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Phenological and water-use patterns underlying maximum 
growing season length at the highest elevations: implications 
under climate change

Juan Carlos Linares1,3, Felisa Covelo1, José Antonio Carreira2 and José Ángel Merino1

1Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km. 1, 41002 Sevilla, Spain; 2Departamento de Biología Animal, 
Biología Vegetal y Ecología, Universidad de Jaén, Ed. B3, Paraje las Lagunillas s/n, 23071 Jaén, Spain; 3Corresponding author (jclincal@upo.es)

Received October 11, 2011; accepted January 4, 2012; published online February 15, 2012; handling Editor Michael Ryan

Consequences of climate change on tree phenology are readily observable, but little is known about the variations in pheno-
logical sensitivity to drought between populations within a species. In this study, we compare the phenological sensitivity to 
temperature and water availability in Abies pinsapo Boiss., a drought-sensitive Mediterranean fir, across its altitudinal distribu-
tion gradient. Twig growth and needle fall were related to temperature, precipitation and plant water status on a daily scale. 
Stands located at the top edge of the distributional range showed the most favourable water balance, maximum growth rates 
and little summer defoliation. Towards higher elevations, the observed delay in budburst date due to lower spring tempera-
tures was overcome by a stronger delay in growth cessation date due to the later onset of strong water-deficit conditions in 
the summer. This explains an extended growing season and the greatest mean growth at the highest elevation. Conversely, 
lower predawn xylem water potentials and early partial stomatal closure and growth cessation were found in low-elevation 
A. pinsapo trees. An earlier and higher summer peak of A. pinsapo litterfall was also observed at these water-limited sites. 
Our results illustrate the ecophysiological background of the ongoing altitudinal shifts reported for this relict tree species 
under current climatic conditions.

Keywords: Abies pinsapo, altitudinal gradient, growing degree days, litterfall, Mediterranean firs, phenology, stomatal 
conductance, twig growth, xylem water potential.

Introduction

With evidence of climate change and related biological 
responses accumulating rapidly, considerable attention has 
turned to predicting the fate of trees and forests (Polgar and 
Primack 2011). Understanding how climate affects tree phenol-
ogy and how these changes in phenology will affect tree 
growth and survival is an important component for predicting 
how species will respond to global warming and increasing 
drought stress (Pigliucci et al. 2006, Aitken et al. 2008).

Populations would persist at their current location and with-
stand environmental changes if their adaptive capacities match 

the changes (Ghalambor et al. 2007, IPCC 2007). Phenological 
adjustments could be one of the most significant ways by 
which trees can react and cope with rapid environmental 
change (Kramer 1995, Pigliucci et al. 2006, Valladares et al. 
2006), allowing trees to persist in their environment.

In temperate forests, the annual sequence of woody plant 
phenological phases is closely linked to temperature and pho-
toperiod (Kramer 1995, Morin et al. 2009, Polgar and Primack 
2011), suggesting a fine adjustment of tree physiology in 
response to climate seasonality (Chuine and Beaubien 2001, 
Gordo and Sanz 2010). However, this regulation should be 
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more complex, and has been less investigated, in mountainous 
areas under Mediterranean-type climates. Mediterranean sea-
sonality splits the favourable growing season into two periods 
separated by summer drought, spring and autumn, where 
water availability is subject to a high variance and unpredict-
ability (Martínez et al. 1998, Linares et al. 2009, Pinto et al. 
2011).

The southernmost European mountain forests are perhaps 
among the most vulnerable areas for the loss of tree species 
due to climate change (IPCC 2007). Indeed, several recent 
studies focusing on tree growth in the Iberian Mediterranean 
mountains have reported forest decline related to temperature 
rise and increasing drought (Macias et al. 2006, Andreu et al. 
2007, Linares and Tíscar 2010, Camarero et al. 2011). Past 
climate-warming events seem to have promoted shifts in plant 
species and biomes towards the poles or higher elevations 
(Taberlet and Cheddadi 2002). However, the extent of current 
forest vulnerability to climate change presents large uncertain-
ties; particularly, within-range tree responses to regional warm-
ing and extreme drought events remain poorly understood.

Relict Mediterranean mountain tree species typically show a 
relatively poor adaptation to local conditions and a high sensi-
tivity to climatic stress (Linares and Tíscar 2010). They may 
thus serve as a model case to assess general mechanisms and 
patterns for forest tree response to temperature increases and 
changing regional rainfall patterns. We focus here on the south-
ernmost European fir (Abies pinsapo Boiss.) to explore poten-
tial changes in tree phenology in response to global warming 
and the extent to which those changes will be dependent on 
the inherent drought sensitivity and phenological plasticity of 
the species. Abies pinsapo is a relic species, endemic to South 
Spain and North Morocco, and belongs to the group of 
 circum-Mediterranean firs (Linares 2011). It is considered 
highly vulnerable to climatic warming and the related decrease 
in soil-water availability (Guehl et al. 1991). Since the middle 
1990s, severe drought spells have been related to A. pinsapo 
growth decline, mainly in the lower-elevation limits of its altitu-
dinal distribution (Linares et al. 2009).

As the starting point, we hypothesized that climate warming 
involves increase of both temperature and water stresses on 
water-limited populations, while water stress increase would 
be negligible if the populations received elevation-related 
higher precipitation amounts. For these non-water-limited pop-
ulations, rising temperature could potentially lead to enhanced 
tree growth. We also hypothesized that offsetting effects of 
drought-induced growth limitations will be related to highly 
sensitive A. pinsapo drought-avoidance mechanisms. To test 
this, we have assessed the budburst date, the dynamics of 
twig growth and the litterfall production patterns in A. pinsapo 
populations across its altitudinal distribution range during two 
consecutive years. Our specific aims were (i) to describe intra- 
and inter-annual twig growth and litterfall production patterns, 

and (ii) to quantify the within- and among-population variations 
in drought-avoidance mechanisms (stomatal closure, growth 
cessation and needle withdrawal), in response to contrasting 
climatic conditions.

Materials and methods

Study area

The study was carried out over 2 years (2004–2005) in natu-
ral stands of A. pinsapo along an altitudinal gradient (~1200–
1700 m a.s.l.) in the Sierra de las Nieves Natural Park (southern 
Spain; see Supplementary Figure S1, available as Supplementary 
Data at Tree Physiology Online). All studied stands are located 
on calcareous parent materials. In each stand (~0.1 ha), all 
trees >3 cm in dbh (diameter at breast height, 1.3 m from the 
ground) were tagged, mapped and identified, and their dbh 
was measured. The lowest elevation study stand (hereafter 
designated as the L stand; 36° 43′ 18″N, 4° 57′ 53″W, 1226 m 
a.s.l.) consisted of firs that were mainly 15–20 cm in dbh, scat-
tered old firs (~80 cm dbh) and some Pinus halepensis Mill. 
individuals, totalling a stand density of ~40 m2 ha−1. A second 
stand was selected near the upper elevation of the same catch-
ment area (U stand; 36° 42′ 37″N, 4° 59′ 00″W, 1557 m 
a.s.l.). This stand showed a tree density similar to that in the L 
stand, but the mean diameter was slightly smaller (10–15 cm 
dbh); A. pinsapo was the only tree species. In 2005, we added 
a higher elevation stand, located at the top edge of the altitudi-
nal distribution range of A. pinsapo in the area (T; 36° 41′ 
33″N, 5° 01′ 10″W, 1749 m a.s.l.). This stand had a lower tree 
density (~15 m2 ha−1); the mean tree diameter was 15–20 cm 
dbh with scattered old firs (~90 cm dbh) and young Quercus 
alpestris Boiss., Acer granatense Boiss., Taxus baccata L. and 
Sorbus aria (L.) Crantz. individuals (~10 cm dbh).

Meteorological measurements

Air temperature and relative humidity were recorded every 6 h 
(6:00, 12:00, 18:00 and 00:00) in each population, using two 
data loggers per plot (HOBO Pro RH/Temp; Onset Computer 
Corporation, Bourne, MA, USA). Sensors were situated 1 m 
above the ground on a pole and were protected by a polyvinyl 
chloride shelter covered with polyethylene foam to prevent any 
exposure to rain or to direct sunlight. The vapour pressure deficit 
(VPD) was estimated using data logger air temperature and rel-
ative humidity data. Monthly precipitation data were also mea-
sured by rain gauges at the L and U stands between 2003 and 
2005 to validate the rainfall altitudinal gradient estimated from 
nearby meteorological stations (see also Linares et al. 2009).

We used growing degree days (GDD) as a measure of heat 
accumulation. Growing degree days were calculated for each 
stand using datalogger temperature data. Based on the field data 
of budburst date, a basic temperature (Tb) of 10 °C was chosen 
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as the threshold above which, after a certain amount of tempera-
ture is cumulated, budburst occurs and primary growth resumes 
after the winter. To compute GDD, we first determined the mean 
daily temperature (Tm); Tb was then subtracted from Tm to obtain 
daily GDD (°C day−1) figures. If the daily GDD was a negative 
number, it was set equal to zero. Daily GDD data from each stand 
were then summed to get accumulated GDD (Eq. (1)).
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Soil water content

Soil water content was measured by time domain reflectometry 
(TDR) in the upper 50 cm of the soil profile. For the 0–12 cm 
soil layer we used a portable TDR device (TDR100, Campbell 
Scientific, Inc., North Logan, UT, USA); for deeper horizons we 
used permanent probes (ECH2O, Decagon Devices, Inc., 
Pullman, WA, USA) buried at 25 and 50 cm depth. We per-
formed a calibration curve to convert soil dielectric measure-
ments to estimates of volumetric water content.

Plant water status and stomatal conductance

To estimate plant water status we used a pressure chamber 
(PMS Instruments, Corvallis, OR, USA). Stomatal conductance 
to water vapour (gs) was measured using a portable null-bal-
ance porometer (model 9810; Data Design Group, La Jolla, CA, 
USA). L and U stands were sampled in 2004; L, U and T stands 
were sampled in 2005. Xylem water potential and stomatal 
conductance were evaluated monthly from late autumn to early 
spring and biweekly between late spring to early autumn by tak-
ing measurements at ~2-h intervals between predawn and pre-
dusk. Measurements were performed on two twigs randomly 
selected within five dominant trees per stand (in the same five 
dominant trees always). Twigs were 2 years old (current and 
previous year growth), fully expanded and sunlight-exposed, 
located 1.5–2 m above the ground and separated by at least 
2 m. Following each stomatal conductance measurement, each 
twig was cut and transported in a plastic bag to the laboratory. 
Data were expressed per unit leaf area using an empirical nee-
dle mass/needle surface area relationship. This relationship was 
obtained by scanning needles from each stand, carefully 
detached from the twigs, and measuring the needle’s surface 
by image analysis software ImageJ (http://rsbweb.nih.gov/ij/). 
The needles were then oven dried (70 °C, 48 h) and weighed 
to obtain needle weight per unit of needle surface.

Twig growth

Twig growth phenology was monitored, matching with plant 
water status and stomatal conductance samplings, by 

 measuring the elongation of the renewals with a ruler at a 
1-mm resolution. The initial and final point for length measures 
is easily distinguishable in A. pinsapo due to the presence of a 
single segment per year. We selected 20 trees per stand (ele-
vation) and one sunlight-exposed twig per tree; the twigs were 
examined and those with bud malformations or disease symp-
toms were avoided (Orshan 1989).

Litter production

Litter production in the L and U stands was sampled from 
bimonthly to quarterly from May 2002 to October 2006. The 
materials collected from seven randomly located litterfall pits 
(28 cm × 38 cm base, 25 cm height) per stand were oven 
dried (70 °C, 48 h) and carefully sorted to separate A. pinsapo 
needles from other materials such as seeds, cones, twigs, bark 
and leaves from other species.

Statistical analyses

The twig length and litterfall data sets were tested for homogene-
ity of variance and for the assumption of compound symmetry of 
the variance–covariance matrix using the Bartlett–Box F-test 
and the Mauchly criterion, respectively. A repeated-measures 
analysis of variance (ANOVA) was used to compare twig length 
and litterfall (von Ende 2001). We tested differences within 
populations (i.e., within L and T sites across 2004 and 2005) 
and the effects of elevation (i.e., among L, U and T for 2005); 
the factor ‘stand’ was included in the repeated-measures 
ANOVA as a between-subjects factor (L, U and T), while the 
sampling date was regarded as a within-subjects factor. We 
used the Greenhouse–Geisser statistic to adjust the F-tests. 
Paired comparisons were corrected using the Bonferroni adjust-
ment. The comparisons between years (2004 versus 2005) 
within a given stand were done by one-way ANOVA, testing 
differences between the means, for instance, for total litterfall 
production, total renewals length, etc., without including intra-
subject factors. We used SPSS ver. 17.0 (SPSS Inc., Chicago, IL, 
USA). Average values of twig growth rate and GDD, gs and 
growth rate, and predawn water potential and gs were corre-
lated by least squares linear regression. The differences among 
trends (slopes) for a given variable were assessed by the two-
slope comparison test, which compares the slopes and inter-
cepts of two regression lines (see Zar 1999). Twig elongation 
was fitted to a sigmoid function model (Eq. (2)).

 
y

a
x x b=

+ − −1 0e (( )/ )
 

(2)

where y is the twig length (mm), x is the time (Julian calendar 
days) and x0 represents the estimated onset of growth; a and b 
are estimated parameters related to (i) the asymptote and (ii) 
the slope of the sigmoid function, respectively (see Camarero 
et al. 1998).
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Results

Climatic conditions, soil water content and plant 
water status

In 2004, the mean temperature in the lowest elevation stand 
(L) was 1.1 °C higher than that in the U stand, which led to 
higher values of accumulated GDD in the former (Table 1, see 
Supplementary Figure S2 available as Supplementary Data at 
Tree Physiology Online). Early spring temperatures were 
below average relative to the previous decade. Spring pre-
cipitation was 142 mm greater than average, and rainfall was 
recorded until early summer (Table 1). In 2004, the late sum-
mer and early autumn were hot and dry, thus the drought 
period lasted until October. The year 2005 was one of the 
driest years in the last century. The annual rainfall was near to 
50% lower than the average for the last decade. The differ-
ences in mean temperature among the stands increased in 
2005. The winter was relatively cold; however, from April to 
the end of 2005, all months recorded above-average 
temperatures.

Vapour pressure deficit (see Supplementary Figure S3 
available as Supplementary Data at Tree Physiology Online) 
became maximum (~1 kPa) and similar among stands at mid-
July 2004; from September and onward the VPD was signifi-
cantly higher at the lower elevation. In 2005, June to July VPD 
was significantly lower at the top elevation stand (T 1700 m); 
maximum VPD (~1.5 kPa) was reached at mid-August, when 
significant differences among stands disappeared. Overall, 
soil water content decayed from May to early July in all stands; 
and then was nearly steady so that minimum soil water con-
tents (~10% v/v) were recorded until October (see 
Supplementary Figure S3 available as Supplementary Data at 
Tree Physiology Online).

Predawn xylem water potential (Figure 1) was significantly 
lower at the L stand from mid-July to mid-September 2004; 
minimum values (~ −1.5 MPa) were reached at the middle of 
October. In 2005, predawn xylem water potential was signifi-
cantly lower at the L stand from June to mid-August, among-
plot differences narrowed for the rest of the dry period, and 
minimum values did not fall below −1.2 MPa.
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Table 1.  Meteorological measurements for A. pinsapo populations along an altitudinal gradient (L, 1200 m; T, 1550 m; U, 1700 m). Tmax is the mean 
of the maximum daily temperatures; Tmin is the mean of the minimum daily temperatures; Tm is the mean temperature (all expressed in °C). GDD, 
accumulated growing degree days; P,  monthly precipitation (mm). All the variables were measured in situ by data loggers and rain gauges. Mean 
annual values for temperatures and total precipitation are also shown.

Tmax (°C) Tmin (°C) Tm (°C) GDD (°C) P (mm)

Year Month L U T L U T L U T L U T L U T

2004 January 8.57 7.13 2.19 0.18 4.61 3.48 – – 35 40
February 9.24 7.89 2.52 0.49 5.12 3.99 0.5 – 25 29
March 10.32 9.11 2.56 0.54 5.69 4.58 2 1 161 188
April 12.01 11.03 4.44 2.40 7.51 6.65 18 12 172 201
May 12.96 11.81 5.98 4.42 8.84 8.01 50 33 78 91
June 24.38 23.70 13.42 13.03 18.58 17.63 307 261 20 23
July 24.09 24.17 15.90 15.70 20.63 19.54 637 557 0 0
August 22.91 22.84 15.29 15.09 19.72 18.61 929 816 0 0
September 20.60 20.21 13.04 12.86 17.39 16.22 – – 0 0
October 13.39 12.05 9.48 9.33 11.90 10.60 – – 78 94
November 9.10 7.20 3.41 3.32 6.61 5.18 – – 131 157
December 4.41 1.88 1.39 1.31 3.19 1.67 – – 90 108

Mean/
sum

14.33 13.25 7.47 6.56 10.81 9.68 789 930

2005 January 4.73 4.73 3.02 −0.67 −0.67 −1.34 1.82 1.82 1.14 – – – 0 0 0
February 3.30 1.77 −0.08 −0.65 −1.85 −2.50 1.33 −0.04 −0.80 – – – 0 0 0
March 8.16 5.66 3.47 3.57 2.79 1.02 5.77 4.17 2.81 10 1 – 166 199 210
April 14.78 11.05 9.76 7.86 5.00 3.50 11.50 7.94 6.89 73 22 13 49 59 62
May 17.49 16.64 15.36 10.72 9.61 8.54 14.25 13.05 11.85 207 128 93 0 0 0
June 22.17 22.27 19.79 14.53 13.51 12.38 18.37 17.60 16.01 458 356 273 0 0 0
July 24.54 24.38 22.63 17.39 16.16 14.37 21.07 19.99 18.43 801 665 535 0 0 0
August 23.96 24.16 22.81 17.13 16.19 14.61 20.61 19.71 18.57 1130 966 801 0 0 0
September 18.69 17.47 16.32 13.09 11.07 10.15 15.91 13.55 13.06 – – – 0 0 0
October 13.67 12.86 12.23 9.73 7.61 7.44 11.75 9.97 9.94 – – – 77 81 84
November 7.09 5.78 4.35 4.05 2.00 1.15 5.59 4.07 2.71 – – – 91 95 99
December 5.41 4.61 2.83 3.13 −0.73 0.28 4.21 2.36 1.57 – – – 34 36 37

Mean/
sum

13.66 12.61 11.04 8.32 6.72 5.80 11.01 9.52 8.52 418 470 492
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Twig growth phenology and stomatal conductance

There were no significant differences between 2004 and 
2005 for cumulative twig length increment within either the L 
or the U stand (Figure 2). The average renewal growth values 
in 2004 were statistically different between the L (lower 
average length) and U stands from early July onward. Based 
on the sigmoid parameters fitted to the average renewal 
length values (see Supplementary Table S1 available as 
Supplementary Data at Tree Physiology Online), bud break 
occurred around 28 May in the L stand and, on average, 9 
days later in the U stand. However, estimated growth cessa-
tion (the a parameter of the sigmoid function, see Eq. (2)) 
occurred significantly later for the U stand (1550 m) than for 
the L stand (1200 m).

The mean renewal length values were in 2005 statisti-
cally different between the L and the two upper elevation 
stands (U and T) from the beginning of June (Figure 2). 
Bud break occurred later in the top elevation stand (T); 
however, it showed the highest growth values and the lon-
gest growing period. The bud break in 2005, as estimated 
by sigmoid functions, took place on 15 May for the L stand 
(13 days earlier than in 2004), 9 days later for the U stand 

(8 days earlier than in 2004) and 15 days later in the T 
stand. Growth cessation was estimated to occur signifi-
cantly later at the T stand (Figure 2; Supplementary Table 
S1 available as Supplementary Data at Tree Physiology 
Online).

Midday stomatal conductance within stands was signifi-
cantly higher in 2004 than in 2005 for both L and U stands 
(Figure 3). Among stands, from late June in 2004 and from 
late May in 2005 and onward, the average stomatal conduc-
tance was significantly lower in the L stand than in the U and 
T stands.

Twig growth rate and GDD (Figure 4a) were significantly 
correlated only during the first part of the growing period. 
The slope of this relationship was similar at the higher 
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Figure 2.  Renewal length measured in A. pinsapo stands along an alti-
tudinal gradient (L, 1200 m; U, 1550 m; and T, 1700 m) during the 
growing periods of 2004 (empty symbols) and 2005 (filled symbols). 
Error bars represent the standard error; different letters denote signifi-
cant differences for total renewal length (repeated measures ANOVA, 
n  = 20 trees per elevation; P  < 0.05). Lines represent the fitted sig-
moid function.

Figure 3.  Midday stomatal conductance measured in A. pinsapo 
stands along an altitudinal gradient (L, 1200 m; U, 1550 m; and T, 
1700 m) during the growing periods of 2004 (empty symbols) and 
2005 (filled symbols). Error bars represent the standard error (n  = 5 
trees per elevation).

Figure 1.  Predawn xylem water potential measured in A. pinsapo trees 
(n  = 5) along an altitudinal gradient during the growing periods of 
2004 (a) and 2005 (b). Errors bars represent the standard error.
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 elevations stands (U and T), but higher than that yielded by the 
L stand. Since the onset of the dry season (about late June), 
the twig growth rate versus GDD correlation disappeared, 
 indicating a shift to driving factors other than temperature in 
growth rate control. However, the relationship between midday 
stomatal conductance and renewal elongation rate was signifi-
cant over the entire growing season for the lower elevation 
sites (L and U), but not for the T stand (Figure 4b). A between-
stand comparison showed that L and U stands have similar 
slopes, although within-stand comparison yielded a signifi-
cantly higher slope for both stands in 2005 (Figure 4b). 
Midday stomatal conductance and predawn xylem water 
potential were also significantly related over the entire growing 
season (Figure 5), showing similar relationships within and 
among stands in the two studied years.

Litterfall production

In 2004, the total litterfall production was 3003 kg ha−1 in 
the L stand and 2449 kg ha−1 in the U stand, while in 2005 
these values increased to 3596 kg ha−1 and 2500 kg ha−1, 
respectively (Figure 6). During 2005 (drier than 2004), lit-
terfall production peaked significantly earlier in the L than in 
the T stand. The L stand showed a mean value of 1204 kg ha−1 
for the July–August 2005 period, whereas only 508 kg ha−1 
was registered in U.

Discussion

We hypothesized that, despite a longer growing period being  
expected with rising global mean temperatures as a 
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Figure 4.  Relationships between renewal elongation rate (Rgr) and (a) 
the growing degree days (GDD) or (b) the midday stomatal conduc-
tance (gs). Data are for the growing periods of 2004 (empty symbols) 
and 2005 (filled symbols). Error bars represent the standard error. 
Regressions were computed separately on each stand; when regres-
sion slopes were not significantly different (P  > 0.05), the data were 
grouped; letters between parentheses denote the stands and the year 
used for the corresponding regression. Note that a correlation existed 
between both variables only during the first phase of the growing 
period.

Figure 5.  Relationships between midday stomatal conductance (gs) 
and predawn xylem water potential (ψx). Data are for the growing peri-
ods of 2004 (empty symbols) and 2005 (filled symbols). Error bars 
represent the standard error. Regressions were computed separately 
on each stand; since none of the regression slopes were significantly 
different (P  >  0.05), the data were grouped.

Figure 6.  Abies pinsapo needle litterfall production from May 2002 to 
October 2006 in the L (1200 m) and T (1550 m) stands.
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 consequence of earlier bud break date, worsening drought 
might offset or even reverse the temperature-based predicted 
growth in water-constrained forests. Such deviations from the 
expected growth enhancement, where growth onset occurs 
early, provide valuable information to understand the underly-
ing ecophysiological mechanisms leading to tree-growth 
decline in a global warming scenario. Our results support that 
primary growth in a relict drought-sensitive fir is currently bet-
ter, and the length of the growing season is longer, at the high-
est elevations.

Our results provide different information about intra- and 
inter-population variation on the species’ ability to cope with 
climatic change. Intra-population variation in response to con-
trasting precipitation among years informs about adaptive 
capacity by phenological plasticity, while inter-population varia-
tion along an altitudinal gradient may be attributed to both phe-
nological plasticity and to local adaptation. Phenological 
plasticity is a key trait for the inherent adaptive capacity of 
plants against future changes of climate, since it allows adjust-
ment of the timing of phenological phases under environmental 
changes (Menzel et al. 2006, Cleland et al. 2007, Ghalambor 
et al. 2007, Peñuelas et al. 2009, Polgar and Primack 2011). 
The altitudinal gradient and the 2 years studied here were 
strong enough sources of variation for assessing A. pinsapo 
populations’ response to contrasting temperature and water 
availability conditions. The high variability observed for the tim-
ing and extent of twig growth and litterfall reveal a significant 
phenological variability for this relict drought-sensitive 
Mediterranean fir.

Bud break in A. pinsapo showed 2.6–3 days of advance for 
each 100 m decrease in elevation. For Abies amabilis Douglas 
ex J. Forbes growing in a 1000 m altitudinal gradient, Worrall 
(1983) reported higher budburst delays among populations (5 
days per ~100 m rise in elevation). The clinal trend for leaf 
unfolding date we observed for A. pinsapo is more similar to 
that reported for Abies alba Mill. (on average, 3.2 days 100 m−1; 
Vitasse et al. 2009a), as well as for some temperate decidu-
ous tree species such as Fagus sylvatica L. and Quercus 
petraea (Matt) Liebl. (on average, 2.7 days 100 m−1; Vitasse 
et al. 2009b).

Since the rate of adiabatic temperature change in our study 
area is on average 0.67 °C 100 m−1 (Linares et al. 2009), A. 
pinsapo shows an advance in budburst date of 3.9–4.5 days 
degree−1. Worrall (1983) found a higher linear reaction norm of 
leaf unfolding timing for populations of A. amabilis and Abies 
lasiocarpa (Hook.) Nutt. of about 8.3 days degree−1. Vitasse 
et al. (2009a) also reported a higher slope in leaf unfolding for 
adult sessile oak (Q. petraea; 6.5 days degree−1). These results 
suggest that leaf unfolding plasticity in response to tempera-
ture is higher in temperate forests than in Mediterranean 
mountain forests (see also Kramer 1995). However, if we con-
sider the spring temperature (2–3 months before the growth 

onset) directly  measured in each site, to calculate the lapse 
rate occurring before and during bud break, we obtain an aver-
age of 0.33 °C 100 m−1, and therefore, we obtain an advance 
in budburst date of about 8 days °C−1 of increase.

The temperature effect on plant phenology markedly sur-
passed the effects of precipitation in recent investigations 
performed on Mediterranean ecosystems (Gordo and Sanz 
2010). However, we have shown here a fine-tuning response 
of reduced leaf conductance in A. pinsapo as water stress 
increases, which compromised the growth rate and the time 
of needle retention (Bond and Kavanagh 1999). Our results 
suggest that increasing temperature may potentially extend 
the available growing period only upward (see also Kramer 
1995, Menzel and Fabian 1999, Peñuelas and Filella 2001, 
Peñuelas et al. 2009). Twig growth at the top elevation stand 
(T, 1700 m) was less dependent on stomatal conductance 
and appeared to be more limited by cumulated growing 
degree days. These results suggest a positive effect of global 
warming on A. pinsapo forests at higher elevations. Similar 
results were also found in F. sylvatica (in the southern part of 
its distribution), where the maximal growing season was not 
found at the lowest site, as expected, but rather at mid eleva-
tion because low-elevation populations were affected by a 
drought effect, leading to an earlier senescence (Vitasse et al. 
2010).

Indeed, water balance is more favourable for trees at the 
highest elevations, thus allowing the highest growth rates and 
reduced needle withdrawal in the summer. In contrast,  earlier 
and more intense summer drought stress towards low eleva-
tions had the effect of shortening the time of renewal elonga-
tion and needle retention (Guehl et al. 1991). All these results 
support the idea that phenological adjustment to increasing 
temperature will not lead to greater tree growth in the case of 
water-limited forests (Rehfeldt et al. 2002).

We observed a similar relationship between midday stomatal 
conductance and renewal growth rate in the mid- and low-ele-
vation sites, but it did not appear at the highest elevation. Such 
a relationship is linked to a relatively low water-availability 
threshold for A. pinsapo partial stomatal closure (~ −0.8 MPa 
for predawn xylem water potential; see also Guehl et al. 1991), 
which strongly determines the length of the growing period for 
the species under the conditions prevailing in its distribution 
area. Physiological adaptation for maintaining a certain growth 
rate at low stomatal conductance is expected in populations 
where average water availability is low (Mohren et al. 1997, 
Bond and Kavanagh 1999).

A recent investigation reported higher hydraulic conductivity 
at the shoot and branch levels in A. pinsapo compared with A. 
alba, a closely related congeneric species which does not with-
stand so intense summer drought periods (Peguero-Pina et al. 
2011). A high efficiency of water transport will reduce the soil-
to-leaf water potential gradient, which would allow A. pinsapo 
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to cope with a high evaporative demand during summer while 
maintaining its xylem tension below the threshold for rapidly 
increasing cavitation. In that respect, it is interesting to note 
that the relationship between twig growth rate and stomatal 
conductance showed intra-population plasticity, since its slope 
did increase in response to the sharp decline in 2005 
precipitation.

Our results suggest that a longer growing period could also 
be related to a longer carbon uptake period and to an increased 
net annual carbon flux (Churkina et al. 2005, Delpierre et al. 
2009). Since photosynthetic rate is reduced by stomatal clo-
sure, carbon uptake will be also reduced by drought. 
Furthermore, carbohydrate consumption rates required to 
maintain cellular metabolism (respiration) will increase due to 
rising temperatures, potentially increasing negative effects of 
drought (McDowell et al. 2008). Co-existing tolerant species 
such as Quercus, or better drought-adapted species such as 
Pinus or Juniperus, have higher carbon uptake under drought 
conditions than A. pinsapo and, therefore, are able to maintain 
higher growth rates under low water availability (Martínez-Ferri 
et al. 2000). For instance, Mediterranean oaks can support 
significant carbon uptake even at low water potentials (below 
−2.0 MPa; Borghetti et al. 1998, Baquedano and Castillo 
2007).

Changes in leaf area appear to be a very plastic mechanism 
by which the transpiring surface is adjusted in response to 
water stress. The leaf turnover rate, which critically depends 
on the needle lifetime, appears to be closely linked to both 
temperature and water limitation. It has been noted that ever-
green trees, such as oaks and pines, can accelerate leaf 
dynamics by decreasing the lifetime of leaves in the canopy as 
temperatures rise (Kramer 1995, Sabaté et al. 2002, Peñuelas 
et al. 2009). For evergreen species, annual leaf production 
represents a small amount of total leaf biomass. Increasing lit-
terfall may be a short-term response to increasing drought in 
drought-avoiding tree species, but leaf area recovery would 
require much more than one growing season (Kozlowski and 
Pallardy 1997). Additionally, leaf area development will be lim-
ited by the acquisition of water and nutrients by roots, but root 
growth will be limited by the availability of photosynthates 
coming from leaves (Guehl et al. 1991, Merino et al. 1995, 
Martínez et al. 1998).

Increasing foliar dynamics require more mobile carbon 
reserves to meet needle renewal. If climatic changes decrease 
needle lifetimes, more carbon will be required to maintain 
twig growth (McDowell et al. 2008). In addition, needle lifes-
pan is associated with nutrient remobilization, especially of 
nitrogen, and storage of photosynthates (Kozlowski and 
Pallardy 1997). Then, reduced twig growth may limit carbo-
hydrate allocation to root production, which, in turn, would 
enhance water and nutrient limitations as less soil volume is 
efficiently exploited. Moreover, decreasing root production 

enhances water deficit and increases needle loss, thereby 
limiting further carbon uptake. Therefore, the high sensitivity 
to water stress shown by A. pinsapo both in terms of reduc-
ing needle lifetime and early growth cessation may provide 
this species with short-term adaptive capacity to drought 
spells, but it will likely result in positive feed-back leading to 
tree decline and mortality if drying conditions prevail in the 
long term.

Concluding remarks

We have illustrated here, for the case of A. pinsapo, that warm-
ing may not lead to extended growing seasons in the case of 
water-stressed forests, since non-linear responses to water 
availability regarding growth cessation will offset the linear 
effects of increasing temperature on advancing budburst date. 
This study is therefore in line with previous studies showing 
that, at high elevation, current climate change could drive con-
ditions towards the optimal range for population growth while 
negatively affecting tree growth and water balance in the drier 
part of the species range.

The high sensitivity to drought observed in drought avoid-
ance mechanisms of A. pinsapo may be benefiting this spe-
cies by preventing xylem damage, but they also seem to 
strongly compromise tree growth. Our results suggest that 
mid- to high-elevation A. pinsapo populations will experi-
ence a longer growing season with climate warming, while 
for the lower elevation limit of this species, we found that 
climate change could reduce population fitness by shorten-
ing the growing season, mainly due to earlier stomatal 
closure.

Supplementary data

Supplementary data for this article are available at Tree 
Physiology online.
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Supplementary Material 

Table A1. Sigmoid-fitted (eq. 2) parameters derived from average twig length values obtained 

throughout the 2004 and 2005 growing seasons in Abies pinsapo stands at different 

elevations. x0 represents the estimated onset of growth; the a parameter is related to the 

asymptote of the sigmoid function (growth cessation), while b is related to the slope (see eq. 

2). 

 Parameter L (1200 m) T (1550 m) U (1700 m) 
a 53.47 ± 0.34 75.57 ± 0.86    
b 8.21 ± 0.31 5.35 ± 0.60    2004 
x0 28-May-04 ± 0.51 6-Jun-04 ± 0.53    
a 48.01 ± 0.35 71.05 ± 0.39 77.27 ± 1.00
b 7.61 ± 0.47 7.05 ± 0.23 8.70 ± 0.592005 
x0 15-May-05 ± 0.43 24-May-05 ± 0.26 30-May-05 ± 0.61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure A1. Top panel shows the distribution of A. pinsapo forests in Europe (inset) and the three study sites 

along an altitudinal gradient in Sierra de las Nieves Natural Park (T, 1700m; U, 1550m; and L, 1200m). Shaded 

areas indicate the major A. pinsapo forests distribution in S Spain. The photograph (a) shows a landscape picture 

of lower elevations stands, near to the L study site; photograph (b) shows the study site T (1700m). 

 



 

  

Figure A2. Daily values of temperature and accumulated growing degree days for the 2004 (a) 

and 2005 (b) growing seasons in stands of Abies pinsapo located along an altitudinal gradient. 
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Figure A3. Soil water content (black symbols) and vapour pressure deficit (VPD, empty 

symbols) measured in Abies pinsapo stands along an altitudinal gradient during years 2004 (a) 

and 2005 (b). Error bars represent the standard error. 
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