Environmental Sciences

Skills

Every graduate student will acquire the following skills by taking the basic and compulsory courses. However, some skills are reinforced through optional courses.

Instrumental, personal, and systematic skills

- To understand the knowledge of the environmental field in advanced textbooks and specialized scientific texts
- 2. To analyze and synthesize, and elaborate and defend arguments
- 3. To communicate orally and in writing
- 4. To solve problems and take decisions
- 5. To work in teams
- 6. To understand the diversity
- 7. To think critically
- 8. To have an ethical commitment
- 9. To self-learn
- 10. To be creative
- 11. To gather and interpret relevant information to make judgments that include a reflection on social, scientific or ethical issues
- 12. To be motivate by quality
- 13. To be sensitive to environmental issues
- 14. To apply theoretical knowledge into practice
- 15. To communicate with specialists and non-experts in the field
- 16. To develop the necessary learning skills to undertake further studies with a high degree of autonomy
- 17. Students must accredit the B2 level of the Common European Framework of Reference for Languages in English, as this is considered the international working language
- 18. To develop entrepreneurship skills in the field of environmental sciences
- 19. To develop skills in the field of new technologies and innovation management
- To respect human rights, access for all and the will to eliminate discriminatory factors such as gender and origin

Specific skills

- To master mathematical skills (algebra, calculus) to solve problems related to the environment
- 2. To understand the main laws of physics
- 3. To know and use the terminology and the units of measure in Experimental Sciences
- 4. To master the necessary skills for the laboratory work in Experimental Sciences
- 5. To know the structure, physicochemical properties, and reactivity of the elements and compounds involved in biogeochemical cycles
- 6. To know and understand the levels of organization of organisms
- 7. To know and understand the structure and role of fungi, plants, and animals
- 8. To know and understand the composition and structures of geological materials
- 9. To understand the basic geological concepts, principles, and processes
- 10. To be able to evaluate, interpret, and synthesize basic geological information obtained from the land and the geological maps

- 11. To know and understand the structure, role, and processes of transformation of organic molecules, nucleic acids, and other biomolecules
- 12. To know the relationships between organisms and the environment
- 13. To know the basic principles of population dynamics
- 14. To know and master the proceedings to estimate and interpret the ecological succession and the biodiversity
- 15. To have basic knowledge of plant biodiversity and phytogeography
- 16. To know the main vegetal formations
- 17. To have basic knowledge of animal biodiversity and zoogeography
- 18. To be able to analyze and interpret basic elements of geomorphology
- 19. To have basic knowledge of surface and subsurface hydrology
- 20. To have basic knowledge of edaphology: soil properties and main types
- 21. To know the structure, role, and biodiversity of microorganisms
- 22. To know the environmental importance and the main applications of organisms
- 23. To know the main characteristics and processes of the main ecosystems and habitats
- 24. To know how the terrestrial, marine, and freshwater ecosystems work and their sensitivity to human disturbance
- 25. To know and interpret the basic environmental laws on soils, water, atmosphere, natural resources, conservation, urbanism, and spatial planning
- 26. To know the main national and international agreements, protocols, and directives
- 27. To be able to make an economic evaluation of environmental goods, services, resources, and costs
- 28. To know the basic principles of environmental and ecological economics
- 29. To know and evaluate information sources and techniques for territorial analysis
- 30. To have the knowledge to carry out an analysis of the population for sustainable management of resources
- 31. To be able to analyze the different environmental policies
- 32. To study territorial models of human activities
- 33. To understand the natural and humanized environments and understand the interaction between the natural environment and society
- 34. To have basic knowledge to carry out studies on socio-cultural contexts
- 35. To be able to design, elaborate, and carry out environmental impact assessments and strategic environmental assessments
- 36. To be able to develop and implement environmental management systems
- 37. To be able to develop and implement quality management systems
- 38. To be able to design, elaborate and carry out proceedings of environmental audit
- 39. To be able to manage and optimize the use of energy
- 40. To have knowledge of clean technologies and renewable energies and value them
- 41. To be able to design and apply indicators of sustainable development and ecological footprint
- 42. To have basic knowledge of territorial planning
- 43. To be able to design and carry out urban and rural development plans
- 44. To apply landscape assessment techniques of environmental management and territorial planning
- 45. To know the basic aspects of water planning, management, conservation, and supply
- 46. To know the basic principles and techniques of soil management and conservation
- 47. To be able to elaborate flora management plan, including endangered species, exploited species, and plagues
- 48. To be able to analyze and assess the cultivation systems of plant resources
- 49. To be able to elaborate fauna management plan, including endangered species, exploited species, and plagues

- 50. To analyze and assess the supply systems of animal resources
- 51. To know the processes related to natural and technological risks and develop plans for risk mitigation and prevention
- 52. To have basic knowledge of natural environments management
- 53. To be able to carry out quality studies on the urban environment
- 54. To be able to make and apply mass and energy balance to every type of processes and installations
- 55. To have basic knowledge of water supply management and treatment
- 56. To have basic knowledge of sewage management and treatment
- 57. To be able to elaborate, introduce, coordinate, and evaluate waste management plans
- 58. To know the main gaseous emission reduction techniques
- 59. To know the main contaminated soil treatment techniques and their application
- 60. To know the air, light, and acoustic pollution analysis and quantification techniques
- 61. To be able to value the air quality
- 62. To know the use of dispersion modelling and pollution control
- 63. To quantify and value the water and soil pollution
- 64. To know the analysis and quantification main techniques of bioindicators
- 65. To know the use of biomolecules as markers of environmental pollution
- 66. To be able to analyze and interpret meteorological processes
- 67. To know the different climates characteristics
- 68. To master the principles and techniques of restoration, rehabilitation, and bioremediation applied to the recovery of the natural environment
- 69. To know the basic techniques of elaboration, management, and control of environmental and territorial policies, plans, and projects
- 70. To know and understand the scientific bases and processes that originated global change and its consequences
- 71. To know the temporal and spatial dimension of the environmental processes
- 72. To be able to design and carry out environmental education and communication programs
- 73. To be able to apply strategies of public participation and social learning
- 74. To be able to carry out an original individual project on an environmental theme. It can be a technical or a research project
- 75. To design samplings, and analyze and interpret information of statistical outputs
- 76. To be able to use statistical software
- 77. To know how to make environmental processes modelling
- 78. To be able to use geographic information systems
- 79. To have basic knowledge of chemical analysis and its main instrumental techniques
- 80. To be able to design a protocol for the analysis and quantification of pollution
- 81. To be able to create cartographic databases and interpret and represent information of environmental elements and processes
- 82. To be able to use and interpret remote sensing images for environmental application
- 83. To know and understand the factors that regulate the development of ecosystems and their changes
- 84. To be able to manage contrasting criteria in order to understand global changes in the past and compare them with recent developments