (2020), agents are endowed with time, which is invested in projects that

generate profit. A mechanism divides the profit depending on the allocation of time, as well as

the amount of profit made by every project. They characterize the mechanisms that incentivize

agents to contribute their time to a level that results in the maximal aggregate profit at the

Nash equilibrium, regardless of the production functions involved. Within this class, they also

characterize the mechanisms that are monotone on the addition of time to agents as well as

on the payoffs of the agents with respect to technological improvements in the generation of

profit. In contrast with our work, they focus on a static case, whereas we deal with a dynamic

extension when the network is not given but generated based on the sharing rule.

2In a similar vein, Bimpikis et al., (2019) consider a model of competition among firms that produce a

homogeneous good in a networked environment, in which a bipartite graph determines which subset of markets

a firm can supply to.
3This is reminiscent of the problem of sharing a polluted river (e.g., Ni and Wang, 2007; Dong et al., 2012),

with the modification of considering negative revenues, and thus interpreting them as costs. Another recent

and somewhat related resource allocation problem under the presence of hierarchical structures is Juarez et al.,

(2018).
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Our model could also be considered as a moral hazard optimal contracting problem, as

pioneered by Holmstrom (1982), who showed that there is no allocation rule that induces a

game with first-best investment profile in equilibrium. Our contracting problem is a dynamic

specification of Holmstrom’s problem with the innovative aspect that the joint monetary out-

come is an asymmetric function of the agents’ (subordinates’) efforts, due to the hierarchical

structure. The fact that transfers must meet the budget constraint (revenue in this case) im-

plies that each agent cannot be rewarded for the full marginal profit that her effort generates.

Moreover, the informativeness principle (a signal is informative about effort if and only if it

has value for contracting) would indicate that second-best incentive contracts should condition

pay on the measures that are best indications of each agent’s effort. This is, essentially, what

drives our Theorems 1, 2 and Proposition 1. Our analysis of initiator-optimal contracts could

be interpreted as a study of how much of the chain’s value can one party appropriate when

limited by revenue-sharing contracts.

Within the scope of the literature on teams, also initiated with Holmstrom (1982), Strausz

(1999) considers sequential partnerships and shows that there exists a balanced budget-sharing

rule that achieves social efficiency. Winter (2006) also studies optimal incentive schemes in or-

ganizations where agents perform their tasks sequentially. In his model, agents’ effort decisions

are mapped into the probability of the project’s success. He characterizes the unique optimal

investment-inducing mechanism, i.e., rewards are allocated among agents so as to induce all of

them to exert effort in equilibrium at minimal cost to the principal. A crucial feature of such

a mechanism is that agents whose efforts are relatively unobservable by their peers need to be

promised higher rewards for a successful outcome to make them exert effort.4

Finally, our work is also related to a new literature dealing with blockchain, the fundamental

technology underlying the emergence of cryptocurrencies such as Bitcoin (e.g., Cheng et al.,

2019, Huberman et al., 2019; Azevedo et al., 2020). As outlined above, in proof-of-work

protocols, miners take on the computational work required to assemble new blocks and commit

them to the shared ledger. Each time a miner commits a new block to the chain it can assign a

predefined amount of the crypto token to itself as a reward. This reward is combined with the

transactions fees participants may have included in their individual transactions to incentivize

miners (to prioritize them over others in the construction of the next block) (e.g., Catalini and

Gans, 2020). Our results can shed light on the design of such optimal incentive schemes.

4More strikingly, such a discrimination among equals is also a feature of optimal investment-inducing mech-

anism in the counterpart model in which agents exert effort decisions simultaneously (e.g., Winter, 2004).
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2 The model and optimality notions

We imagine a dynamic process where agents (or tasks) can be added (performed) in sequence.

The probability of successfully adding an agent (solving a task) depends on the amount of

resources invested in the process. In case of a successful addition, a revenue is obtained. By

reallocating these revenues, through a so-called allocation scheme, agents can be incentivized

to invest in the process.

Formally, the set of potential agents is identified with the natural numbers including 0,

i.e., N0 = {0, 1, 2, . . . }. Agent 0 represents the initial agent: to be thought of as the initiator,

designer, boss, patent owner, patriarch, etc., depending on the application in mind. Agent

0 starts the dynamic process by trying to attract agent 1 as a follower. The probability of

succeeding is increasing in the amount of resources that agent 0 invests in the process. If agent

0 succeeds, this follower (agent 1) can now start the same process (as her predecessor) to attract

agent 2 as a follower, and so forth, until some agent (n) is unsuccessful in getting a follower.

The outcome of the process is then a realized hierarchy, representing an ordering of agents with

higher numbers indicating a lower rank.

Let xi ∈ R+, denote the amount of resources that agent i invests in the process. We

assume that the ability of adding a follower is the same for every agent and is formalized by

a function p : R+ → [0, 1), which assigns for each investment level xi ∈ R+, the probability

p(xi) ∈ [0, 1) that the investment is successful. We refer to p as the technology and assume that

it is a strictly increasing, differentiable and strictly concave function, satisfying that p(0) = 0,

limxi→0+ p
′(xi) = +∞, and such that p(xi)

p′(xi)
is convex at (0,+∞).5 Note that no matter how

much a given agent invests there is no guarantee of getting a follower. That is, p(xi) < 1 for

all xi ∈ R+, which will be crucial for the ensuing analysis.

Also, we assume that agents’ investment decisions are private information and that there is

no budget constraint.

When an agent joins the hierarchy a value is added. To simplify the presentation, we assume

that each agent joining the hierarchy adds the same value (e.g., provides the same revenue),

5Although crucial, we believe these assumptions on technologies are natural. In particular, the latter as-

sumption states that the inverse semi-elasticity is convex. Thus, it is a regularity condition ensuring that p′(xi)

diminishes relative to p(xi) at an increasing rate (note that p(xi)
p′(xi)

is increasing), which therefore rules out tech-

nologies with “soft” kinks. A broad range of relevant technologies satisfy all conditions; for instance, the entire

family given by p(xi) =
xβi
θ+xβi

where β ∈ (0, 1) and θ > 0.
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which we normalize to 1.6

In line with the rank of the hierarchy, we assume that the value of a realized agent can

only be transferred upwards in the hierarchy (that is, from agents with higher numbers to

agents with lower numbers) or remain with that agent. The size of these transfers is fixed by

a predefined allocation scheme known by all agents ex-ante. Thus, the (normalized) value of 1

is fully allocated among the realized agent and her predecessors.7

Formally, an allocation scheme t = {tij}{ij}⊂N0 is given by transfers tij ∈ [0, 1] such that

tij = 0 for each i < j and
∑

j≤i tij = 1 for each i. Note that tij is interpreted as the amount

that agent i allocates to agent j, provided i joins the hierarchy.

x1 1 + t21 − t10

x0 1 + t20 + t10

1

x2

0

1− t20 − t212

(t20, t21)

t10

6

6

@
@

@
@R

p(x1)

p(x0)

@
@

@
@R

Figure 1: A realized hierarchy with three agents (the initiator and two successors).

For each agent i ∈ N0, each allocation scheme t, and each profile of investment choices

x = (x0, x1, x2, . . . ), let Ei(t, x) denote the expected payoff for agent i conditional on the

realization of that agent.8 Formally,

Ei(t, x) = tii − xi + p(xi)t(i+1)i + p(xi)p(xi+1)t(i+2)i + · · · = tii − xi +
+∞∑
l=1

l−1∏
k=0

p(xi+k)t(i+l)i. (1)

For each given profile of investments, the social value is given by the expected total payoff.

Given a profile of investments x, the allocation scheme t is irrelevant for the computation of

6Relaxing this assumption would open the door to explore different features, such as the selective recruiting

of individuals (certainly an interesting aspect, but beyond the scope of this paper).
7Instead of assuming this, we could consider that the (normalized) value of 1 is fully allocated among

predecessors, excluding the realized agent. The results we shall present would also hold with this alternative

definition.
8Note that infinite expected payoffs are not ruled out from the outset.
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the social value because transfers among agents cancel out. Therefore, it can be written as

V(x) = E0(t, x) + p(x0)E1(t, x) + p(x0)p(x1)E2(t, x) + . . .

= (1− x0) + p(x0) (1− x1) + p(x0)p(x1) (1− x2) + . . .

= (1− x0) +
+∞∑
i=1

i−1∏
k=0

p(xk) (1− xi) .

For each given profile of investments, x, we define the expected length of the hierarchy (which

could be interpreted as the expected total gross return from the hierarchy) as

L(x) = 1 + p(x0) + p(x0)p(x1) + · · · = 1 +
+∞∑
i=1

i−1∏
k=0

p(xk),

and the expected investment as

I(x) = x0 + p(x0)x1 + p(x0)p(x1)x2 + · · · = x0 +
+∞∑
i=1

i−1∏
k=0

p(xk)xi.

Note that, provided V(x), L(x) and I(x) are all finite, then V(x) = L(x)− I(x).

We say that a profile of investments x∗ is first-best socially optimal, if the social value

is maximized. As transfers are irrelevant, this kind of profile can be equivalently obtained

analyzing a single-agent dynamic investment problem.

Note that first-best socially optimal profiles are dynamically consistent. By this we mean

that they also maximize downward social value along the hierarchy. Formally, at each period

l, the downward social value is given by

Vl(xl, xl+1, . . . ) = (1− xl) +
+∞∑
i=l+1

i−1∏
k=l

p(xk) (1− xi) . (2)

Then, if x∗ = (x∗0, x
∗
1, x
∗
2, . . . ) is first-best socially optimal it follows that xl∗ = (x∗l , x

∗
l+1, . . . )

maximizes (2).

In a decentralized context, each allocation scheme induces a game in which agents de-

cide their investment choices (which are private information). A profile of investments x∗ =

(x∗0, x
∗
1, . . . ) is a (Nash) equilibrium of this game if, for each i ∈ N0,

Ei(t, (x∗i , x∗−i)) ≥ Ei(t, (xi, x∗−i)),

for each xi ∈ R+.9

9Note that this is not an “open loop” equilibrium notion, as a predecessor’s level of investment cannot affect

an agent’s optimal choice.
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In equilibrium, each agent i ∈ N0, solves the following first order condition, if xi > 0:

p′(xi) =
1

t(i+1)i +
∑+∞

l=2

∏l−1
k=1 p(xi+k)t(i+l)i

. (3)

Note that (3) shows that every agent has a unique best response given the other agents’

investment levels (equilibrium or not). In fact, the game is supermodular (e.g., Topkis, 1979)

as there are monotonically increasing best replies.10

As we shall argue later, agents’ investments are, de facto, bounded and, thus, the fact that

the game is supermodular means that for any technology p, and any allocation scheme t, there

exists a pure strategy Nash equilibrium.

Remark 1 Uniqueness of equilibrium is not guaranteed. To show this, consider the technology

defined by

p(xi) =

√
xi

1
4

+
√
xi
.

Let t be the allocation scheme such that t00 = t11 = 1 = ti(i−2), for each i ≥ 2, and tij = 0

otherwise. As p(0) = 0, it follows that the profile (0, 0, . . . ) is an equilibrium. Now, (3)

corresponds to

1/8 = (1/4 +
√
xi)

3,

which has the solution x∗i = 1/16, with p(x∗i ) = 1/2. Thus, the profile (x∗i , x
∗
i , . . . ) is also an

equilibrium.

In a decentralized context, there are two natural optimality notions: one from the viewpoint

of a social planner; and one from the viewpoint of the initiator.

We say that an allocation scheme t∗ is decentralized socially optimal if there exists a profile

of investments x∗, which constitutes an equilibrium for the game induced by t∗, and V(t̄, x̄) ≤

V(t∗, x∗), for each allocation scheme t̄, inducing a game for which x̄ is an equilibrium. Such a

supporting equilibrium will sometimes be called socially optimal equilibrium.

We say that an allocation scheme, t∗, is initiator-optimal if there exists a profile of invest-

ments x∗, which constitutes an equilibrium for the game induced by t∗, and E0(t̄, x̄) ≤ E0(t∗, x∗),

for each allocation scheme t̄, inducing a game for which x̄ is an equilibrium. Such a supporting

equilibrium will sometimes be called initiator-optimal equilibrium.

10Note that increasing xj , so does p(xj). Thus, the denominator at (3) increases and the fraction decreases.

By strict concavity of p(·), the optimal xi increases.
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In other words, in a decentralized context, the socially optimal scheme maximizes the ex-

pected payoff of the hierarchy as a whole, while an initiator-optimal allocation scheme maxi-

mizes the expected payoff of the initiator. The latter can be seen as a particularly natural option

as the equilibrium of the game where the initiator sets the sharing rule, aiming to maximize

her payoff.

3 The results

We provide in this section the results of our paper. For a smooth passage, we defer their proofs

to the Appendix. We start out analyzing the centralized approach to our model. Then, we

turn to the decentralized approach, concentrating first on socially optimal allocation schemes

and on initiator-optimal allocation schemes afterwards.

3.1 Centralized social optimality

Our first result states the existence and uniqueness of a first-best socially optimal investment

profile, as well as some of its properties.

We say that a profile of investments x is constant if xi = xj for each pair i, j ∈ N0. Then,

we have the following result.

Theorem 1 There exists a unique first-best socially optimal investment profile. It is constant.

Theorem 1 states that the socially optimal investment profile is unique and constant among

members of the hierarchy. As mentioned above, the complete proof of Theorem 1 appears in

the Appendix. Let us simply note here that existence relies on the fact that the strategy space

of each agent can be restricted to the interval [0, 1] (a compact set). By Tychonoff’s theorem,

which states that the product of any collection of compact topological spaces is compact with

respect to the product topology, it follows that the (restricted) domain of the social value

function (V) is a compact set. As V is a continuous real-valued function therein, the extreme

value theorem concludes. As for uniqueness, it essentially follows from the property of dynamic

consistency and the fact that two constant profiles cannot achieve the (same) maximum social

value.

Theorem 1 sets the benchmark case, before moving to the decentralized context analyzed

next, which is the main part of this work. Our main concern is to analyze the design of optimal
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transfer schemes for the management of evolving hierarchies. Theorem 1 will nevertheless be

useful, for instance, to compute the price of anarchy, when moving from the centralized to the

decentralized context.

3.2 Decentralized social optimality

Our second result states that the (unique) socially optimal allocation scheme imposes full

transfers to the immediate predecessors.

Theorem 2 The allocation scheme t∗ = {t∗ij}{ij}⊂N0, where

t∗ij =

 1 if i = j + 1 ≥ 1, or i = j = 0

0 otherwise.

is the unique decentralized socially optimal scheme.

The proof of Theorem 2, which appears in the Appendix, relies on a crucial step showing

that, for each non-constant equilibrium profile, there exists a constant equilibrium profile with

the same expected length from the hierarchy, and higher social value. This mostly follows

from the fact that the maximal expected length is a strictly concave function of the expected

investment. As a decentralized socially optimal allocation scheme involves null self-transfers,

we obtain from the above that the scheme t∗ is optimal. Uniqueness follows the fact that the

equilibrium profile is constant.

It is interesting (and somewhat surprising) to obtain that such a simple scheme turns out

to be the unique decentralized socially optimal scheme. If one interprets that agents exert

effort recruiting, then imposing full transfers to immediate predecessors can actually be seen

as a way of rewarding effort, thus being a fair scheme. Furthermore, the scheme exhibits an

interesting feature that can be considered as some sort of impartiality, a basic requirement

of justice (e.g., Moreno-Ternero and Roemer, 2006). Namely, conditional on the fact that an

agent exists (i.e., she is recruited), then all agents get the same in expectations. Now, if one

instead interprets that initial agents (especially, the initiator herself) bring some additional

value (beyond the above-mentioned effort exerted while recruiting) to the joint venture, then

one might expect that other schemes (rewarding them further) would arise. But even under

that interpretation (which is not properly formalized in our model), we would not consider the

scheme from Theorem 2 as unfair.
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Theorem 2 can actually be viewed as formal support for the optimality of mining reward

(coinbase) transactions in Bitcoin where the full reward goes solely to the successful miner.

Indeed, it seems reasonable to argue that the original objective in Nakamoto (2008) was to define

a (decentralized) socially optimal mining reward scheme in order to ensure long run system

sustainability. The main message from Theorem 2 is that social optimality is obtained when

the entire reward from creating a new block goes to the agent that invests effort (computational

power) in authorizing the block. In our model, all miners are considered as one agent and each

individual miners’ expected reward is proportional to her computational power. Viewed in

isolation, this proportionality rests on firm normative ground (e.g., Chen et al., 2019).

Note that the socially optimal scheme implies that some realized agent will end up getting

a negative payoff (by her unsuccessful investment). Nevertheless, this prospect is dominated

by the expected payoff from transferring the whole revenue to the predecessor (knowing that

your potential successor will do the same). In that sense, it is for the common (greater) good

that one individual is sacrificed.

The following result is an indirect consequence of Theorem 2.

Proposition 1 The socially optimal equilibrium involves underinvestment.

The intuition behind Proposition 1 is the following. When an agent makes an investment,

she not only attracts the immediate successor, but also generates a positive externality so that

her successor has the opportunity to further expand the hierarchy and generate more revenue.

The first-best solution takes into account this positive externality and requests agents to make

more investment compared with the decentralized case.

3.3 Decentralized initiator-optimality

The next result determines a one-parameter family of focal and simple initiator-optimal allo-

cation schemes; namely, those imposing to each member a full transfer to two recipients (the

predecessor and the initiator) with a constant ratio among the transfers. Formally, for each

α ∈ [0, 1], the scheme tα is constructed so that each agent (i) transfers a fraction α of the whole

endowment (1) to the predecessor (i− 1), and the rest (1−α) to the initiator.11 As Theorem 3

11Agent 1 transfers everything to the initiator. Note that, if α = 0, the scheme would amount to transfer

everything to the initiator, whereas if α = 1, the scheme would amount to transfer everything to the immediate

predecessor, which is precisely the scheme at Theorem 2.
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states, for each technology, there exists a parameter so that the corresponding rule within the

family is initiator-optimal.

Theorem 3 There exists α ∈ (0, 1) such that the allocation scheme tα = {tαij}{ij}⊂N0, where

tαij =



α if i = j + 1 ≥ 2,

1− α if i ≥ 2 and j = 0,

1 if i ≤ 1 and j = 0,

0 otherwise.

is initiator-optimal.

The proof of Theorem 3 (which also appears in the Appendix) is silent about the construction

of the optimal ratio (α∗) describing the corresponding optimal scheme. The optimal α∗ can be

found as the solution to the problem

max
α∈[0,1]

Φ(α),

where Φ : [0, 1]→ R is such that, for each α ∈ [0, 1],

Φ(α) = (1− xα0 ) + p(xα0 )

(
1− αp(xα1 )

1− p(xα1 )

)
, (4)

and xα1 is such that

p′(xα1 ) =
1

α
, (5)

whereas xα0 is such that

p′(xα0 ) =
1− p(xα1 )

1− αp(xα1 )
. (6)

Note that (5) guarantees that all followers are selecting their optimal investment, given the

scheme tα, whereas (6) guarantees that the initiator is selecting her optimal investment, given

the scheme tα.12 Finally, (4) reflects the expected payoff for the initiator, at those investment

choices, i.e., Φ(α) = E0(tα, (xα0 , x
α
1 , x

α
1 , . . . )).

Unlike the socially optimal scheme characterized in Theorem 2, an initiator-optimal scheme

is not uniquely characterized. In fact, the important characteristic of an initiator-optimal

scheme is that all agents, except for the initiator, have the same expected payoff in equilibrium

(conditional on realization). For example, as shown in the next result, a member of the so-

called bubbling-up (or geometric) schemes mentioned in the introduction, suitably reinterpreted

12It is not difficult to show that the extreme cases (α = 0 and α = 1) cannot yield the optimal scheme, which

justifies the use of (5), the optimal condition for interior solutions.

14
http://www.upo.es/econ 



from Hougaard et al., (2017), is also initiator-optimal.13 Yet, the scheme defined in Theorem 3

remains intuitive and it is also simple to compute for given technologies. Another advantage,

as shown in the proof of Theorem 3, is that all agents (except for the initiator) have a dominant

strategy in the induced game.

Formally, for each λ ∈ [0, 1], the scheme tλ is constructed so that each agent (i) transfers

the whole endowment (1) to the predecessor (i − 1), who keeps a fraction λ and transfers the

rest (1− λ) to the predecessor, who keeps a fraction λ and transfers the rest ((1− λ)2) to the

predecessor, and so forth, with the initiator getting the residual. More precisely, the initiator

obtains from each agent i ≥ 1, the amount (1− λ)i−1 = 1− λ
∑i−2

k=0(1− λ)k.14

We have the following result.

Proposition 2 There exists λ ∈ (0, 1) such that the scheme tλ = {tλij}{ij}⊂N0, where

tλij =



λ(1− λ)i−j−1 if i > j > 0,

(1− λ)i−1 if i > 1 and j = 0,

1 i ≤ 1 and j = 0,

0 otherwise.

is initiator-optimal.

Proposition 2 provides a formal verification of the claim made in Pikard et al., (2011) that

bubbling-up schemes can provide optimal incentives for social mobilization and maximize the

expected income of the initiator (i.e., the chance of winning in their case). We acknowledge that

our setting is not equivalent to that in Pickard et al., (2011), but it is somewhat reminiscent. To

wit, in Pickard et al., (2011), they work with diffusion-based task environments which consist

of a set of agents, a set of edges characterizing social relationships between agents; a set of

tasks; a technology function that returns the success probability of a given agent in executing

a given task; and a budget that can be spent by the mechanism. In these environments, agents

are not aware of the tasks a priori. Instead, they become aware of as a result of being directly

informed by the mechanism through advertising; or being informed through recruitment by an

13In the original definition of a bubbling-up rule, each agent is allowed to keep a fraction λ of her value. Yet,

in our model, such a scheme can never be optimal as letting agents keep fractions of their own value represents

“dead capital” in terms of providing agents with incentives to invest. Thus, a natural reinterpretation is that

each agent transfers the whole endowment to the predecessor, who keeps a fraction λ and bubbles-up the rest.
14Note that, when λ = 0, the scheme simply amounts to transfer everything to the initiator, whereas when

λ = 1, the scheme simply amounts to transfer everything to the immediate predecessor.
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acquaintance agent. Also, when a task is completed, the mechanism is able to identify not only

the agent who executed it, but also the information pathway that led to that agent learning

about the task. Thus, a mechanism in this setting specifies a set of initial nodes to target (e.g.,

via advertising) and the payment made to each agent, so that budget balance is guaranteed.

Their recursive incentive mechanism divides the budget equally among all tasks and then

allocates the amount corresponding to each task in a geometric way. That is, if Bi denotes

the amount for task i, and agent j appears in position k in the sequence {1, 2, ..., n}, then j

receives Bi
2n−k+1 as payment. If we interpret that, in our setting, there are infinite sequences,

each of them starting from the initiator, and going all the way down to each of the agents in the

hierarchy, and that the budget for each of them is 1 (i.e., Bi = 1 for each i = 1, 2, ...), then the

scheme formalized in Proposition 2, with λ = 1
2
, and the proviso that the budget surplus goes

to the initiator, coincides with the recursive incentive mechanism from Pickard et al., (2011)

just described. The popularity of this mechanism comes from its success in a real-life social

mobilization experiment (the so-called DARPA Network Challenge). We illustrate here that,

theoretically speaking, the mechanism can indeed be proven optimal in our setting (for the

notion of initiator-optimality), but it is not unique in achieving that status.

4 Discussion

We have studied in this paper the optimal management of evolving hierarchies. While the

allocation of profits among agents has long been studied in the literature, no theoretical studies

exist dealing with the sharing of profits in order to maximize network expansions. Our stylized

model captures necessary incentives in sharing rules for evolving priorities in order to maximize

profits from a centralized and decentralized perspective. The canonical application of our

model is the sharing of profits in multi-level marketing, which popular companies such as

Avon, Herbalife, or Medlife use to entice sellers to expand the network of sellers.

In our model, an initiator invests (e.g., time or money) into finding a subordinate, who will

bring revenues to the joint venture and who will invest herself into finding another subordinate,

and so on. This process is stochastic and there is no amount of resources that guarantee that a

successor will join. Furthermore, the probability of enrollment has decreasing marginal returns

to investments. The initiator sets a transfer scheme specifying how revenues are reallocated,

via upward transfers, as the hierarchy evolves. As mentioned above, our analysis is general and

we do not need to specify a particular technology function to obtain our results.
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In general, our model captures any type of evolving linear network process with autonomous

nodes investing resources in continuing the hierarchical process. Our results demonstrate how

reallocation of the revenues obtained by individual nodes influences investment decisions and

welfare in the network. The model therefore has potentially important applications, relating to

diverse areas such as network induction interventions, respondent-driven sampling, strategic re-

cruiting in ongoing hierarchies, search and organizational hierarchy, incentive tree mechanisms,

blockchain and Bitcoin mining, social mobilization, or resource allocation in the presence of

a hierarchical structure. In particular, as mentioned above, our Theorem 2 can be viewed as

formal support for the optimality of mining reward (coinbase) transactions in Bitcoin where the

full reward goes solely to the successful miner. Furthermore, Proposition 2 can be seen a formal

verification of the claim made in Pikard et al., (2011) that bubbling-up schemes can provide

optimal incentives for social mobilization and maximize the expected income of the initiator.

It might be clarifying to mention that an equivalent interpretation of our model is that in

which there are infinitely many agents formed in a hierarchical structure. Each agent makes

effort to independently solve one task, and generates a certain reward if the task is successfully

solved. The probability of success is increasing in the effort level. Notice that an agent is

granted the chance to solve the task if and only if all of her predecessors successfully solve

their own tasks. This alternative interpretation of the model may help to understand that in

the social optimality problem and the initiator-optimality problem, (some) transfers go to the

immediate predecessor. Winter (2006) explores a similar setting in which a project has to be

managed by n individuals who act sequentially. Each individual has the option of investing at

a cost. Investment will increase the probability that her task is successfully performed from

δ ∈ [0, 1] to 1. For the project to succeed, all the tasks must succeed, in which case rewards are

distributed to agents. He characterizes the optimal investment-inducing mechanism, i.e., the

allocation of rewards that will induce all players to invest at minimal total cost to the principal,

in which rewards increase with the cost and with δ (so that shirking becomes less attractive).

More interestingly, late movers (whose investment decisions are observed by a small number of

players) are given higher rewards than early movers (whose investment decisions are observed

by many players) because the implicit threat against shirking is weaker.15 Those considerations

15This implies that the working environment may be susceptible to incentive reversal, that is, increasing all

agents’ rewards may result in the shrinking of the set of agents who exert effort (see also Winter 2009). This

is with a fixed structure of information about peers (either full information or no information at all). Winter

(2010) compares between different information structures and studies their effect on agents’ incentives.
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cannot be brought to our setting with an infinite number of agents; thus, with no option to

distinguish on the number of followers from one agent to another. Now, in Winter (2006), the

equilibrium strategies in the optimal mechanism prescribe each agent to invest if and only if all

agents she can observe invest as well. Thus, shirking by some players creates a domino effect,

which induces all subsequent movers to shirk as well. This is indeed a somewhat similar feature

to those exhibited by our optimal schemes in this setting.

We conclude mentioning that our analysis could be extended in several ways. We list here

some natural ones.

First, we note that our model has concentrated on the linear-hierarchy case, and a natural

next step is to extend the analysis to account for branch hierarchies, i.e., situations in which

a given agent can have more than one immediate successor. For instance, one could think of

recruiting teams rather than individuals, which might be necessary for some activities. In the

benchmark case, all teams recruited in each step are of the same size (say, k), and each member

of the team generates the same revenue (1/k in step 1, 1/k2 in step 2, 1/k3 in step 3 and so

on). This case could be easily addressed with the results from this paper.16 The more general

case in which teams recruited in each step can be of different size cannot be addressed in such

a straightforward way and, thus, remains open for future research.

Second, as mentioned above, our model could be considered as a moral hazard optimal

contracting problem, with the innovative aspect that the joint monetary outcome is an asym-

metric function of the agents’ (subordinates’) efforts, due to the hierarchical structure. The

case in which each subordinate writes her own contract (e.g., supply-chains) would be inter-

esting too. Addressing this problem, which could be considered within the incipient area of

mechanism games with multiple principals and agents (e.g., Yamashita, 2010), and also within

the literature on hierarchical contracting (e.g., Mookherjee, 2006) is left for future research.

Finally, the investment level is private information in our model, and as such not viable to

be contracted on. In order to bridge the gap between the first-best solution (with contractible

effort) and the socially optimal solution (without contractible effort) we would need to consider

intermediate scenarios regarding investment observability. One option would be to consider a

public (observable) signal such as the overall investment from the initiator to the immediate

predecessor. This is beyond the scope of this paper and, thus, it is also left for further research.

16This is essentially due to the fact that, in this case, there is a uniquely determined linear sub-hierarchy

connecting each agent in the branch hierarchy to the initiator.
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5 Appendix

Proof of Theorem 1

We prove first the existence of first-best socially optimal investment profiles. To do so, note first

that, by letting x be a constant profile with sufficiently small investments, we can assume, with-

out loss of generality, that the downward social values are non-negative, i.e., Vl(xl, xl+1, . . . ) ≥

0, for each period l.

Without loss of generality, we can restrict attention to profiles x = (x0, x1, . . . ) such that xi ≤ 1

for each i = 0, . . . ,∞. Otherwise, let i be the smallest integer for which xi > 1. If xj > 1 for

all j > i, then obviously V(z0) ≥ V(x), where z0 is such that

z0
k =

 xk for each k = 0, . . . , i− 1,

0 for each k = i, i+ 1, . . . .

Alternatively, let j1 be such that xj1 ≤ 1 < xj for each j = i, . . . , j1−1, and let z1 be such that

z1
k =

 xk for each k = 0, . . . , i− 1,

xj1+k−i for each k = i, i+ 1, . . . .

Then, V(z1) ≥ V(x). If z1
k ≤ 1, for each k > i (equivalently, xk ≤ 1, for each k > j1) we

have finished. Suppose, to the contrary, that there exists k > i such that z1
k > 1 ≥ z1

l for each

l = 1, . . . , k − 1. Then, we repeat the above process for z1, instead of x, to construct a profile

z2 such that z2
l ≤ 1 for each l = 1, . . . , k, and V(z2) ≥ V(z1) ≥ V(x). Eventually, this process

will lead to a sequence of profiles, whose limit z∗ is such that z∗k ≤ 1, for each k = 0, . . .∞, and

V(z∗) ≥ V(x).

Thus, the strategy space of each agent can be restricted to the interval [0, 1]. By Tychonoff’s

theorem, [0, 1]N is a compact set. As V is a continuous real-valued function, when restricted to

[0, 1]N, it follows (by the extreme value theorem), that V attains its least upper bound as its

maximum, which proves existence.

Let x̄ be a first-best optimal profile of investments. Clearly, x̄i > 0 for each i ∈ N0.17

Suppose, by contradiction, that x̄ = (x̄0, x̄1, . . . ) is not constant. Then, there exists a pair i, j ∈

N0, such that x̄i 6= x̄j. As x̄ is first-best socially optimal, it follows, by dynamic consistency,

that

Vi+1(x̄i+1, x̄i+2, . . . ) = Vj+1(x̄j+1, x̄j+2, . . . ) = V(x̄),

17The assumption that limx→0+ p
′(xi) = +∞ implies that it is optimal to invest a positive amount.
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which we denote by V̄. Note that V̄ > 0, as x̄i > 0 for each i ∈ N0. This means, in particular,

that x̄i and x̄j are the solutions for the problems

arg max p(xl)V̄− xl,

for l = i, j, whose first-order conditions are

p′(xl)V̄− 1 = 0,

for l = i, j. Now, by the strict concavity of p, it follows that both solutions are the same, i.e.,

x̄i = x̄j, which is a contradiction.

In order to show uniqueness, note first that the function f(γ) = 1−γ
1−p(γ)

has a unique max-

imum within the interval [0, 1].18 Let γ̂ be such a maximum and let x be the corresponding

constant investment profile. By dynamic consistency, a first-best optimal profile must be con-

stant. By the above,

V(x) =
1− γ̂

1− p(γ̂)
>

1− γ
1− p(γ)

= V(y),

for each γ ∈ [0, 1] \ {γ̂} and y = (γ, γ, . . . ). Thus, x is the unique first-best optimal profile,

which concludes the proof of Theorem 1. �

Proof of Theorem 2

For each expected investment X, let Lmax(X) be the highest obtainable expected length from

an investment profile x with expected investment I(x) = X.

Step 0. Lmax is well defined.

For each investment profile x, and each i ∈ N, let ai =
∏i−1

k=0 p(xk), and bi =
∏i−1

k=0 p(xk)xi.

Note that,
+∞∑
i=1

ai = lim
N→∞

N∑
i=1

ai = lim
N→∞

N∑
i=1

i−1∏
k=0

p(xk) = L(x)− 1,

and
+∞∑
i=1

bi = lim
N→∞

N∑
i=1

bi = lim
N→∞

N∑
i=1

i−1∏
k=0

p(xk)xi = I(x)− x0.

It might well be the case that L(x) = ∞ and I(x) = ∞ (or, equivalently, that
∑+∞

i=1 ai and∑+∞
i=1 bi are divergent series). Now, in order to show Lmax is well defined, we prove that finite

18As f(1) = 0, limγ→0+ p
′(γ) = +∞, and p′′(γ) < 0, it follows that p′(γ)f(γ) = 1 (or, equivalently, f ′(γ) = 0)

has a unique solution.
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expected investment implies finite expected length. This is equivalent to saying that if
∑+∞

i=1 bi

is a convergent series, then so is
∑+∞

i=1 ai. Assume then that
∑+∞

i=1 bi is a convergent series.

Let N1 denote the set of periods for which investment is lower (or equal) than 1, and

N2 denote the set of the remaining periods. That is, N1 = {i ∈ N0 such that xi ≤ 1} and

N2 = N0 \N1. Let N i
1 = N1 ∩ {0, 1, . . . , i− 1} and ni1 be its cardinality. Then,

∑
i∈N1

ai =
∑
i∈N1

i−1∏
k=0

p(xk) <
∑
i∈N1

∏
k∈N i

1

p(xk) ≤
∑
i∈N1

p(1)n
i
1 ≤

+∞∑
i=1

p(1)i =
1

1− p(1)
< +∞,

where the inequalities follow from the fact that p(γ) < 1 for each γ ∈ R+, and that xi ≤ 1 for

each i ∈ N i
1.

On the other hand, as ai < aixi = bi, for each i ∈ N2, and
∑+∞

i=1 bi is a convergent series, it

follows that so is
∑

i∈N2
bi. Thus, by the comparison test,

∑
i∈N2

ai is also a convergent series.

Thus,
∑+∞

i=1 ai =
∑

i∈N1
ai +

∑
i∈N2

ai, and it is also a convergent series, as desired.

We now show that Lmax(X) exists for any given X. For that, it is sufficient to show that

each agent’s investment can be restricted to a bounded interval, without loss of generality. To

do so, we aim to show that, for each x with I(x) = X, there exists z such that zt ≤ X for

each t, I(z) = X, and L(z) ≥ L(x). Note that if L(x) ≤ 1 + p(X), it suffices to consider

z = (X, 0, 0, · · · ), as I(z) = X = I(x) and L(z) = 1 + p(X). Thus, in what follows, we suppose

that L(x) > 1 + p(X). Or, equivalently, L(x)−1
I(x)

> p(X)
X

.19

Let Lt(x) denote the expected length from period t onwards, i.e.,

Lt(x) = 1 + p(xt) + p(xt)p(xt+1) + · · · = 1 +
+∞∑
i=t

i∏
k=t

p(xk).

And let It(x) denote the expected investment from period t onwards, i.e.,

It(x) = xt + p(xt)xt+1 + p(xt)p(xt+1)xt+2 + · · · = xt +
+∞∑
i=t

i∏
k=t

p(xk)xi.

The ratio Lt(x)−1
It(x)

represents the expected length obtained per expected investment unit,

from period t onwards. Comparing this ratio with p(X)
X

, we determine whether the tails at each

period t are efficient or not.

Now, let x be an investment profile such that I(x) = X, and for which there exists t such

that xt > X ≥ xs, for each s ≤ t. Let xη be the investment profile resulting from x after

19In what follows, we shall also make repeated use of two general properties of inequalities. More precisely,

let ε, ς, τ, υ, κ ∈ R++ such that ε > τ , ς > υ, κ > ε
ς and κ < τ

υ . Then κ > ε−τ
ς−υ and τ

υ >
ε+τ
ς+υ .
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increasing x0, by η, where 0 < η ≤ X − x0. As L(x)−1
I(x)

> p(X)
X

, it follows that

∂L(xη)

∂η
≥ p′(X) , for all 0 < η ≤ X − x0. (7)

We now distinguish two cases:

Case 1. Lt+1(x)−1
It+1(x)

≤ p(X)
X

.

Let z be an investment profile such that

zk =


x0 + ε for k = 0,

xk for k = 1, . . . t,

0 otherwise,

where ε > 0 is such that I(z) = I(x) = X. Note that, by (7), because we cut off the inefficient

tail and add instead to the investment at time zero, L(z) > L(x). Now, as zt = xt > X, we

have Lt(z)−1
It(z) = p(xt)

xt
≤ p(X)

X
. Thus, we can again create a new profile z′ from z where zt = xt is

replaced with 0 and z0 is increased until the expected investment is the same. Again, this new

profile will have a greater length.

Case 2. Lt+1(x)−1
It+1(x)

≥ p(X)
X

.

In this case, we aim to show that the new profile obtained from “skipping” xt, and then

adjusting x0 so that the expected investment is unchanged, has greater length. For this, note

that

Lt(x) = 1 + p(xt)Lt+1(x),

and

It(x) = xt + p(xt)It+1(x).

Thus,20

Lt(x)− 1

It(x)
≤ Lt+1(x)− 1

It+1(x)
.

Note also that

Lt(x)− Lt+1(x) = 1− (1− p(xt))Lt+1(x) (8)

and

It(x)− It+1(x) = xt − (1− p(xt))It+1(x). (9)

If It(x) ≤ It+1(x), then by the above observation that Lt(x)−1
It(x)

≤ Lt+1(x)−1
It+1(x)

, it follows that, by

skipping xt and possibly reducing investment in xt+1 until the same expected investment has

been obtained, we can increase length.

20This holds provided Lt+1(x)−1
It+1(x) ≥

p(xt)
xt

, which follows because of the premise at Case 1, and the fact that we

are assuming that x is a profile with xt > X. Thus, by the strict concavity of p, p(X)
X > p(xt)

xt
.
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If It(x) > It+1(x), and Lt(x) ≤ Lt+1(x), we can clearly increase the length by increasing

investments (for agent 0, say) until the original level is obtained, and we are done.

Finally, if It(x) > It+1(x), and Lt(x) > Lt+1(x), by (8), (9), we obtain21

Lt(x)− Lt+1(x)

It(x)− It+1(x)
=
p(xt)− (1− p(xt))(Lt+1(x)− 1)

xt − (1− p(xt))It+1(x)
<
p(X)

X
(10)

This means that, by skipping xt, one can increase the investment in x0 until the same level of

expected investment has been obtained, while the expected length has been increased.

The argument above can be replicated for eventual subsequent periods with investments

above X.

Step 1. Lmax is a strictly concave and differentiable function.

Let x and y be investment profiles, with expected investments I(x) = X and I(y) = Y , such

that L(x) = Lmax(X) and L(y) = Lmax(Y ). By the strict concavity of p, there exists a unique

z0 <
1
2
x0 + 1

2
y0 such that p(z0) = 1

2
p(x0) + 1

2
p(y0). Let s0 = p(x0)

2p(z0)
. Then, 0 < s0 < 1 and

1− s0 = p(y0)
2p(z0)

.

Now, replace the initiator’s investment at both profiles by z0 and consider the lottery z̄0

arising from combining both resulting profiles with probabilities s0 and 1 − s0, respectively.

Formally, let z̄0 = [(z0, x
|1; s0), (z0, y

|1; 1− s0)]. Then,

I(z̄0) = s0I((z0, x
|1)) + (1− s0)I((z0, y

|1)) =
I(x) + I(y)

2
+ z0 −

1

2
x0 −

1

2
y0 <

I(x) + I(y)

2
,

and

L(z̄0) = s0L((z0, x
|1)) + (1− s0)L((z0, y

|1)) =
L(x) + L(y)

2
.

Similarly, by the strict concavity of p, there exists a unique z1 < s0x1 + (1− s0)y1 such that

p(z1) = s0p(x1) + (1− s0)p(y1). Let s1 = s0p(x1)
p(z1)

. Then, 0 < s1 < 1 and 1− s1 = (1−s0)p(y1)
p(z1)

.

Let z̄1 = [(z0, z1, x
|2; s1), (z0, z1, y

|2; (1− s1))]. Then,

I(z̄1) = s1I((z0, z1, x
|2)) + (1− s1)I((z0, z1, y

|2))

= z0 + p(z0)z1 +
s1p(z0)p(z1)

p(x0)p(x1)
(I(x)− x0 − p(x0)x1) +

(1− s1)p(z0)p(z1)

p(y0)p(y1)
(I(y)− y0 − p(y0)y1)

= z0 + p(z0)z1 +
1

2
(I(x)− x0 − p(x0)x1) +

1

2
(I(y)− y0 − p(y0)y1)

=
I(x) + I(y)

2
+

(
z0 −

1

2
x0 −

1

2
y0

)
+

(
p(z0)z1 −

1

2
p(x0)x1 −

1

2
p(y0)y1

)
<

I(x) + I(y)

2
,

21Take, in Footnote 18, κ = p(X)
X , ε = p(xt), ς = xt, τ = (1− p(xt))(Lt+1(x)− 1), and υ = (1− p(xt))It+1(x).

Then, obviously, κ > ε
ς = p(xt)

xt
, and κ < τ

υ = Lt+1(x)−1
It+1(x) , provided we are assuming that x is a profile with

xt > X.
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and

L(z̄1) = s1L((z0, z1, x
|2)) + (1− s1)L((z0, z1, y

|2))

= 1 + p(z0) +
s1p(z0)p(z1)

p(x0)p(x1)
(L(x)− 1− p(x0)) +

(1− s1)p(z0)p(z1)

p(y0)p(y1)
(L(y)− 1− p(y0))

= 1 + p(z0) +
1

2
(L(x)− 1− p(x0)) +

1

2
(L(y)− 1− p(y0))

=
L(x) + L(y)

2
,

Let z̄ denote the limit of the sequence z̄0, z̄1, z̄2, . . . constructed as above. Thus,

I(z̄) <
I(x) + I(y)

2
,

and

L(z̄) =
L(x) + L(y)

2
.

Finally, let ε > 0 be such that

z̄0 + ε+
p(z̄0 + ε)

p(z̄0)
(I(z̄)− z̄0) =

1

2
(I(x) + I(y)) ,

and z∗ be the profile such that

z∗k =

 z̄k + ε for k = 0,

z̄k otherwise.

Then,

I(z∗) = z̄0 + ε+
p(z̄0 + ε)

p(z̄0)
(I(z̄)− z̄0) =

I(x) + I(y)

2
,

and

L(z∗) ≥ L(z̄) =
L(x) + L(y)

2
.

The above shows that Lmax is strictly concave. We conclude this step showing that it

is also differentiable. Fix X > 0. As Lmax is strictly concave, both the left and the right

derivative at X exist, i.e., Lmax
− (X) and Lmax

+ (X). Thus, it suffices to show that Lmax
− (X) =

Lmax
+ (X). Let x be an investment profile such that I(x) = X and L(x) = Lmax(X). As p is

differentiable, L(x) is differentiable at x0. As ∂L(x)
∂x0
≤ Lmax

+ (X), and ∂L(x)
∂x0
≥ Lmax

− (X), it follows

that Lmax
+ (X) ≥ Lmax

− (X). As Lmax is strictly concave, Lmax
+ (X) ≤ Lmax

− (X). Thus, altogether,

Lmax
− (X) = Lmax

+ (X), as desired.

Step 2. For each non-constant investment profile x, there exists a (unique) constant profile

y such that L(x) = L(y) and I(y) < I(x) .
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As mentioned at Step 0, Ll(x) = 1 + p(xl)Ll+1(x), for each investment profile x, and each

period l. Thus, Ll(x) = Ll′(x), for all periods l and l′, if and only if x is a constant profile.

Consequently, if x is a non-constant profile, there exists l such that L(x) 6= Ll(x). Without

loss of generality, assume L(x) < Ll(x).22 As the derivative of Lmax at I(x) is ∂L(x)
∂x0

, it follows,

by the strict concavity of Lmax, that it is possible to marginally decrease xl and increasing x0

while keeping the expected length constant and get a strictly lower expected investment. From

this, it follows that x can also be improved upon constructing another profile with the same

expected investment and strictly greater expected length. Thus if L(x) = Lmax(I(x)), then x

must be a constant investment profile.

Conversely, L(y) = Lmax(I(y)) for each constant profile y. Otherwise, if another profile z

with I(z) = I(y) yields a maximal possible expected length greater that L(y) then z must also

be a constant profile (contradicting that they have same expected investment).

To conclude, let x be an arbitrary non-constant profile. Let y be the (unique) constant

profile satisfying that L(y) = L(x). It follows from the above that I(y) < I(x), as desired.

Step 3. For each non-constant equilibrium profile x, there exists a (unique) constant equi-

librium profile y such that L(x) = L(y) and V(x) < V(y).

Let x be a non-constant equilibrium profile, for a certain transfer scheme t. Without loss

of generality, suppose that tii = 0 for each i ∈ N (recall that t00 = 1, by definition). For each

i ∈ N0, let E∗i (t, x) denote i’s expected gross return from investment conditional on realization

of the next agent (i+ 1). Formally,

E∗i (t, x) =
1

p(xi)

+∞∑
l=1

l−1∏
k=0

p(xi+k)t(i+l)i.

Note that

p(x0)E∗0(t, x) + p(x0)p(x1)E∗1(t, x) + · · · = L(x)− 1.

Furthermore, for each i ∈ N0, let e(xi) denote the amount of expected transfer to agent i,

conditional upon realization of agent i + 1 which incentivizes investment xi, i.e., e(xi) = 1
p′(xi)

and e(0) = 0. Let z = (ξ, ξ, . . . ) be the constant profile such that

p(ξ)e(ξ) + p(ξ)p(ξ)e(ξ) + · · · = p(x0)E∗0(t, x) + p(x0)p(x1)E∗1(t, x) + . . . (11)

Thus,

e(ξ) =
L(x)− 1

L(z)− 1
.

22The case L(x) > Ll(x) is similar.

25
http://www.upo.es/econ 



We distinguish two cases.

Case 1: I(z) ≥ I(x).

Let z′ be a constant profile such that I(z′) = I(x). It follows, by Step 2, that L(z′) ≥ L(x).

Hence, L(z) ≥ L(x). Thus, e(ξ) ≤ 1. The profile z can therefore be supported by the scheme

that transfers e(ξ) from agent l + 1 to l, provided agent l + 1 is realized. As I(z′) ≤ I(z),

it follows that z′ can also be supported. By continuity of Lmax it follows that there exists a

constant profile y such that L(y) = L(x) and I(y) < I(z′) = I(x). As z′ can be supported in

equilibrium, so can y.

Case 2: I(z) < I(x).

If L(z) ≥ L(x) then z can be supported as described in Case 1 and the proof of Step 3

would equivalently be completed. Thus, we assume that L(z) < L(x), i.e., e(ξ) > 1. Let z′ be

the constant profile such that L(z′) = L(x) > L(z). Then, z′0 = z′1 = z′2 = · · · = ξ′ > ξ and,

therefore, e(ξ′) > e(ξ) > 1.

Let ω0 = 1, ω1 = p(x0), ω2 = p(x0)p(x1), etc. Then,
∑∞

k=0 ωk = L(x) = L(z′), and∑∞
k=0 ωkp(xk) = L(x)− 1 = L(z′)− 1 = p(ξ′)L(z′), which implies that p(ξ′) =

∑∞
k=0 ωkp(xk)∑∞

k=0 ωk
. As

p is strictly concave, it follows that ξ′ <
∑∞
k=0 ωkxk∑∞
k=0 ωk

. Furthermore, as g(γ) = p(γ)
p′(γ)

= p(γ)e(γ) is

a strictly increasing and convex function, it follows that

g(ξ′) < g

(∑∞
k=0 ωkxk∑∞
k=0 ωk

)
<

∑∞
k=0 ωkg(xk)∑∞

k=0 ωk
.

Thus,
∞∑
k=0

ωkp(ξ
′)e(ξ′) <

∞∑
k=0

ωkp(xk)e(xk) = L(x)− 1,

which implies that e(ξ′) < 1, a contradiction.

Step 4. The allocation scheme in the statement is socially optimal.

Note first that a socially optimal allocation scheme x∗ involves null self-transfers. By Step 3,

a socially optimal equilibrium must be constant. Let ξ be the (constant) investment associated

with the socially optimal equilibrium. It follows from Step 3 that e(ξ) ≤ 1. Then, the scheme

that transfers e(ξ) from agent l + 1 to l, provided agent l + 1 is realized, is well-defined and

supports that equilibrium. Note that, as the equilibrium of a constant scheme involves that E∗i
is constant across agents, it follows that E∗i = 1, for each i, as this is the only way that the

identity p(ξ)E∗0 + p(ξ)p(ξ)E∗1 + · · · = L(x∗) − 1 can hold. Altogether, it shows that t∗ is the

socially optimal scheme.

Step 5. Uniqueness.
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Let x∗ denote the decentralized socially optimal (constant) equilibrium profile induced by

t∗. By contradiction, assume that there exists another decentralized socially optimal scheme t

with equilibrium profile x∗. As agent 1 can only transfer value to agent 0, or herself, we can

increase social value by increasing t10 until we reach t10 = 1. Moreover, tj0 = 0, for each j ≥ 2

(as, otherwise, agent 0 would over-invest). By induction, we obtain that t = t∗, a contradiction.

�

Proof of Proposition 1

Let z∗ = (ξ, ξ, . . . ) be the (constant) first-best socially optimal investment profile and x∗ =

(χ, χ, . . . ) be the socially optimal equilibrium investment profile (which is also constant, by

Theorem 2). As shown in the proof of Theorem 1, p′(ξ) = 1−p(ξ)
1−ξ and 1−ξ

1−p(ξ) = V(z∗) > V(0) = 1.

Thus, ξ < p(ξ). Now, by Theorem 2, p′(χ) = 1. Thus, p′(ξ) = 1−p(ξ)
1−ξ < 1 = p′(χ). Therefore,

by strict concavity of p, ξ > χ, as desired. �

Proof of Theorem 3

Step 1. There exists an initiator-optimal allocation scheme.

First we show that, without loss of generality, investments are bounded. For this, recall

that we know from Theorem 2 that the socially optimal equilibrium investments x are constant

over time. In particular, L(x) is finite.

As in the proof of Theorem 2, let E∗i (t, x) denote i’s expected gross return from investment

conditional on realization of the next agent. Formally, E∗i (t, x) = 1
p(xi)

∑+∞
l=1

∏l−1
k=0 p(xi+k)t(i+l)i =∑+∞

l=1

∏l−1
k=1 p(xi+k)t(i+l)i. Furthermore, let e(E∗) denote the optimal investment for an agent,

provided that the agent receives an expected payoff of E∗ if successful in obtaining the next

agent.

We claim that, without loss of generality, we can restrict attention to a bounded set of

potential investments. In particular, for each agent we can restrict attention to investments

within [0, e(L(x))], where L(x) is the expected length of the hierarchy under socially optimal

equilibrium investments x.

By contradiction, suppose that, for an initiator-optimal scheme t, an equilibrium y exists

such that yi > e(L(x)). As y is initiator-optimal, y0 ≥ yi > e(L(x)).23 Now, consider the

subgame starting from agent 1, and the scheme obtained from t by redirecting any transfer to

23Otherwise, the whole scheme could be truncated, assigning the residual transfers to i.
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agent 0 to agent 1 instead. The social value of the equilibrium of the subgame starting from

agent 1 (obtained after appropriately increasing the investment of agent 1 until equilibrium is

obtained) is higher than the social value of x.24 This contradicts that x is a socially optimal

equilibrium.

Thus, without loss of generality, we can restrict attention to investments between 0 and

L(x) for all agents.

Next, observe that the set of equilibria (and associated schemes) is a closed set.25 As it is

also a bounded set, it follows that there exists an equilibrium x∗ with an associated scheme t∗

such that E0(t∗, x∗) ≥ E0(t, x), for each equilibrium x in the game induced by scheme t.

Step 2. There exists α ∈ (0, 1) such that the scheme defined by

tαij =



α if i = j + 1 ≥ 2,

1− α if i ≥ 2 and j = 0,

1 if i ≤ 1 and j = 0,

0 otherwise.

is initiator-optimal

Let t be an initiator-optimal allocation scheme. We now claim some properties of t.

First, tii = 0, for each i ∈ N0 \ {0}. The reason is simply that a self-transfer is irrelevant for

the investment decision. More precisely, if tii > 0, for some i ∈ N0\{0}, and x is an equilibrium

of the induced game, then we could construct a transfer t′, such that t′ii = 0, t′i0 = ti0 + tii,

and t′jk = tjk otherwise, and whose induced game would have x′ as an equilibrium, such that

E∗0(t, x) < E∗0(t′, x′).

Let N+
i denote the set of i’s followers (including i) in the hierarchy, i.e., N+

i = {i, i+1, . . . }.

Let x be an initiator-optimal equilibrium in the game induced by t, and let Si(t, x) denote the

expected total transfers from members of coalition N+
i to the predecessors of i, given agent i

24Without L(x) to agent 1, the social value of the subgame of y starting from agent 1 is non-negative, and

adding L(x) to agent 1 would increase the social value of the subgame with at least L(x), even before the

increase in investment of agent 1.
25This is due to the fact that each agent’s optimal investment is continuous in the transfers, and the Nash

equilibrium inequality condition holds in all limit points.
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joins the hierarchy. Formally,26

Si(t, x) = (ti0 + ti1 + · · ·+ tii−1) +

+ p(xi)(t(i+1)0 + t(i+1)1 + · · ·+ t(i+1)(i−1)) +

+ p(xi)p(xi+1)(t(i+2)0 + t(i+2)1 + · · ·+ t(i+2)(i−1)) +

· · ·

=
+∞∑
j=i

j−1∏
l=i

p(xl)
i−1∑
k=0

tjk.

Let j be such that 0 < j < i. We claim that Si(t, x) = Sj(t, x).

Suppose, by contradiction, that Si(t, x) > Sj(t, x). Then, a new allocation scheme t′ can be

defined as follows. For each pair k, l ∈ N+
j , with l ≤ k, let t′kl = t(k+(i−j))(l+(i−j)). As for the rest

of the transfers, the only constraint is that E∗m(t′, x′) = E∗m(t, x), for each m = 1, . . . , j− 1, and

E∗0(t′, x′) > E∗0(t, x). Note that such an allocation scheme t′ is feasible due to the hypothesis

that Si(t, x) > Sj(t, x).

As x was an initiator-optimal equilibrium of the game induced by t, the allocation scheme

t′ induces an equilibrium x′ with the following features:

• x′0 > x0 and E∗0(t′, x′) > E∗0(t, x),

• x′l = xl for each l = 1, 2, . . . , j − 1,

• x′l = xi+j−l for each l = j, j + 1, . . . .

But then, because of the first item, t would not be initiator-optimal, a contradiction.

Suppose now that Si(t, x) < Sj(t, x). Then, a new allocation scheme t′ can be defined as

follows. For each pair k, l ∈ N+
i , with l ≤ k, let t′kl = t(k+(j−i))(l+(j−i)). As for the rest of

the transfers, the only constraint is that E∗m(t′, x′) = E∗m(t, x), for each m = 1, . . . , i − 1, and

E∗0(t′, x′) > E∗0(t, x). Note that such an allocation scheme t′ is feasible due to the hypothesis

that Si(t, x) < Sj(t, x).

As x was an initiator-equilibrium of the game induced by t, the allocation scheme t′ induces

an equilibrium x′ with the following features:

• x′0 > x0 and E∗0(t′, x′) > E∗0(t, x),

• x′l = xl for each l = 1, 2, . . . , i− 1,

26We consider the notational convention that
∏j−1
l=j p(xl) = 1.
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• x′l = xl−i+j for each l = i, i+ 1, . . . .

But then, because of the first item, t would not be initiator-optimal, a contradiction.

We therefore conclude that Si(t, x) = Sj(t, x).

Next, we argue that an initiator-optimal allocation scheme induces a symmetric equilibrium

among the agents following the initiator. For this, suppose that t is initiator-optimal and x is

a corresponding initiator-optimal equilibrium.

Now, suppose that for some i ≥ 1 we have xi 6= xi+1.

We then argue that it is possible to change t to another allocation scheme t̂ such that a

new equilibrium x̂ is obtained with x̂i = x̂i+1 and x̂j = xj for all j ≤ i, and, in particular, the

payoff to agent 0 is the same at x̂ and at x.

For this, we establish t̂ such that agent i+1 faces the same transfers from subsequent agents

as i did under scheme t. More precisely, let t̂ satisfy the following:

• t̂kj = t(k−1)(j−1), for each k ≥ j ≥ i+ 1,

• t̂kj = tkj, for each j ≤ k ≤ i+ 1,

Now, let x̂ be defined by x̂j = xj for j ≤ i and x̂j = xj−1 for j > i. Then, as Si+1(t̂, x̂) =

Si(t, x) it is possible to choose the remaining transfers t̂kj (for j ≤ i, k ≥ i+ 2) such that each

agent j ≤ i gets the same expected gross return from investment conditional on realization

of the next agent with x̂j under t̂, as with xj under t. This implies that x̂ is an equilibrium

under t̂, from where we can conclude. This process can be sequentially repeated for increasing

i, starting at i = 1. Thus, without loss of generality, we can assume that xi = xj for each pair

i, j > 0. Moreover, as (x, t) is initiator-optimal, x0 ≥ xi for each i > 0.

Now, for each i > 0, let α = E∗i (t, x). As x0 ≥ xi for each i > 0, it follows by Theorem

2, that α ≤ 1. It is straightforward to show that α = 1 and α = 0 cannot be optimal. Thus,

α ∈ (0, 1).

To conclude, consider the scheme tα = {tαij}{ij}⊂N0 , where

tαij =



α if i = j + 1 ≥ 2,

1− α if i ≥ 2 and j = 0,

1 if i ≤ 1 and j = 0,

0 otherwise.

This scheme induces a game with an equilibrium in which each agent (except for the initiator)

invests xi and gets an expected gross return from investment conditional on realization of the
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next agent of α. Thus, Ei(tα, x) = Ei(t, x) for each i > 0. The initiator gets then the residual.

As E∗i (tα, x) = E∗i (t, x) for each i > 0, and p(x0)E∗0(t, x) + p(x0)p(x1)E∗1(t, x) + · · · = L(x)− 1,

it follows that E∗0(tα, x) = E∗0(t, x). �

Proof of Proposition 2

Let us start considering the initiator-optimal scheme tα from Theorem 3. The game induced by

such a scheme involves that all agents (except for the initiator) invest xα1 , the unique solution

of the equation p′(γ) = 1/α. As for the initiator, the optimal investment in that game is xα0 ,

the solution to p′(γ) =
1−p(xα1 )

1−αp(xα1 )
. Then, for each α ∈ (0, 1), the expected payoff for the initiator

is given by

E0(tα, (xα0 , x
α
1 , x

α
1 , . . . )) = (1− xα0 ) + p(xα0 )

(
1− αp(xα1 )

1− p(xα1 )

)
Now, the expected return from such an investment for the initiator with the scheme tλ is

E0(tλ, (xα0 , x
α
1 , x

α
1 , . . . )) = (1− xα0 ) + p(xα0 ) + p(xα0 )p(xα1 )(1− λ) + p(xα0 )p(xα1 )p(xα1 )(1− λ)2 + · · ·

= (1− xα0 ) + p(xα0 )
+∞∑
i=1

((1− λ)p(xα1 ))i .

= (1− xα0 ) +
p(xα0 )

1− (1− λ)p(xα1 )
.

Thus, it is straightforward to show that

E0(tα, (xα0 , x
α
1 , x

α
1 , . . . )) = E0(tλ, (xα0 , x

α
1 , x

α
1 , . . . )),

if and only if
1− αp(xα1 )

1− p(xα1 )
=

1

1− (1− λ)p(xα1 )
. (12)

As the right hand side takes the value 1
1−p(xα1 )

, when λ = 0, and 1, when λ = 1, it follows that

there exists a unique λ̂ ∈ (0, 1) for which (12) holds. By (12), it also follows that, for each

other agent i,

Ei(tλ̂, xα1 ) = p(xα1 )λ̂
+∞∑
j=0

((p(xα1 )(1−λ̂))j−xα1 =
p(xα1 )λ̂

1− p(xα1 )(1− λ̂)
−xα1 = αp(xα1 )−xα1 = Ei(tα, xα1 ).

Altogether, this shows that, with a suitable choice of λ, the corresponding bubbling-up scheme

can be initiator-optimal as well. �
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