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We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics
(BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending
our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism
described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic
and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of
multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each
species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles
with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions,
and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and
reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical
formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.
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I. INTRODUCTION

Colloids consist of supramolecular nanoparticles evenly
dispersed in a fluid, usually a liquid. While the prefix
“nano” indicates that these particles have at least one of their
dimensions in the submicrometer range, the term “supramolec-
ular” stresses that their characteristic length scale, typically
between 10 nm and 10 μm, is significantly larger than that of
conventional molecules [1]. Due to their relatively small size,
the dynamics of colloidal particles is substantially controlled
by the stochastic collisions with the surrounding molecules
of the solvent and is usually referred to as Brownian motion.
This random drifting stems from a thermal energy of the order
of kBT per particle, with kB the Boltzmann’s constant and
T the absolute temperature. In order to keep the particles
dispersed in the medium and prevent their sedimentation, the
thermal energy should be larger than the gravitational potential
energy. Equivalently, the particles’ radius R should be smaller
than the sedimentation length λsed = kBT /mbg, with g the
gravitational acceleration and mb the buoyant mass [2].

Understanding the dynamical behavior and rheological
properties of colloidal suspensions is one of the cutting-
edge themes of the current research in material science.
The fundamental problems involved, such as rheology under
external fields and crystallization, have a crucial impact
on the formulation of several products, including paints,
pharmaceutical creams, foods, and inks. For example, paints
are expected to flow easily upon application on a vertical
surface, but should not flow by their own weight. Dense
colloidal suspensions can display an abrupt increment in
viscosity when an increasing shear stress is applied [3]. On the
one hand, this shear thickening can deeply alter the structural
properties of the suspension and hence compromise the correct
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functioning of the processing equipment. On the other hand,
this behavior is very convenient, for instance, for the oil and
gas industry to protect a well from blowouts, usually observed
when a drill reaches a gas pocket and provokes a sudden release
of gas at high pressure.

The first experiments aiming at understanding the phase
behavior and dynamics of dense colloidal suspensions were
pioneered by Pusey and van Megen in the 1980s [4,5].
By performing extensive dynamic light scattering (DLS)
measurements, these authors demonstrated that the particles’
packing fraction η is the only parameter needed to describe
the isotropic-to-crystal-to-glass transitions of hard colloidal
spheres [4]. The dynamical behavior is also deeply influenced
by η: while in the very dilute regime hard spheres follow
an essentially Brownian diffusion, at a denser packing the
cage effect exerted by the neighboring particles determine a
transient subdiffusive regime delaying the structural relaxation
of the system and the decay of the autocorrelation functions
measured by DLS [5]. Since these pioneering results, the
interest in the phase behavior and dynamics of dense colloidal
suspensions has been growing dramatically and now involves
a vibrant area of research including both equilibrium (e.g.,
liquid crystals) and out-of-equilibrium (e.g., gels and glasses)
colloidal suspensions of anisotropic particles [6,7].

Due to the advances in computational techniques, molecular
simulation has played a key role in both supporting (sometimes
anticipating) the experimental findings and validating theories.
In this respect, the last few years have witnessed a marked
interest in investigating the dynamics in dense colloidal sus-
pensions by using simple, but efficient, simulation techniques.
Although molecular dynamics (MD) would perfectly describe
the dynamics of a colloidal system, explicitly modeling the
solvent, and hence including the degrees of freedom associated
to its molecules, would be too computationally demanding.
Brownian dynamics (BD) circumvents this obstacle by implic-
itly representing the solvent via effective frictional and thermal
forces acting on the colloidal particles [8]. At equilibrium, the
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balance between these forces ensures the correct equilibrium
distribution of the system, as stated by the fluctuation-
dissipation theorem [9]. Therefore, while care should be taken
in selecting relatively small time steps to accurately integrate
the equations of motion, this poses a limit in the evaluation of
dynamical properties with long-time decays.

Given the stochastic nature of Brownian motion, dynamic
Monte Carlo (DMC) simulation was shown to be an excellent
tool to describe the dynamics of colloidal suspensions, espe-
cially those characterized by rather long relaxation times, such
as glass-forming systems [10–12], liquid crystalline phases
[13,14], solutions of globular proteins [15,16], and fluids
confined to narrow channels [17]. Several works have been
recently published on the use of DMC as an alternative to BD
to investigate the dynamics of dense suspensions of spherical
and anisotropic colloidal particles [18–21]. In all these
studies, the authors found a very good agreement between
BD and DMC simulations, especially when the elementary
displacements and rotations performed by the particles are
relatively small. Despite their remarkable results, which allow
one to employ standard Metropolis-based MC algorithms to
investigate dynamical properties, all these studies focused on
monodisperse systems. In a more general scenario with size
and/or shape polydispersity playing a role, for instance, to
prevent crystallization at high densities [22], different (species
of) particles are expected to possess different mobility or,
equivalently, to displace different distances in the same unit of
time. More specifically, as stated by the Einstein relations,
an elementary (translational or rotational) move is linked
to the unit time step via the particle’s diffusion coefficient
[23], which in turn is a function of the particle’s geometry
[24,25]. We stress that this fundamental constraint guarantees
a homogeneous time evolution for all the particles, regardless
their size and shape, and must be taken into account when
modeling bidisperse or, more generally, polydisperse colloidal
suspensions by DMC simulation.

Motivated by the remarkable interest of both academia and
industry in the dynamics of dense colloidal systems and by the
necessity of providing efficient simulation tools to handle the
long timescales involved, here we present a theoretical formal-
ism to investigate the dynamics of multicomponent colloidal
suspensions by DMC simulations. The theory is validated by
studying the dynamical behavior of binary mixtures of rodlike
and spherical particles with BD and DMC simulations.

II. THEORY

In the following, we extend the theoretical formalism out-
lined in Ref. [20] for monodisperse systems to multicomponent
colloidal suspensions containing nc species. The total number
of particles in our system reads

Np =
nc∑

j=1

Nj, (1)

with Nj the number of particles of species j . By following a
standard Metropolis-based MC algorithm, a particle is selected
at random (regardless the species it belongs to and the relative
concentrations of the species) and moved to a new position

with acceptance probability exp(−�U/kBT ), with �U the
energy change between the new and old configurations.

More specifically, here we define an MC step as an attempt
of simultaneously changing the degrees of freedom of a
randomly selected particle. In a three-dimensional space,
the number of degrees of freedom is three for spherical
particles and five for particles with axial symmetry, three
being associated with the displacement of their center of
mass and two with their rotation. In the most general case
of f degrees of freedom, a particle of species j moves in
an f-dimensional hyperprism of volume Vj = ∏f

k=1(2δξk,j )
centered in its original position, with each degree of freedom
changing in the interval [−δξk,j ,δξk,j ]. Therefore, an MC
step consists of simultaneously changing all the f degrees of
freedom of a randomly selected particle. This trial change is
eventually accepted with probability Aj = exp(−�U/kBT ).
In particular, the normalized probability P

(n)
move,j of successfully

moving a particle n ∈ j in an MC step is the product of the
probabilities of (i) selecting a particle n, (ii) moving n in a
region of the hyperprism Vj , and (iii) accepting the move:

P
(n)
move,j =

(
1

Np

)(
1

Vj

)
Aj = 1

Np

Aj

Vj

, ∀n ∈ j. (2)

We assume Aj to be uniform in the f-dimensional hyper-
prism where each degree of freedom is allowed to oscillate
between −δξk,j and δξk,j . This assumption is exact only at
infinite dilution or at infinitesimally small δξk,j , where the
collisions between particles do not determine significant fluc-
tuations of the acceptance rate. In other words, Aj is the same
for all particles n ∈ j . Under these conditions, the probability
to move each of the Np particles in an MC cycle, being a cycle
equal to Np statistically independent MC steps, reads:

Pmove,j =
Np∑
n=1

1

Np

Aj

Vj

= Aj

Vj

. (3)

To relate the change of position and orientation of a particle
to a consistent temporal scale, we employ the Einstein relations
or, equivalently, the Langevin equations at long times [23].
Assuming that the MC steps are statistically independent, time
and space are related through the self-diffusion coefficients as
follows:

δξ 2
k,j = 2Dk,j δtMC,j , (4)

where Dk,j is the self-diffusion coefficient associated to
the kth degree of freedom and δtMC,j is the time step in
the MC timescale. Both the self-diffusion coefficient and
elementary MC time step are characteristic of the species and
basically depend on the particles’ geometry. To correlate these
observations, we introduce the mean-square change of the kth
degree of freedom for particles of species j in an MC cycle:

〈
ξ 2
k,j

〉 =
∫

Vj

ξ 2
k,jPmove,j dξ k,j = Aj δξ

2
k,j

3
. (5)

We highlight that Eq. (5) is strictly valid only if the accep-
tance rates Aj can be considered uniform in the f-dimensional
hyperprism. The main advantage of DMC over BD is the
possibility of exploring longer timescales by increasing the
elementary time steps. Clearly, a larger elementary MC time
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step or, equivalently, larger displacements and rotations, would
provide lower acceptance rates and delay the dynamical
evolution of the system. The compromise between elementary
steps and acceptance rates is a known aspect in MC simulations
[8]. However, what one should note here is that increasing the
elementary MC time steps would lead to a larger f-dimensional
hyperprism, which defines the extension of displacements and
rotations of a particle. If the hyperprism becomes too large,
the acceptance rates might no longer be considered uniform
and Eq. (5) might not be valid. This is a limit of application of
the present theory, especially involving highly heterogeneous
systems, such as gels or glasses, for which a dependence of
the acceptance rates on space and time should be considered.

Equation (5) can be extended to the case of Np = ∑
Nj

particles performing CMC cycles:

〈
ξ 2
k,j

〉 = CMC

Aj δξ
2
k,j

3
. (6)

By combining Eq. (6) with Eq. (4), the following result is
obtained: 〈

ξ 2
k,j

〉 = 2
3CMCAjDk,j δtMC,j . (7)

Similarly, the Einstein relation for a BD simulation reads〈
ξ 2
k,j

〉 = 2Dk,j tBD, (8)

where tBD is the time unit of a BD simulation. Thus, for each
species j in the system, in the limit of small δtMC,j and uniform
Aj in the f-dimensional hyperprism, a relation between MC
and BD time scales is obtained:

tBD = CMCδtBD = Aj

3
CMCδtMC,j , (9)

where δtBD is the elementary time step in the BD time scale.
The practical importance of this result, which also represents
the main advance with respect to the formalism presented in
Ref. [20], is that each species of a multicomponent system
possesses an identical BD time step, but its own MC time step.
Therefore, generalizing the above result to a multicomponent
colloidal suspension of nc different species, we obtain the
following relation:

A1δtMC,1 = A2δtMC,2 = · · · = Anc
δtMC,nc

. (10)

Equations (9) and (10) can be easily extended to polydisperse
multicomponent colloidal systems containing particles of
different sizes. In this case, j would represent a family of
equally sized particles.

III. MODEL AND SIMULATION METHODOLOGY

To validate our theoretical formalism, we performed BD
and DMC simulations of bidisperse colloidal suspensions
containing Np = 1000 rodlike and spherical colloidal particles
in a cubic box. The number of rods is Nr = 300, 500, or
700, while the number of spheres is Ns = Np − Nr . Rods are
modeled as prolate spherocylinders with aspect ratio L∗ =
L/σ = 5, with L and σ the length and diameter, respectively,
of a cylinder capped by two hemispheres with diameter σ . The
diameter of the spheres is also σ . All particles are represented
as soft purely repulsive bodies and interact via a shifted and

truncated Kihara potential (SRS):

Uij =
⎧⎨
⎩4ε

[(
σ
dm

)12
−

(
σ
dm

)6
+ 1

4

]
dm � 6

√
2σ

0 dm >
6
√

2σ

. (11)

Uij is the interaction potential between two generic particles
of species i and j (spheres or rods), ε the strength of
their interaction (the same for sphere-sphere, rod-rod, and
sphere-rod pairs), and dm the minimum distance between them.
σ , ε, and τ = σ 2/D0 are the length, energy, and time units,
respectively, with D0 = kBT /(μσ ) a diffusion constant and
μ the viscosity coefficient of the solvent [26]. The interested
reader is referred to Refs. [27,28] for more details on the
SRS potential and to Ref. [29] for more details on the
computation of the minimum distance dm between two prolate
spherocylinders.

To equilibrate the systems, we performed standard MC
simulations in the NPT ensemble at 1 � P ∗ = Pσ 3/ε � 3 and
T ∗ = kBT /ε = 1.465. At this temperature, the phase behavior
of soft spherocylinders resembles that of hard spherocylinders
of the same length and diameter [27,28]. The systems were
considered at equilibrium when the total energy U/ε, packing
fraction η, and nematic order parameter achieved a steady
value within the statistical fluctuations. Isotropic (I), nematic
(N), and smectic (Sm) phases have been found and their
dynamics studied by BD and DMC simulations. Details on BD
simulations for this particular system are given in Ref. [30].
Here we only point out that the integration time step has been
set to δtBD/τ = 10−4 in all BD simulations.

DMC simulations have been carried out in the NV T ensem-
ble in cuboidal simulation boxes with periodic boundaries. The
total number of MC cycles is kept constant to CMC = 8 × 106

for all the DMC simulations. Displacements and rotations
(the latter only for rods) have been attempted simultaneously
and eventually accepted according to the standard Metropolis
algorithm. Although this choice does not ensure the detailed-
balance condition, it still results in a correct MC sampling.
In particular, it has been shown that for an MC algorithm to
be valid, the detailed balance is sufficient but not necessary
[31]. A sufficient and necessary condition, usually referred to
as a simple balance condition, provides a correct criterion to
check the effectiveness of an MC scheme. Our DMC algorithm
satisfies this condition, as we proved in Ref. [20].

To properly mimic the Brownian dynamics of colloidal
suspensions, the DMC trajectory does not involve unphysical
moves, such as swaps, jumps or cluster moves. The dis-
placement of spherical particles is decoupled along the three
directions of the simulation box: δrs = Xx x̂ + Xy ŷ + Xzẑ.
Xx , Xy , and Xz are random numbers fulfilling the condition
|Xl| � δrmax

s , with l = x,y,z, and δrmax
s the maximum dis-

placement of a spherical particle along a direction l. Similarly,
the displacement of rodlike particles is decoupled as follows:
δrr = X||ûr + X⊥,1v̂r,1 + X⊥,2v̂r,2, where ûr is the rod’s
orientation vector and v̂r,m, with m = 1 or 2, are two randomly
chosen unit vectors perpendicular to each other and to ûr . In
each direction, the magnitude of the displacement is chosen at
random with the conditions |X||| � δrmax

|| and |X⊥,m| � δrmax
⊥ ,

with δrmax
|| and δrmax

⊥ the maximum elementary displacements
in the direction parallel and perpendicular to ûr , respectively.
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Upon rotation, the rod’s orientation vector changes from
ûr to ûr + δûr with δûr = Yϑ,1ŵr,1 + Yϑ,2ŵr,2. In particular,
ŵr,m are two randomly chosen vectors perpendicular to each
other and to ûr . The random numbers Yϑ,m must satisfy
the condition |Yϑ,m| � δϑmax, where δϑmax is the maximum
elementary rotation of the main axis of the rods. The maximum
displacements and rotations can be calculated by applying the
Einstein relations given in Eq. (4):

δrmax
s = √

2DsδtMC,s , (12)

δrmax
⊥ = √

2Dr,⊥δtMC,r , (13)

δrmax
‖ = √

2Dr,‖δtMC,r , (14)

δϑmax = √
2Dr,ϑδtMC,r . (15)

The self-diffusion coefficient of spherical particles is given by
the Stokes-Einstein equation:

Ds/D0 = 1

3π
. (16)

By contrast, the rod’s self-diffusion coefficients are obtained
from the analytical expressions available for prolate spheroids
[24,25]:

Dr,⊥/D0 = (2a2 − 3b2)S + 2a

16π (a2 − b2)
b, (17)

Dr,‖/D0 = (2a2 − b2)S − 2a

8π (a2 − b2)
b, (18)

Dr,ϑ/D0 = 3
(2a2 − b2)S − 2a

16π (a4 − b4)
b, (19)

where a = (L + σ )/2, b = σ/2, and S is a geometrical
parameter given by

S = 2

(a2 − b2)1/2
log

a + (a2 − b2)1/2

b
. (20)

The complete set of values of the four above self-diffusion
coefficients is given in Table I.

The maximum elementary rotations and displacements are
set by the DMC time steps, δtMC,s and δtMC,r . As stated in
Eq. (10), the time step of rods and spheres are related via their
respective acceptance rates that are not known a priori. One of
the two time steps can be set independently, while the other is
updated via a preliminary trial-and-error DMC run preceding
the DMC production run. In particular, the time of the slowest
species, δtMC,r , is set and kept constant to 10−4τ , 10−3τ , or
10−2τ , while δtMC,s is allowed to converge to its final value
according to the instantaneous acceptance rates of spheres and
rods. More specifically, δtMC,s is initially set equal to δtMC,r

TABLE I. Self-diffusion coefficients of rods, with length-to-
diameter ratio L/σ = 5, and spheres, with diameter σ , as calculated
from Eqs. (16)–(19).

Ds/D0 Dr,⊥/D0 Dr,‖/D0 Dr,ϑ/D0

1.554 × 10−1 5.812 × 10−2 7.907 × 10−2 1.282 × 10−2

FIG. 1. (Color online) Convergence of the elementary MC time
step δtMC,s to δtMC,rAr/As , rescaled according to Eq. (10), during the
preliminary trial-and-error procedure (left frame). The two rescaled
elementary time steps achieve a steady value very quickly and
maintain it, within the statistical fluctuations, along the production
run (right frame).

and recalculated at the end of every MC cycle to satisfy the
constraint of Eq. (10), that is δtMC,s = δtMC,rAr/As . With this
updated elementary time step, the maximum displacement
for spheres is recalculated from Eq. (12) and a new value
of As generated. This preliminary trial-and-error algorithm
converges very fast, as can be appreciated in Fig. 1, which
shows the typical convergence of the elementary MC time
step δtMC,s to δtMC,rAr/As for the systems studied here. The
steady value of δtMC,s is then used in the production run to
calculate the dynamical properties of the colloidal particles. In
the production run, the elementary MC time steps are kept
constant, but the acceptance rates can fluctuate around an
average value whose standard deviation, basically depending
on the packing of the system, is relatively small and generally
in the order of 10−4. Standard deviations are useful to quickly
estimate the magnitude of fluctuations of the acceptance rates
and thus to justify the validity of Eq. (5).

To quantitatively compare the results from DMC and BD
simulations and thus address the validity of Eqs. (9) and (10),
we have calculated the mean-square displacements (MSDs),
the orientation autocorrelation functions (OAFs), and the
self part of the van Hove correlation functions (s-VHFs) of
several systems at different compositions, packing fractions,
and time steps. These functions have been averaged out
over trajectories with multiple time origins to collect good
statistics. The MSD, calculated separately for spheres and
rods, results from the displacements along the three axes of
the simulation box and reads:

〈
�r2

j (t)
〉 = 1

Nj

〈
Nj∑
n=1

(rn,j (t) − rn,j (0))2

〉
, (21)

where the delimiters 〈. . .〉 denote ensemble average. In case
of systems forming nematic or smectic phases, the MSD of
rods and spheres can be decoupled in the direction parallel,
〈�r2

j,‖(t)〉, and perpendicular, 〈�r2
j,⊥(t)〉, to the nematic

director n̂ of the liquid crystalline phase. The OAF, limited
to the rodlike particles, is given by the second Legendre
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FIG. 2. (Color online) (a) Isotropic, (b) nematic, and (c) smectic
phases containing 70% rods with length-to-diameter ratio L/σ =
5 and 30% spheres with diameter σ . The three phases are at the
same temperature T ∗ = 1.465 and packing fraction (a) η = 0.409,
(b) 0.467, and (c) 0.524.

polynomial of the dot product between the unit orientation
vectors, ûn,r (0) and ûn,r (t), of a particle n calculated at time
0 and time t , respectively:

E2(t) = 1

Nr

〈
Nr∑

n=1

1

2
{3[ûn,r (0) · ûn,r (t)]2 − 1}

〉
. (22)

Finally, the distribution of displacements can be quantitatively
described by the s-VHFs that measure the probability
distribution for a particle displacement r after an interval of
time t . We separately estimate the s-VHF in the direction
parallel and perpendicular to the nematic director by

evaluating the following functions:

G‖
s (r‖,t) = 1

Nj

〈
Nj∑
n=1

δ(r‖ − r‖,n(t + t0) + r‖,n(t0))

〉
(23)

G⊥
s (r⊥,t) = 1

Nj

〈
Nj∑
n=1

δ(r⊥ − r⊥,n(t + t0) + r⊥,n(t0))

〉
2π

(24)

with (r⊥,n(t),r‖,n(t)) the location of particle n at time t ,
δ the Dirac δ, 〈. . .〉 the ensemble average. The index 2π

indicates the average over the polar angle which defines the
bidimensional vector r⊥. It should be noticed that for freely
diffusive particles these functions are described by a Gaussian.

IV. RESULTS

To validate our theoretical formalism, we investigate the
dynamical behavior of a bidisperse colloidal mixture of rods
and spheres at three different concentrations. In particular,
Nr/Np = 0.3, 0.5, and 0.7. These systems are able to form
I, N, and Sm phases as exemplarily shown in Fig. 2. The I
phase does not exhibit any appreciable long-range order as
both components distribute randomly in the space. At higher
pressure, the I phase transforms into the N phase, where
the rods are preferentially oriented along a common nematic
director, n̂, while the spheres maintain a rather weakly ordered
distribution. In the Sm phase, both components display an
evident translational long-range order in the direction of the
nematic director with the rods forming oriented lamellar stacks

TABLE II. Details of the systems studied in this paper, consisting of rods with length to diameter ratio L∗ = L/σ and spheres with diameter
σ . For comparison, we report the reduced pressure P ∗, packing fraction η = (Nsvs + Nrvr )/V with vj the single particle volume, phase order,
relative amount of rods, elementary time steps δtMC,r and δtMC,s , maximum displacements δrmax

s , δrmax
‖ and δrmax

⊥ , maximum rotation δrmax
ϑ , and

acceptance rates Ar and As .

P ∗ η Phase Nr/Np δtMC,r /τ δtMC,s/τ δrmax
s /σ δrmax

‖ /σ δrmax
⊥ /σ δϑmax Ar As

1 0.276 I 0.3 10−4 9.900 × 10−5 1.110 × 10−2 7.953 × 10−3 6.819 × 10−3 3.203 × 10−3 0.982 0.991
1 0.276 I 0.3 10−3 9.682 × 10−4 3.470 × 10−2 2.515 × 10−2 2.156 × 10−2 1.013 × 10−2 0.941 0.972
1 0.276 I 0.3 10−2 8.923 × 10−3 1.053 × 10−1 7.953 × 10−2 6.819 × 10−2 3.203 × 10−2 0.818 0.917
1 0.305 I 0.5 10−4 9.900 × 10−5 1.110 × 10−2 7.953 × 10−3 6.819 × 10−3 3.203 × 10−3 0.981 0.991
1 0.305 I 0.5 10−3 9.677 × 10−4 3.469 × 10−2 2.515 × 10−2 2.156 × 10−2 1.013 × 10−2 0.940 0.971
1 0.305 I 0.5 10−2 8.901 × 10−3 1.052 × 10−1 7.953 × 10−2 6.819 × 10−2 3.203 × 10−2 0.812 0.913
1 0.317 I 0.7 10−4 9.900 × 10−5 1.110 × 10−2 7.953 × 10−3 6.819 × 10−3 3.203 × 10−3 0.981 0.991
1 0.317 I 0.7 10−3 9.684 × 10−4 3.470 × 10−2 2.515 × 10−2 2.156 × 10−2 1.013 × 10−2 0.940 0.971
1 0.317 I 0.7 10−2 8.927 × 10−3 1.054 × 10−1 7.953 × 10−2 6.819 × 10−2 3.203 × 10−2 0.814 0.912
2 0.360 I 0.3 10−4 9.866 × 10−5 1.108 × 10−2 7.953 × 10−3 6.819 × 10−3 3.203 × 10−3 0.973 0.986
2 0.360 I 0.3 10−3 9.561 × 10−4 3.448 × 10−2 2.515 × 10−2 2.156 × 10−2 1.013 × 10−2 0.916 0.958
2 0.360 I 0.3 10−2 8.451 × 10−3 1.025 × 10−1 7.953 × 10−2 6.819 × 10−2 3.203 × 10−2 0.740 0.876
2 0.386 I 0.5 10−4 9.871 × 10−5 1.108 × 10−2 7.953 × 10−3 6.819 × 10−3 3.203 × 10−3 0.973 0.986
2 0.386 I 0.5 10−3 9.570 × 10−4 3.450 × 10−2 2.515 × 10−2 2.156 × 10−2 1.013 × 10−2 0.916 0.958
2 0.386 I 0.5 10−2 8.480 × 10−3 1.027 × 10−1 7.953 × 10−2 6.819 × 10−2 3.203 × 10−2 0.742 0.875
2 0.409 I 0.7 10−4 9.869 × 10−5 1.108 × 10−2 7.953 × 10−3 6.819 × 10−3 3.203 × 10−3 0.973 0.986
2 0.409 I 0.7 10−3 9.570 × 10−4 3.450 × 10−2 2.515 × 10−2 2.156 × 10−2 1.013 × 10−2 0.916 0.957
2 0.409 I 0.7 10−2 8.499 × 10−3 1.028 × 10−1 7.953 × 10−2 6.819 × 10−2 3.203 × 10−2 0.741 0.872
2.5 0.467 N 0.7 10−4 9.854 × 10−4 1.107 × 10−2 7.953 × 10−3 6.819 × 10−3 3.203 × 10−3 0.970 0.984
2.5 0.467 N 0.7 10−3 9.515 × 10−4 3.440 × 10−2 2.515 × 10−2 2.156 × 10−2 1.013 × 10−2 0.904 0.949
2.5 0.467 N 0.7 10−2 8.287 × 10−3 1.015 × 10−1 7.953 × 10−2 6.819 × 10−2 3.203 × 10−2 0.707 0.852
3 0.524 Sm 0.7 10−4 9.842 × 10−5 1.106 × 10−2 7.953 × 10−3 6.819 × 10−3 3.203 × 10−3 0.966 0.982
3 0.524 Sm 0.7 10−3 9.473 × 10−4 3.432 × 10−2 2.515 × 10−2 2.156 × 10−2 1.013 × 10−2 0.894 0.944
3 0.524 Sm 0.7 10−2 8.084 × 10−3 1.003 × 10−1 7.953 × 10−2 6.819 × 10−2 3.203 × 10−2 0.677 0.838
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FIG. 3. (Color online) Mean-square displacements (MSDs) in an
isotropic phase (η = 0.409) containing Nr = 700 rodlike and Ns =
300 spherical particles. Circles and squares indicate the MSD of
rods and spheres, respectively, obtained from BD simulations. Black
(lower) and red (upper) dashed lines refer to the MSD of rods and
spheres, respectively, obtained from DMC simulations at δtMC,r =
10−4τ and δtMC,s = 9.9 × 10−5τ and acceptance rates Ar = 0.981
and As = 0.991. The solid lines are the same MSDs from DMC
simulations with the time rescaled according to Eq. (9). The inset, in
double linear scale, shows the BD and rescaled DMC results.

that drive the distribution of the spherical particles, mostly
located in the interlayer region. Details of the systems studied
in this work are summarized in Table II.

To illustrate how the DMC results are practically rescaled
to the BD results, the MSDs of 300 spheres and 700 rods
forming an isotropic phase at P ∗ = 1 are analyzed in Fig. 3.
The MSDs as calculated by DMC simulations are represented
by dashed lines, whereas the open symbols reproduce the
results of BD simulations. In both cases, the MSDs are those
typical of a dilute colloidal suspension following a liquidlike
dynamics. The dashed curves are obtained at an arbitrarily set
MC time step for rods, which is δtMC,r/τ = 10−4 in this case,
while the MC time step for spheres, δtMC,s/τ = 9.9 × 10−5,
results from convergence of Eq. (10) along a short preliminary
DMC simulation implementing the trial-and-error algorithm
described above. At these time steps, the acceptance rates
estimated at the end of the production run are Ar = 0.981
and As = 0.991 for rods and spheres, respectively. With these
values of acceptance rates and elementary time steps, we apply
Eq. (9) to recover the physical time of the DMC production
run and thus the BD time scale. The solid lines shown in Fig. 3,
being the rescaled MSDs from the DMC simulations, indicate
an excellent quantitative agreement with BD simulations. The
inset in Fig. 3 displays the same MSDs in a double linear scale
to better appreciate the deviations between BD and rescaled
DMC results, being however not particularly significant.

The advantage of DMC over BD simulations is the
possibility of addressing the long-time dynamics of dense
colloidal systems by increasing the elementary time step.
With the limits imposed by Eq. (5), we have increased δtMC,r

up to 10−2τ . Depending on the packing of the system, at
this elementary time step the acceptance rates decrease up
to Ar = 0.677 with standard deviations in the order of 10−3

FIG. 4. (Color online) Mean-square displacements (MSDs) in
isotropic phases containing (a) 30%, (b) 50%, and (c) 70% of
rodlike particles at T ∗ = 1.465 and P ∗ = 1. Black (lower) and
red (upper) lines represent the results of BD simulations for rods
and spheres, respectively. The symbols indicate the rescaled MSDs
for the following rods’ elementary MC time steps: δtMC,r = 10−4τ ,
δtMC,r = 10−3τ , and δtMC,r = 10−2τ . The respective elementary time
steps for spheres and acceptance rates are given in Table II.

(Sm phase with Nr = 700). Nevertheless, we still observe
an excellent agreement with BD simulations, as illustrated
in Fig. 4, where we show the MSDs of rods and spheres
in isotropic phases at three different relative compositions
Nr/Np = 0.3 (top), 0.5 (middle), and 0.7 (bottom), and three
different elementary time steps. By keeping the total number
of MC cycles constant and increasing δtMC,r (and consequently
δtMC,s) it is possible to explore the long-time dynamics of our
model colloidal suspensions without lack of accuracy with
respect to the dynamics described by BD simulations. We note
that increasing the relative amount of rods from 30% to 70%
has a limited effect on the MSDs shown in Fig. 4, which might
be due to the rather dilute concentrations considered in this
particular case.

The MSDs of the two species in the N and Sm phases are
given in Fig. 5. Spherical particles have a similar dynamics in
the N and Sm phases, although their diffusion in the direction
parallel to the nematic director n̂ of the Sm phase appears
to be reduced as compared to their parallel diffusion in the
N phase. The dynamics of rods in the two liquid crystal
phases is significantly different and influenced by the layered
structure that hampers their diffusion in the direction of n̂
in the Sm phase. In the N phase, the parallel MSD is larger
than the perpendicular MSD from short to long times, as also
found elsewhere [30,32]. By contrast, in the Sm phase, this
behavior is only observed at short times, when the rods are
still diffusing in the cage formed by their nearest neighbors.
This cage is particularly effective in the direction of n̂ by
providing a barrier against the diffusion of the rods [13]. This
explains why the slope of 〈�r2

r,‖〉 decreases at intermediate
times and, when the rods enter the diffusive regime, remains
rather lower than 〈�r2

r,⊥〉. All these details are captured by BD
and DMC simulations with excellent agreement, confirming
that our algorithm works very well also for multicomponent
systems showing a complex dynamics. These results point out
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FIG. 5. (Color online) Mean-square displacements (MSDs) of
spheres and rods in the N and Sm phases containing 70% of rodlike
particles at T ∗ = 1.465 and η = 0.467 (N) and 0.524 (Sm). The
MSDs are shown for both species in the direction parallel and
perpendicular to the nematic director. The solid lines refer to BD
simulations, while the symbols to DMC simulations at δtMC,r /τ =
10−4 (�), 10−3 (�), and 10−2 (+) and rescaled according to Eq. (9).
The respective acceptance rates and elementary time steps for spheres
(symbols at increasing δtMC,s : �, 
, and ×) are given in Table II.

an excellent agreement between DMC and BD simulations for
species whose dynamical evolution is actually not particularly
different. To test whether our theoretical framework is still
valid when the dynamics of one of the two species is rather
slower than the other, we have also simulated Sm phases
containing longer rods, with aspect ratio L∗ = 7, by keeping
the spheres’ diameter equal to σ . The resulting MSDs are
given in Fig. 6. Despite the evident difference of mobility
between spheres and rods, especially in the direction parallel
to n̂, the agreement between DMC and BD simulations is again
excellent, confirming that the applicability of our theoretical
framework is not limited to species with a homogeneous
dynamics.

In Fig. 7, the orientation autocorrelation functions of rodlike
particles, calculated from Eq. (22), are given for the I, N, and
Sm phases. The fast exponential decay of E2(t) is expected
for liquidlike systems, while liquid crystals, due to the
quasialigned orientation of the rods, exhibit a decay of E2(t) to
a positive value, which is roughly 0.6 in the N phase and 0.85 in
the Sm phase. Rescaling the results of DMC simulations gives
an excellent agreement with the results of BD simulations
for the three phases of interest. A peculiar feature of rods’

FIG. 6. (Color online) Mean-square displacements (MSDs) in a
smectic phase (η = 0.513) containing 300 spheres and 700 rods with
aspect ratio L∗ = 7. The MSDs are shown for spheres (top frame)
and rods (bottom frame) in the direction parallel (lower curves) and
perpendicular (upper curves) to the nematic director. The solid lines
refer to BD simulations, while the symbols to DMC simulations at
δtMC,r /τ = 10−4 (�), 10−3 (�), and 10−2 (+) and rescaled according
to Eq. (9). The respective elementary time steps for spheres are
δtMC,s = 9.843 × 10−5τ (�), 9.480 × 10−4τ (
), and 8.187 × 10−3τ

(×).

diffusion in the Sm phase is their tendency to rattle around in
a given layer until they jump to a neighboring layer [13]. A
similar behavior has also been observed in binary mixtures
of rods and spheres, with the latter preferentially hopping
between the interlayer spaces [30]. In Fig. 8, we provide
the s-VHFs of rods and spheres in a Sm phase containing
Nr = 700 rods and Ns = 300 spheres, with packing fraction

FIG. 7. (Color online) Orientation autocorrelation functions
(OAFs), E2(t), in the isotropic (black �), nematic (red �), and
smectic (blue 
) phases of rodlike particles. The solid lines refer
to BD simulations, whereas the symbols are the results from DMC
simulations with the time rescaled according to Eq. (9). For the three
systems, Nr/Np = 0.7 and δtMC,r = 10−3τ , whereas η = 0.317,
0.467 and 0.524 for the I, N, and Sm phase, respectively. The
respective elementary time steps for spheres and the acceptance rates
are given in Table II.
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FIG. 8. (Color online) Longitudinal (left) and transverse (right)
component of the self-part of the van Hove function of rods (top) and
spheres (bottom) in a Sm phase containing 70% of rodlike particles at
T ∗ = 1.465 and η = 0.524. All symbols refer to the results obtained
from DMC simulations with the time rescaled according to Eq. (9).
The solid lines refer to BD simulations.

η = 0.524. As expected, the distribution of the displacements
in the direction of the nematic director reveals the appearance
of secondary peaks at relatively long times and approximately
r = L. These peaks highlight the presence of preferential
displacements along the nematic director for spheres and,
especially, for rods. The rescaled s-VHFs obtained from
DMC simulations reveal that this tendency is grasped by
both DMC and BD simulations with identical precision. The
s-VHFs calculated in the I and N phases (not shown here)
show also an excellent agreement between DMC and BD
simulations.

V. CONCLUSIONS

In summary, we have presented an efficient theoretical
framework to investigate the dynamics of multicomponent
colloidal suspensions by DMC simulations. To validate our
theory, we considered a bidisperse mixture of colloidal rods
and spheres, whose dynamical properties have been calculated
by performing BD and DMC simulations. Each component
has its own elementary time step, which must be carefully
set to obtain a consistent and unique MC timescale. We have
proposed a simple trial-and-error procedure to compute the
elementary time steps and hence compare the results of DMC
and BD simulations.

To accurately describe the Brownian dynamics via DMC
simulations, it is crucial to observe that particles of different
species do not have the same mobility and do not move
the same distances along the same unit of time. In other
words, the maximum displacements and rotations allowed
in a DMC simulation are different for different components.
Nevertheless, we have shown that the elementary time steps of
the species in the system are not independent, but correlated
via the acceptance rate of the simultaneous change of all
the degrees of freedom involved. In particular, regardless the
species j , we found that Aj δtMC,j /3 is constant and equals
the elementary time step in the BD timescale. By rescaling
the MC time step with the acceptance rate, the dynamical
properties obtained with DMC simulations at different time
steps collapse into a single master curve, which confirms
the existence of a unique MC timescale. The quantitative
agreement between the two simulation methods is excellent,
but DMC provides the remarkable advantage of approaching
longer timescales as compared to BD, whose time step must be
small enough to integrate the stochastic equations of motion
accurately.

We highlight that the theoretical formalism presented here
is of general applicability and can be extended to any poly-
disperse colloidal suspension. It works very well even when
the dynamical behavior of one of the species is rather slow,
as in the case of long rods, or characterized by nonuniform
distribution of displacements, as generally observed with
smectic LCs. This makes DMC simulation a powerful tool
to efficiently investigate the long-time dynamics of dense
systems. However, we stress that our theoretical approach
is strictly applicable under stationary conditions, where the
acceptance rate, apart from minor statistical fluctuations,
can be considered constant along the DMC production run.
This implies that the dependence of the acceptance rate
on time and space should be considered when studying
heterogeneous systems, such as colloidal gels or glass-forming
systems.
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