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ABSTRACT
We perform extensive Monte Carlo simulations to investigate the phase behaviour of colloidal suspensions
of hard board-like particles (HBPs). While theories restricting particle orientation or ignoring higher
ordered phases suggest the existence of a stable biaxial nematic phase, our recent simulation results
on monodisperse systems indicate that this is not necessarily the case, even for particle shapes exactly in
between prolate and oblate geometries, usually referred to as self-dual shape. Motivated by the potentially
striking impact of incorporating biaxial ordering into display applications, we extend our investigation to
bidispersemixtures of short and long HBPs and analyse whether size dispersity can further enrich the phase
behaviour of HBPs, eventually destabilise positionally ordered phases and thus favour the formation of
the biaxial nematic phase. Not only do our results indicate that bidisperse mixtures of self-dual shaped
HBPs cannot self-assemble into biaxial nematic phases, but they also show that these particles are not
able to form uniaxial nematic phases either. This surprising behaviour is also observed in monodisperse
systems. Additionally, bidisperse HBPs tend to phase separate in coexisting isotropic and smectic phases
or, at relatively large pressures, in a smectic phase of mostly short HBPs and a smectic phase of mostly long
HBPs. We conclude that limiting the particle orientational degrees of freedom or neglecting the presence
of positionally ordered (smectic, columnar and crystal) phases can dramatically alter the phase behaviour
of HBPs and unrealistically enlarge the region of stability of the biaxial nematic phase.
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1. Introduction

Colloids are dispersions of solid particles or liquid droplets,
between 1 nm and 1 µm in size, evenly suspended in a fluid.
Their motion, basically controlled by the stochastic collisions
with the fluid molecules, is driven by a thermal energy of the
order of few kT per particle. Very interestingly, the interparticle
forces controlling their phase behaviour and dynamics, includ-
ing electrostatic and excluded volume interactions, are the same
forces that determine the behaviour of atoms andmolecules. As
such, the possibility to synthesise particles in a variety of sizes
and shapes and control their interactions, makes colloids ideal
model systems to understand the physical laws underpinning
structure and dynamics of atomic and molecular systems. This
remarkable similarity provides a unique opportunity to unravel
a number of processes at the molecular scale that are too fast to
be detected by conventional microscopy. In particular, investi-
gating how anisotropic colloidal particles organise themselves
can contribute to unveil the phase and aggregation behaviour
of molecular liquid crystals (LCs), enhance their fundamen-
tal understanding and thus optimise the design of functional
electro-optical devices [1]. Nevertheless, the scientific relevance
of colloids goes well beyond their use as mere model systems.
The impressive advances in the synthesis of anisotropic colloidal
particles with precise symmetry and directional interactions
sparked the discovery of a collective behaviour, key for the syn-
thesis of photonic crystals [2] andmacroporous solids [3], that is
not observed in atomic andmolecular systems. Recognising this
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breakthrough has conferred to colloids a position in materials
science in their own right [4].

Although current LC display technology is entirely based on
molecular LCs, the appealing scenario of employing materials
with high thermal stability, enhanced susceptibility to external
fields and more accessible production costs, makes colloidal
LCs excellent candidates for displays [5–7]. Additionally, and
perhaps more interestingly, colloidal suspensions of board-like
particles can form biaxial nematic (NB) phases [8], whose exis-
tence, theoretically predicted by Freiser almost 50 years ago [9],
is still an open question at the molecular scale. The intriguing
prospect of manufacturing biaxial LCDs has been enfeebled by
the difficulty of obtaining a stable molecular NB phase, espe-
cially at convenient temperatures for display applications. The
experimental findings by Vroege and coworkers, who observed
a remarkably stableNB phase in systems of polydisperse goethite
particles, have provided renewed expectations and perhaps an
indication on how, at the molecular scale, the stability of the NB
phase might be enhanced [8].

Our recent work on a wide range of oblate and prolate
monodisperse HBPs highlighted the existence of a rich variety
of LC phases, including the long-debated discotic smectic (Sm)
phase, consisting of layers as thick as the particleminor axis [10].
However, no evidence of the existence of the NB phase could
be provided, even at the so-called self-dual shape, a particle
geometry almost exactly in between prolate and oblate. This
peculiar particle shape was shown to favour the formation of
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the NB phase, although into a very limited region of the phase
diagram [11]. It is important to note that most of the theo-
retical studies on board-like particles were developed within
the restricted-orientation (Zwanzig) model, allowing only six
orthogonal particle orientations [11–13], or assuming com-
plete alignment of the particle long axes [14]. The seminal
works by Straley [15] and Mulder [16] on hard sphero-platelets
(similar, but not identical, to our HBPs) did incorporate free
rotation, but neglected the positionally ordered phases, which
were later shown to dramatically reduce the region of stability
of the NB phase and deeply change the resulting phase diagram
[11]. By applying a fundamental-measure theory within the
Zwanzig approximation, Velasco and coworkers investigated
the phase behaviour of HBPs as a function of the degree of
particle biaxiality, defined as θ = (L∗ − 1)−1

(
L∗
W∗ − W∗

)
,

where L∗ and W∗ are the reduced particle length and width,
respectively [17]. In particular, θ = −1 for oblate geometries
or θ = 1 for prolate geometries. They observed a transition
from the uniaxial nematic (NU) to the NB phase for θ � 0,
but to the Sm phase for θ � 0. However, in our recent work
on freely rotating monodisperse HBPs within this range of
particle biaxiality (θ = −0.0909), we only observed a transition
to the Sm phase [10]. As unambiguously stressed by Masters,
overlooking the formation of ordered phases could be perilous
for a reliable theoretical description of the NB phase behaviour
[18]. We add that employing a restricted-orientation model
can also have a similar effect, as our theoretical predictions on
freely rotatingHBPshave recently established [10].MonteCarlo
simulations on hard spheroplatelets showed the existence of NB
phases only for particle length-to-thickness ratios L∗ > 9 and
dimensions close to the self-dual shape [19]. Since our results
on sharp HBPs with L∗ = 12 did not reveal the existence of the
NB phase [10], we can only argue that particle roundness might
play a crucial role in its stabilisation.

In the light of the conclusions drawn from our work on
monodisperse HBPs, here we investigate the phase behaviour
of binary mixtures of HBPs with a twofold aim: (i) determin-
ing what LC phases are formed and, specifically, the region
of existence, if any, of the NB phase; and (ii) pondering the
validity of restricting the particle rotational degrees of freedom
to describe their self-assembly. To this end, the geometry of the
HBPs in the present contribution is exactly the same as that
employed by Belli et al. in their theoretical work on bidisperse
and polydisperse HBPs within the Zwanzig model [13].

2. Methodology

2.1. Model

In Figure 1, we provide a visual representation of the particles
studied in this work. They are freely-rotating hard rectangular
parallelepipeds (cuboids) of thickness T , width W , and length
L. The thickness T is the unit length, while the reduced width
and length are, respectively, W∗ = W/T and L∗ = L/T .
Following the theoretical work by Belli et al. we make use of
a geometrical parameter, s, to describe the degree of particle
size dispersity [13]. The dimensions of the short and long HBPs
are then defined as a function of this parameter. For long HBPs,
thickness, width and length are, respectively, T1 = T(1 + s),

Figure 1. (Colour online) Long and short board-like particles with thickness, width
and length given by (T1,W1, L1) and (T2,W2, L2), respectively.
Notes: The reduced length L∗ = L1/T1 = L2/T2 and width W∗ = W1/T1 = W2/T2 are the
same for both species. The size-dispersity index of the particles shown in this figure is s = 0.2
(see text).

W1 = W(1 + s) and L1 = L(1 + s). Similarly, for short HBPs,
the dimensions are T2 = T(1 − s), W2 = W(1 − s) and
L2 = L(1 − s). By definition, the reduced length and width
of the two species are the same: L∗ = L1/T1 = L2/T2 = L/T
and W∗ = W1/T1 = W2/T2 = W/T . In order to compare
our simulation results with the above mentioned theoretical
predictions, we assign to these two aspect ratios the same values
as those in Ref. [13], namely L∗ = 9.07 and W∗ = 2.96. This
particular geometry was chosen to reproduce the experimental
observations byVroege and coworkers,who found a remarkably
stable NB phase in systems of polydisperse boardlike particles
[8]. Finally, the size-dispersity index is set to s = 0.2, a value that
provides the richest phase behaviour among the binarymixtures
investigated in Ref. [13]. While our particles are identical to
those designed by Belli, they are completely free to assume any
possible orientation, rather than only the six allowed by the
Zwanzig model. This difference is particularly relevant when
assessing the formationof uniaxial andbiaxial phases, aswehave
recently noticed in systems of monodisperse boardlike particles
[10].

2.2. Monte Carlo simulations

We perform Monte Carlo simulations of systems containing
between N = 2000 and 4000 HBPs, where N = N1 + N2 is the
sum of long (N1) and short (N2) HBPs. Our cuboids interact
via a hard-core potential and, as such, their path towards the
equilibrium state, which only depends on their geometry and
system packing, can be investigated in terms of free volume
available, or equivalently, by checking and discarding the occur-
rence of particle overlaps. To this end, we applied the separating
axes method described by Gottschalk et al. [20] and adapted by
John and Escobedo to study the phase behaviour of tetragonal
parallelepiped particles [21]. We refer the interested reader to
the Appendix of Ref. [21] for additional details.

All the simulations were run in the isobaric-isothermal en-
semble, which constrains a constant number of HBPs into a
periodic simulation box of volumeV = Lx × Ly × Lz , with Lx ,
Ly , and Lz the box dimensions. To study phase coexistence, we
decided to apply a direct coexistence simulation method, where
the two species are initially separated by an interface and thus
occupy different regions of the simulation box. In both regions,
the particles are perfectly aligned, so to create a dense biaxial
nematic phase consisting of short or long HBPs. Undesired
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finite size effects have been taken into account by employing
elongated boxes, whereLx is at least four or five times larger than
the other two dimensions. This choice ensures a bulk behaviour
in the regions far from the interface and allows us to impose an
isotropic pressure gradient to a system that, due to the presence
of an interface, is actually affected by an anisotropic pressure
tensor. However, as long as the box is sufficiently elongated, this
pressure tensor, scaling with L−1

x , can be safely neglected [32].
The systems in such an initial configuration, containing the two
species at different relative concentrations, in the range 0 ≤
x1 = N1/N ≤ 1, have been gradually expanded or compressed
to the target reducedpressureP∗ = βPT3,whereβ is the inverse
temperature. Moreover, to better identify the boundary of the
isotropic monophasic regions, we also compressed systems of
randomly mixed HBPs. This also allowed us to confirm that
the interface imposed in our direct coexistence simulations
was actually the one with the lowest free energy. Each MC
cycle consisted of N attempts of displacing and/or rotating
randomly selected particles, plus an attempt to modify the three
box lengths independently. Translational and rotational moves
as well as volume changes were accepted if no overlap was
detected.

To address equilibration, we calculated the uniaxial (S2) and
biaxial (B2) order parameters as well as the packing fraction
η = ∑

(Njvj)/V , with vj = Tj × Wj × Lj the volume of a
particle of species j = 1 or 2. The systems were considered to be
at equilibriumwhen η, S2 and B2 achieved a steady value within
reasonable statistical fluctuations. Toweight the contribution of
each species to the global order of the system, the order param-
eters have been calculated for short and long HBPs separately.
In particular, to determine the nematic order parameter and
nematic director associated to each particle axis, the following
traceless symmetric second-rank tensor has been diagonalised:

Qλλ = 1
2N

〈 N∑
i=1

(3λ̂i · λ̂i − I)

〉
, (1)

where λ̂ = x̂, ŷ, ẑ refers to the unit orientation vectors of the
generic particle i alongW ,T , andL, respectively, I is the second-
rank unit tensor, and the angular brackets indicate ensemble
average. Three eigenvalues and three eigenvectors are obtained
fromdiagonalisation ofQλλ, with the largest positive eigenvalue
and the associated eigenvector determining, respectively, the
nematic order parameter S2 and the uniaxial nematic director
[22]. In particular, the nematic order parameter S2,L is the largest
eigenvalue of the tensorQzz and reads

S2,L = n̂ · Qzz · n̂, (2)

where the eigenvector n̂ is the nematic director associated to the
preferential orientation of the particle axis ẑ. Similar expressions
can be obtained to determine the remaining two uniaxial order
parameters, S2,W = m̂·Qxx ·m̂ and S2,T = l̂ ·Qyy · l̂, with m̂ and l̂
their respective nematic directors. By contrast, the biaxial order
parameter associated to the nematic director n̂ is calculated as
follows [23]

B2,L = 1
3

(
m̂ · Qxx · m̂ + l̂ · Qyy · l̂ − m̂ · Qyy · m̂ − l̂· Qxx · l̂

)
.

(3)
In principle, B2,W and B2,T can be obtained by similar expres-
sions. However, to assess phase biaxiality is enough to monitor
the biaxial order parameter associated to the principal particles
axis, defined as the axis displaying the largest uniaxial order
parameter [24–26]. Therefore, here we only consider the biaxial
order parameter associated to themain nematic director and re-
fer to it as B2. Additional details are available in our recent work
on monodisperse HBPs [10]. Finally, to calculate the particle
composition in each coexisting phase, we runNVT simulations
within the miscibility gap at x1 = 0.5 and, in some cases to
improve statistics, along the same tie-line at x1 = 0.2, 0.4, 0.6
and 0.8.We thenmeasured the particle composition by dividing
the box in layers of cross-section Ac = Ly × Lz and height L1
parallel to Lx .

3. Results

Details of the binary mixtures investigated in this work are re-
ported in Table 1, where we provide a summary of the ordering
observed in the monophasic and biphasic regions. The P∗ − x1
(pressure-composition) phase diagram of these systems is given
in Figure 2.

Fourmain regions can be identified: (i) the region of stability
of the I phase, where both species arewell-mixed together across
the complete range of compositions; (ii) the region of stability
of a Sm phase that incorporates mostly long HBPs, referred
to as Sm1; (iii) a dark grey shaded area being the region of
I/Sm1 coexistence; and (iv) a light grey shaded area indicating
equilibrium between highly ordered phases. The empty squares
indicate overall system concentrations, set to x1 = 0.4, 0.5 or
0.6. Regardless of these values, the resulting coexistence concen-
trations in the I and Sm phases are generally in good agreement,
which is of the order of the error bars shown in Figure 2. The
reason why we are showing an overall concentration rather
than an other is only due to the fact that some Sm phases
display a number of defectswhose annihilation time is especially
long. Although the presence of these defects does not seem
to particularly influence the concentrations at coexistence, in
Figure 2 we decided to include those overall concentrations
referring to Sm phases whose defects have been (almost) com-
pletely annihilated within our simulation time. At increasing
pressure, the systems undergo a transition from the I phase to a
two-phase region where I phases rich in short HBPs coexist
with Sm phases rich in long HBPs. At larger pressures, we
observe a region where two Sm phases coexist: Sm1, rich in
long HBPs, and Sm2, mostly composed by short HBPs. The
pure-component systems, indicated by the vertical lines x1 =
0 and 1, experience transitions from the I phase to the Sm
phase with no evidence of intermediate NU phases. This result
is rather remarkable as theoretical works on spheroplatelets
[11,16] and HBPs [10,13] did identify the presence of stable
NU phases at particle geometries equal or close to the self-
dual shape, where the relation

√
LT = W between particle

dimensions holds. Nevertheless, as we could establish in our
work on monodisperse HBPs with L∗ = 9 and 12, the region
of stability of the NU phase for this particle shape is so small
that pinning down its boundaries becomes very challenging,
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Table 1. Details of the systems studied in this paper, consisting of binary mixtures of short and long HBPs. For comparison, we report the reduced pressure P∗ , phases at
equilibriuma , composition of long HBPs x1, packing fraction η, and uniaxial and biaxial order parameters. Superscripts (1) and (2) refer to the phases at equilibrium in the
biphasic region of the phase diagram.

P∗ Phase 1 Phase 2 x(1)1 x(2)1 η(1) η(2) S(1)2,L S(2)2,L B(1)
2 B(2)

2

0.093 I 1.0 0.35 0.07 – 0.02 –
0.094 Sm 1.0 0.39 0.79 – 0.02 –
0.100 I 0.5 0.31 0.05 0.02 0.02 0.02
0.108 I 0.8 0.36 0.08 0.05 0.02 0.02
0.115 I 0.4 0.35 0.12 0.05 0.02 0.02
0.125 I 0.1 0.26 0.08 0.03 0.04 0.02
0.320 I 0.0 0.36 – 0.05 – 0.02
0.335 Sm 0.0 0.42 – 0.91 – 0.02
0.125 Sm I 0.86 0.33 0.50 0.30 0.61 0.08 0.06 0.01
0.140 Sm I 0.88 0.26 0.49 0.30 0.61 0.06 0.05 0.01
0.150 Sm I 0.90 0.17 0.57 0.24 0.74 0.09 0.11 0.02
0.175 Sm I 0.93 0.07 0.55 0.26 0.72 0.04 0.22 0.03
0.200 Sm I 0.92 0.05 0.56 0.27 0.78 0.09 0.22 0.01
0.230 Sm I 0.93 0.04 0.63 0.30 0.78 0.08 0.22 0.02
0.250 Sm I 0.93 0.04 0.60 0.28 0.76 0.04 0.26 0.03
0.275 SmB I 0.94 0.01 0.66 0.31 0.77 0.09 0.39 0.03
0.300 SmB I 0.95 2 × 10−3 0.64 0.35 0.85 0.12 0.59 0.09
0.320 SmB I 0.94 3 × 10−4 0.65 0.40 0.85 0.16 0.60 0.08
0.350 SmB Sm 0.96 3 × 10−3 0.72 0.42 0.85 0.85 0.76 0.05
aSmB indicates smectic phases with a significant biaxial order.

Figure 2. (Colour online) Pressure-composition phase diagram of HBPs with size-
dispersity index s = 0.2.
Notes: Dark and light grey shaded areas represent the region of I/Sm1 and Sm1/Sm2
coexistence, respectively. Empty squares indicate the overall system concentration of long
HBPs in the biphasic regions, whereas solid squares, connected by dashed lines, indicate the
concentration of long HBPs in each coexisting phase. Black and red circles represent pure
isotropic (I) and smectic (Sm) phases, respectively. Error bars are standard deviations and solid
lines are guides to the eye.

especially due to the weak first-order character of the I-to-N
phase transition of this particular particle geometry.

As a general tendency, the transition pressure from the
monophasic to the biphasic region strictly depends on the rela-
tive content of short and longHBPs and spans from P∗ ≈ 0.328
for x1 = 0.0 to P∗ ≈ 0.094 for x1 = 1.0. In terms of packing
fraction, the monophasic-to-biphasic phase transitions occur
at approximately 0.35 < η < 0.40, the same interval at which
monodisperse self-dual-shaped HBPs [10] and monodisperse
hard spheroplatelets [19] experience an I-to-N phase transition.
Although the theory of Ref. [13] does not predict the existence
of an I/Sm biphasic region, it locates the I-to-N transition of
binary mixtures of HBPs at η ≈ 0.28, a packing fraction at
which our binary mixtures are still isotropic.

At pressures generally below P∗ < 0.1, depending on particle
composition, a single I phase is found, where short and long
particles are evenly mixed throughout the simulation box.

Figure 3 displays a typical configuration of an I phase at P∗ =
0.093 and composition x1 = 0.8. While the configuration in
the top frame shows both particle species, that in the middle
frame only consists of short HBPs to provide an unambiguous
evidence of their homogeneous distribution throughout the
simulation box. We stress that the initial configuration of this
mixture consisted of two separated phases, each incorporating
either short or large HBPs. The average composition profiles
along the longest box dimension for long and short HBPs are
given in the bottom frame and confirm the presence of a well-
mixed I phase. Although some small clusters of long HBPs are
observed in the top frame, the long-ranged order of this system
is very weak, with the pair correlation functions (not shown
here) decaying fast to 1 at length scales comparable to L1.

The phase diagram in Figure 2 unveils the coexistence be-
tween a Sm1 phase, rich in long HBPs, and an I phase, rich
in short HBPs. A typical configuration of this intriguing phase
coexistence is provided in Figure 4 for a binary system of 4000
HBPs at P∗ = 0.13 and x1 = 0.6. The corresponding average
composition profiles, provided in the bottom frame, unveil the
formation of a Sm phase rich in long HBPs with x1 ≈ 0.85
(black circles) and an I phase rich in short HBPs with x1 ≈ 0.28
(red triangles). Interestingly enough, the former incorporates
short HBPs in the interlayer spaces as well as within the smectic
layers. Transverse interlayer particles had already been observed
in Sm phases of monodisperse spherocylinders [27–31], but
their occurrence had always been considered particularly rare,
especially for the prohibitive free-energy barriers to reach the
transverse state [29]. Here, it seems that the probability of ob-
serving transverse inter-layer HBPs is not so low, although we
have not assessed this point quantitatively. In particular, short
HBPs accommodate themselves in the spaces available between
longHBPs and give rise to a very peculiar Smphasewith prolate-
like layers, formed by short and long HBPs oriented along their
main axis, and oblate-like layers, incorporating mainly short
HBPs oriented along their minor axis. Transversely oriented
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Figure 3. (Colour online) Snapshots of an isotropic phase at P∗ = 0.093 and
x1 = 0.8 containing N = 4000 HBPs with size-dispersity index s = 0.2.
Notes: The snapshot in the top frame includes long and short HBPs, while that in the middle
frame only short HBPs. The graph at the bottom reports the composition profile of long (black
circles) and short (red triangles) HBPs along the longest box dimension. Error bars in the bottom
frame indicate standard deviations and solid lines are guides to the eye.

Figure 4. (Colour online) Snapshots of an isotropic phase rich in short HBPs at
equilibrium with a smectic phase rich in long HBPs. Pressure, total number of
particles, and global composition are, respectively, P∗ = 0.13, N = 4000 and
x1 = 0.6.
Notes: The configuration in the top frame includes long and short HBPs, while that in the
middle frame only short HBPs. The graph at the bottom reports the composition profile of long
(black circles) and short (red triangles) HBPs along the longest box dimension. Error bars in the
bottom frame indicate standard deviations and solid lines are guides to the eye.

long HBPs can in principle also be observed, but, as also found
in monodisperse systems of spherocylidners, their occurrence
is expected to be rare.

To quantify these observations, we calculated the longitu-
dinal pair correlation function, g‖(r · n̂), between particles at
distance r projected along the nematic director n̂. It is conve-
nient to calculate these functions in cubic rather than elongated
boxes, where a single phase is observed. To this end, once that
the boundaries of the miscibility gap had been determined, we
equilibrated a number of Sm phases in the region of the P∗ − x1

Figure 5. (Colour online) Longitudinal pair correlation function, g‖(rn), with rn =
r · n̂, of a pure Sm1 phase along the direction of the nematic director n̂ at x1 = 0.95
and P∗ = 0.15.
Notes: Solid black, dashed red and dot-dashed green lines refer to the spatial correlations of
long-long, short-short and long-short HBPs, respectively.

phase diagram where monophasic equilibrium is expected. In
Figure 5, we show g‖(r · n̂) for long and short HBPs in a pure
Sm1 phase at P∗ = 0.15 and x1 = 0.95. The black solid line,
g11, suggests that the relative distance between long HBPs is
d/T ≈ 12 in the direction of n̂, corresponding to a particle
length (L1/T = 10.884) plus the interlayer spacing, approx-
imately given by the short-particle thickness (T2/T = 0.8).
The non-zero values of g11 at intermediate distances between
contiguous smectic layers confirm that long HBPs can also
be observed in the interlayer region, where they can assume
a transverse orientation. The red dashed line (g22) provides
the spatial correlations between short HBPs. Although in this
case the peaks are significantly smaller than those of g11, a
well-defined pattern can still be recognised. While the main
peaks of this pattern cannot unambiguously resolve whether
short HBPs are located in the prolate-like or in the oblate-like
layers, the minor peaks in between clearly indicate that they
are most probably located in both of them. This conclusion is
confirmed by the analysis of g12, given by the green dot-dashed
line in Figure 5, which describes the distribution of short HBPs
with respect to long HBPs. The broadness of its main peaks
denotes a relatively wide in-layer positional distribution of short
HBPs, which, due to their reduced length as compared to the
layer thickness, are free to fluctuate in the direction of n̂ and
around the centre of mass of the layers. The secondary peak at
exactly d/2T indicates that short HBPs are indeed laying in the
interlayer spacing or, equivalently, forming oblate-like smectic
layers.

At larger pressures, above P∗ = 0.32, two coexisting Sm
phases, one rich in longHBPs (Sm1) and the other in shortHBPs
(Sm2), are observed. An example of this two-phase equilibrium
is shown in Figure 6, where 2000 cuboids at P∗ = 0.35 and
x1 = 0.2 give rise to two separate layered structures. Both phases
present a number of unresolved defects, which are expected to
be annihilated at time scales larger than our simulation time.
While short HBPs are again observed in the bulk of Sm1, it
is very difficult to see long HBPs in the bulk of Sm2, as the
average composition profile in the bottom frame of Figure 6
points out. A simple visual inspection of the top frame of this
figure suggests that the minor axes of long HBPs appear to be
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Figure 6. (Colour online) Snapshots of two coexisting smectic phases, one rich in
short HBPs and the other rich in long HBPs. Pressure, total number of particles,
global composition and size-dispersity index are, respectively, P∗ = 0.35, N =
2000 and x1 = 0.2.
Notes: The top configuration includes long and short HBPs, while the bottom configuration
only the short HBPs. The graph reports the concentration profile of long (black circles) and
short (red triangles) HBPs along the longest box dimension. Error bars in the bottom frame
indicate standard deviations and solid lines are guides to the eye.

significantly aligned and thus that the Sm1 phase might possess
a degree of biaxiality. These observations are actually not limited
to the region of the phase diagramwhere two Sm phases coexist,
but also at lower pressures, where I/Sm coexistence has been
detected. To address this point, we have calculated the order
parameter defined in Equations (2) and (3).

Typical uniaxial and biaxial order parameters are shown in
Figure 7 for a binary mixture at x1 = 0.4 and 0.1 ≤ P∗ ≤ 0.32.
For the sake of clarity, it is important to note that both sets
of parameters have been calculated separately for each species,
and thus provide a measure of the order resulting from the
orientation of the HBPs regardless of the phase they belong to.
Nevertheless, since the phases observed in the biphasic region
predominantly consists of either short or long HBPs, to a very
good approximation S2 and B2 can also be employed tomeasure
their orientational order. In particular, the left frame of Figure
7 shows the uniaxial order parameter of the long HBPs (black
circles) abruptly increasing at P∗ > 0.125, where the transition
from the I to the two-phase region is observed. By contrast,
short HBPs (red squares) are very weakly ordered and persist
in the I phase up to relatively large pressures. Above P∗ =
0.25, these particles start to form small oriented clusters in the I
phase, which can slightly enhance the value of S2,L. Additionally,
similarly to the organisation observed in the bulk of the Sm1
phase in Figure 4, some of them succeed to diffuse through
the layers of the Sm phase and contribute to further increase
their global long-range orientational order. As far as the biaxial
order parameter B2 is concerned, we notice that long HBPs do
show evidence of an appreciable degree of biaxiality at P∗ >
0.25 (right frame of Figure 7). Biaxial Sm phases had also been
observed in monodisperse systems of slightly oblate HBPs [10].
By contrast, no significant biaxiality arises from short HBPs.

Figure 7. (Colour online) Uniaxial (left) and biaxial (right) order parameters
calculated for a binary mixtures of HBPs at x1 = 0.4 and different values of
P∗ .
Notes: Vertical dashed lines indicate the transition from themonophasic to the biphasic region.
Circles and squares represent, respectively, the order parameter of long and short HBPs in the
system.

4. Conclusions

In summary, we have performed Monte Carlo simulations to
investigate the phase behaviour of binary mixtures of short and
long HBPs. Upon increasing density, these systems experience
a phase transition from a pure I phase, where the two species are
homogeneously mixed, to a two-phase region where I phases of
mostly short HBPs coexist with Sm phases of mostly longHBPs.
At relatively larger densities, a separation between a long-HBP-
rich Sm phase (Sm1) and a short-HBP-rich Sm phase (Sm2)
is observed. The positionally ordered Sm1 phase incorporates
short HBPs within its layers, aligned along the nematic direc-
tor, and in the inter-layer spacing, aligned perpendicularly to
the nematic director. Transverse interlayer particles had been
previously observed in Sm phases of monodisperse sphero-
cylinders, although their occurrence was rather rare and usually
restricted to one or two transverse particles per interlayer spac-
ing [27–31]. Although we have not assessed this specific phe-
nomenon quantitatively, here we have detected a significant
number of interlayer HBPs oriented perpendicularly to the ne-
matic director, as our pair correlation functions highlight. This
intriguing organisation unveils oblate-like smectic layers em-
bedded in a prolate-like smectic phase of mainly long HBPs. By
contrast, the Sm2 phase is mostly made of short HBPs which are
preferentially ordered along the nematic director. Interestingly,
and perhaps surprisingly, our HBPs do not form NU phases,
even at x1 = 0 and 1. This is in agreementwith our recent results
onmonodisperseHBPs,whosephase diagramatW ≈ √

LT , the
geometry explored here, eventually shows a very small region of
stability for the NU phase. Finally, we do not find any significant
evidence of the formation of the NB phase, as predicted by
Onsager-type theory within the Zwanzig model [13] and by
variational cluster expansion theory applied to HBPs with their
long axes fully oriented [14]. We conclude that restricting the
orientational degrees of freedom by imposing a full or partial
alignment of particles can have a significant impact on the
extension of the stability region of the NB phase. We are aware
that the complex free-energy landscape of these systems, which
is not fully captured by Onsager’s or variational cluster theories,
might also play an important role. The experimental observation
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of especially stable NB phases were performed on colloidal dis-
persions of board-like goethite particles with L/W � W/T ,
exactly as in the present work, but a size polydispersity of 20–
25% in all directions was applied [8]. This significant size-
dispersity, as compared to the bi-dispersity studied in this work,
is most probably a strategic ingredient to circumvent phase
separation and destabilise the Sm phase in favour of the NB
phase. Preliminary simulation results in our group indicate that
this is the case, but further investigation is currently ongoing.
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