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The effective interaction between two colloidal particles in a bath of monovalent co- and
counterions is studied by means of lattice Monte Carlo simulations with the primitive model. The
internal electrostatic energy as a function of the colloid distance is studied fixing the position of the
colloids. The free energy of the whole system is obtained introducing a bias parabolic potential, that
allows us to sample efficiently small separations between the colloidal particles. For small charges,
both the internal and free energy increase when the colloids approach each other, resulting in an
effective repulsion driven by the electrostatic repulsion. When the colloidal charge is large enough,
on the other hand, the colloid-ion coupling is strong enough to form double layers. The internal
energy in this case decreases upon approaching the colloids because more ions enter the double
layer. This attractive contribution to the interaction between the colloids is stronger for larger
charges and larger ionic concentrations. However, the total free energy increases due to the loss of
ionic entropy, and resulting finally in a repulsive interaction potential driven by the entropic
contributions. The loss of ionic entropy can be almost quantitatively reproduced with the ideal
contribution, the same level of approximation as the Derjaguin–Landau–Verwey–Overbeek �DLVO�
theory. The overall behavior is captured by the DLVO theory qualitatively, and a comparison is
made with the functional form predicted by the theory, showing moderate agreement. © 2010
American Institute of Physics. �doi:10.1063/1.3505148�

I. INTRODUCTION

Charges in soft matter are ubiquitous and control many
fundamental and practical processes, ranging, e.g., from the
transport in cell membrane to particle adhesion or coatings.
Different from isolated charges, in soft matter a �typically
polar� solvent is present with an electrolyte solution; a strong
coupling due to electrostatic attraction is often observed,
which also screens the charges and makes the interaction
short ranged.1 In general, the theoretical description of this
problem is very complicated. The huge number of degrees of
freedoms involved and the intrinsic long range character of
the electrostatic interactions make necessary to implement
very strong approximations. Hence, there are still many open
questions about the thermodynamic and structural behavior
of macroion solutions. The simple case of a charged sphere
immersed in a solvent with an electrolyte solution was tack-
led more than 60 years ago by Derjaguin and Landau, and
Verwey and Overbeek,2 solving the Poisson–Boltzmann �PB�
equation for the reduced electric potential �,

div grad � = �2 sinh � , �1�

where � is the inverse Debye length,

�2 =
4�e2

�kBT � �izi
2, �2�

with e the elementary charge, � the medium dielectric con-
stant, kB the Boltmantz constant, T the temperature, and zi

and �i the ion valence and the ion density, respectively.
The model is further simplified by restricting to low po-

tentials, so that sinh ���. In spherical coordinates this lin-
earized equation gives the screened Coulombic �Yukawa�
form for the electric potential. As derived by Derjaguin and
Landau, the interaction between colloidal spheres is calcu-
lated using the electric potential between infinite planes; a
decreasing exponential. The effective interaction between
them is given by the increase in the free energy of the system
upon approaching the planes from infinite to distance r, and
the interaction between spheres is calculated by integrating
in rings.3,4 In the limit of thick double layers ��� small� and
in the linear superposition approximation, the interaction po-
tential shows also a Yukawa-like form, with � being the
screening parameter.2,5 The Derjaguin–Landau–Verwey–
Overbeek �DLVO� interaction potential can also be derived
using density functional theory, giving the standard screened
Coulombic interaction for fixed colloidal charges.6,7 The PB
model is a mean field theory where it is assumed that the
ionic distribution is dominated by the electrostatic potential,
and ion-ion correlations are absent.8

Contrary to the expectations from this model, where
similarly charged particles repel each other in the absence of
other forces �such as Van der Waals�, microscopy experi-a�Electronic mail: acuemen@upo.es.
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ments both in the bulk9–11 and under confinement12,13

showed attractions between like-charged colloids in a range
of distances. Some of these experiments, however, have been
criticized due to artifacts or irreproducibility,14 while more
elaborated theoretical models have been developed.1 It is
now well understood that attractions can, in fact, appear due
to charge inversion when the valency of the ions is high �or
the colloid one sufficiently low�15–19 or due to steric effects.20

These effects have been rationalized in terms of strong elec-
trostatic coupling16 and ionic condensation.21 For ions with
low valency, on the other hand, it is yet not clear whether
attractions between like-charged colloids are real or an arti-
fact, at least for aqueous suspensions at room temperature.
For solvents with low dielectric constant, where the electro-
static coupling is stronger, attractions have been reported re-
cently for monovalent counterions.20

Because of computer limitations, simulations have not
reached yet the colloidal limit, i.e., high colloidal charge and
not-too-low salt concentrations �note that electroneutrality
must be fulfilled and large colloidal charges imply a large
number of counterions�. In spite of this limitation, simula-
tions with primitive models have shown attractions between
like-charged colloids for multivalent counterions and strong
electrostatic coupling.15–17,22 However, it is yet unclear
whether attractions can indeed appear for higher colloidal
charges, close to many experimental situations.

The objective of this work is to clarify these controver-
sial issues. For this we have developed a new computer
simulation strategy that makes it possible, contrary to previ-
ous reports, to compute the effective interaction between two
charged colloidal particles with explicit consideration of the
correlations �no mean field approximations�, in the presence
of salt ions, and for very large colloidal charges. This simu-
lation technique is based in an extension of the umbrella
sampling method.23 This method allows us to calculate the
effective interaction potential between two charged colloids
and discriminate between the different contributions to the
effective potential. With this method the effective potential
could be calculated for large colloidal charges �up to 1000
times the elementary charge� in a reasonable computational
time. The effect of the salt concentration also could be ex-
plored in a wide range. With the direct calculation of the
effective potential between the colloids we can shed light
upon the aspects commented above. We study whether, in the
frame of the primitive model, attractions between like-
charged colloids appear in nonconfined geometry. We also
check the range of validity of the PB approximation and the
standard DLVO theory at high colloidal charges, where it is
expected to fail. We also have paid attention to the different
contributions to the effective potential. For high charges, the
double layers of the particles incorporate more and more ions
when the particles approach each other. This results in a
significant decrease of the internal energy, i.e., an attractive
contribution to the free energy. However, the loss of the ionic
entropy overcomes this energy gain, and the free energy is
indeed repulsive, as the DLVO theory qualitatively predicts.

The paper is organized as follows. In Sec. II we intro-

duce the model and the computer simulation techniques. Re-
sults and discussion is presented in Sec. III. A summary and
conclusions are presented in Sec. IV.

II. SIMULATION DETAILS AND METHODS

We have carried out Monte Carlo simulations at constant
number of particles, volume, and temperature. The system
consists of two positively charged colloidal particles of
charge Ze �e is the charge unity� and diameter �, Ns coions
with charge e, and Ns+2Z counterions with charge −e. Note
that with this number of particles global electroneutrality is
ensured. The diameter of both co- and counterions is � /40.
The particles interact through the Coulomb potential; for two
particles of species i and j �colloids and/or ions� the interac-
tion is given by

�Uij�rij� = � 	 rij 
 �ij

ZiZj

rij
�B rij � �ij , 	 �3�

where �ij =0.5��i+� j� is the contact distance between two
particles. The Bjerrum length is set to �B=�e2 /�=0.007�,
and �=1 /kBT. This value of �B mimics the conditions of
water at room temperature with colloids of �=100 nm.
Simulations were run in a rectangular box of dimensions
LxLy Lz with Lx=25�, and Ly =Lz=10�, giving a colloid
volume fraction of 410−4 �snapshots of the system at dif-
ferent conditions are presented in Fig. 6 below�. Periodic
boundary conditions are applied in the three directions as
usual.

The long range character of the Coulombic interactions
is handled using the standard Ewald summation technique
with conducting boundary conditions.24 In the reciprocal
space, only vectors with the modulus of the Fourier part of
the Ewald sum bigger than 110−8 are considered in the
summation. The real-space damping parameter � was fixed
at 1.5�−1. As the use of Ewald sums slows down the simu-
lation, we have employed the technique proposed by Kumar
and Panagiotopoulos25 to speed up the calculations. In this
method the positions of the particles are constrained to a
discrete cubic lattice, with small lattice spacing, and the in-
teraction energy between all pairs of lattice sites is calculated
only once at the beginning of the simulation. The lattice
parameter is defined as �=� /a, with a the lattice spacing
�the continuum limit is reached for �→	�. Hynninen et al.26

have shown that, for charged colloids, the results obtained
with this method are independent of � if this parameter is
large enough. We have used �=35 in all the simulations,
close to the limit value found by Hynninen et al.26

With this general characteristics we have carried out two
types of simulations. In the first ones, the positions of the
two colloidal particles were fixed at coordinates �R /2,0 ,0�
and �−R /2,0 ,0�, whereas ions were allowed to change their
positions in the lattice according a standard Metropolis algo-
rithm. The maximum displacement of the ions was fixed at
5�. Starting from a random configuration, 5105 Monte
Carlo cycles were run to thermalize the system �a cycle con-
sists of 2Ns+2Z trials to move one randomly chosen ion�.
106 additional Monte Carlo cycles were run to obtain aver-
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ages. With this method we have calculated the internal en-
ergy as a function of the intercolloidal distance U�R� aver-
aging the total electrostatic energy of the system, including
colloid-colloid, colloid-ion, and ion-ion contributions.

Whereas this is useful to calculate the internal energy of
the system, to calculate the interaction potential, however,
the whole Hamiltonian of the system must be integrated in
the phase space of the ions. The effective intercolloidal po-
tential is given by the free energy as a function of the dis-
tance between them.2,7,27 The free energy can be obtained
with the equation

F�R� − F0 = −
1

kBT
log�P�R�� , �4�

where F�R� is the free energy of the system with the two
colloids at distance R, F0 is an undetermined constant, and
P�R� is the probability to find the colloids at distance R. It
could be possible to calculate the latter magnitude in a
Monte Carlo simulation where the colloids were movable,
similar to the experimental determination from the radial dis-
tribution function.28 In this method, however, the regions
with strong repulsion are poorly sampled, requiring ex-
tremely long simulations. To surmount this difficulty, we
have performed umbrella sampling Monte Carlo simulations.
The umbrella method has been widely used in simulations of
rare events.23,24,29,30 It consists in the introduction of a bias
potential that favors configurations that are rarely visited.
The effect of this bias potential over the probability distribu-
tion is removed at the end of the simulation. Therefore, we
have run simulations where the two colloidal particles can
move and a bias potential that depends on R according to

Ubias = K�R − R0�2, �5�

where K gives the strength of the bias potential and R0 is a
distance of reference. Changing K and R0 allows us to
calculate P�R� in a particular range of distances.

The simulation method is implemented as follows. 2.5
105 Monte Carlo cycles have been run to equilibrate the
system and 106 cycles to obtain averages. One Monte Carlo
cycle comprises a trial to move each colloid in any direction
plus 2Ns+2Z trials to move an ion chosen at random. As a
Monte Carlo move of one colloid will have a high probabil-
ity to be rejected due to overlaps with ions, we have used the
swap move technique: ions that overlap with the new colloid
position are moved into the space left empty by the displaced
colloid.26,31 The acceptance ratio of moves per colloid was
maintained at 40%, while the maximum displacement for
microions was fixed at 5�. The Monte Carlo moves de-
scribed here are done with the interparticle potential de-
scribed in Eq. �3�, without the influence of the bias potential,
equation �5�. This bias potential is only applied after the end
of the each Monte Carlo cycle, accepting or rejecting all the
cycle according to the Metropolis rule.

Figure 1 exemplifies how the free energy is obtained. A
given pair of values for K and R0 allows us to sample P�R� in
a range of R, as shown in the upper panel. For this K and R0,
the free energy can be calculated with Eq. �4� and removing
the effect of the bias potential, except for the undetermined
constant F0 �which is set to zero in the intermediate panel�.

Fixing F�R=10��=0 arbitrarily, instead of the standard
F�R→	�→0, we set the value of F0 for the simulation
where R=10 has been visited. The value of F0 for all other
simulations is then calculated forcing that the free energy
must be continuous, i.e., minimizing the difference in F from
two simulations where the P�R�’s overlap. The final result is
presented in the lower panel of Fig. 1. In this work, the value
of K has been varied between 0.5 and 100 and R0 between
0 and 8�.

III. RESULTS AND DISCUSSION

The electrostatic internal energy of the system is calcu-
lated by fixing the position of the two colloidal particles and
equilibrating the configuration of ions with standard Monte
Carlo moves. Results without added pairs �only counterions
are present� are shown in Fig. 2 for different colloidal
charges. In all cases the internal energy when the colloid
separation is R=10� is subtracted. Note that this makes the
internal energy to be arbitrarily zero at R=10�. For low and
moderate charges, the internal energy increases upon ap-
proaching the colloidal particles, as expected for two posi-
tively charged spheres. However, when the colloidal charge
is large the internal energy becomes counterintuitively nega-
tive and continues to decrease for bigger charges. The inter-
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FIG. 1. Example of the calculation of the free energy of the system �Z
=500 and Ns=500� as a function of the colloidal distance R. The top panel
shows the biased density probability P�R� for different values of K and R0

from K=2.5 and R0=8� �rightmost curve� to K=100 and R0=0 �leftmost
curve�. The intermediate panel shows the free energy for every pair of K and
R0, with F0=0, and the bottom one the total free energy with all traces
connected and F�R=10��=0.
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nal energy is maximal for charges around Z=200 and is con-
stant for Z�515. Note that the upturn of the internal energy
at small separation for Z=600 �observable also at all other
charges� is due to the electrostatic repulsion between the
highly charged colloids which cannot be screened by the
ionic clouds at this short distance. It is important to note that
because the valence of the ions is small, ionic condensation
can be ruled out.

Additional ionic pairs in the system are expected to
screen the electrostatic interaction between the colloids. This
is indeed the case for Z=50, as shown in Fig. 3 �upper
panel�, where the increase of the internal energy moves to
shorter distances as more salt is added. Contrary to this ex-
pectation, for Z=500 the internal energy becomes negative
and increases in absolute value with increasing salt concen-
tration. Thus, for a particular number of ionic pairs, the in-
ternal energy is almost constant in a wide range of distances
between the colloidal particles. In all cases, the upturn at
short distances mentioned above is again observed, although
it is more evident when the internal energy is negative.

We have shown in the two figures above that the internal
energy of the whole system increases when the colloidal par-
ticles approach each other only for low charges and low salt
concentration. On the other hand, U decreases when the
charge or the salt concentration is large enough. Our present
results indicate that this trend does not saturate with the col-
loidal charge or the ionic pairs. However, it must be stressed
here that the effective interaction potential between the col-
loidal particles is not given by the internal energy, but by the
free energy of the whole system. In fact, when the two col-
loidal particles are free to move in the simulations, they
separate from each other for all charges and salt concentra-
tions. Therefore, Figs. 2 and 3 are not indicative of like-
charge attraction in colloidal systems, although a strong re-
pulsive contribution is needed to make up for the decrease of
the internal energy so that a net repulsive interaction is ob-
tained. The free energy of the system is shown in Fig. 4 for
different colloid charges without added salt �upper panel�
and Z=500 with different amounts of ion pairs �lower panel�.

The free energy is obtained from umbrella sampling of the
system with an external parabolic potential, as described in
Sec. II.

As expected for like-charged colloids, the free energy
increases upon approaching the colloidal particles, indicating
a repulsive interaction at all the charges and salt concentra-
tions studied here. The free energy increases monotonously
with the colloidal charge, showing that the repulsion is stron-
ger and stronger. On the other hand, adding ion pairs to the
system screens the repulsion, reducing its range, as one
would expect. Our simulations, therefore, show no signature
of attractions between similarly charged colloids.

The change from the decreasing trend of the internal
energy to the increasing free energy must have its origin in
the entropy of the system S and particularly that of the ions.
S, calculated from F=U−TS, is plotted in Fig. 5 for the same
charges and salt concentrations as Fig. 4. Upon approaching
the colloidal particles, the entropy decreases in all cases. For
Z=50 the decrease of entropy adds to the increasing internal
energy and both of them contribute to the repulsive interac-
tion potential. For Z=500, on the other hand, the decrease of
entropy is much larger than for Z=50 �note the different
y-scales in both panels� and induces a strong increase of the
free energy. This competes with the gain in the internal �elec-
trostatic� energy, resulting finally in the repulsive interaction
shown in Fig. 4. Introducing ion pairs in the medium modi-

FIG. 2. Internal energy of the system with the two colloidal particles fixed
at a separation distance R, with no salt added, for colloidal charge �a� Z
=50, �b� 100, �c� 200, �d� 500, �e� 600, and �f� 1000. Note that upon in-
creasing the charge, the internal energy first is positive and increases, but
above Z
200 decreases and becomes negative.
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FIG. 3. Internal energy of the system as a function of the colloidal separa-
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fies only quantitatively the decrease of entropy; for Z=50, S
decreases slightly with the number of ion pairs, whereas a
small increase is observed for Z=500.

The decrease in entropy must be caused by the structur-
ing of the ions upon approaching the colloidal particles. Fur-
thermore, since the decrease is stronger for larger charges,
the ion structuring must be caused by the large colloidal
charges, i.e., the ionic clouds around the colloids. This can be
directly observed by studying the local density of ions in the
system for large Z, where the effect is more dramatic. In
Fig. 6 we plot the local charge density in the cylinder cen-
tered in the X-axis �the line that contains the centers of the
colloidal particles�, of radius � /2, for the deionized system
and Ns=500. These results are obtained from canonical
simulations with the colloids fixed at a given distance.

When the particles are well separated, the ionic clouds
around the colloidal particles are symmetric, but when the
colloidal particles approach each other, the counterions con-
centrate in the region between the colloids raising the local
charge density. Far away from the colloids, the density of
counter- and coions �not shown� is almost similar, and the
local charge decays to zero. Two snapshots are included in
the figure for large and small separations. The same phenom-
enology is observed for both the deionized system and when
salt is added. This figure demonstrates that the decrease of
entropy is caused by the increasing concentration of ions in a
particular spatial region. To obtain an additional confirmation
of this argument, we have calculated the theoretical contri-

bution of the inhomogeneity in the counterion distribution.
We assume that this contribution corresponds to the entropy
of an ideal gas of inhomogeneously distributed particles,32–34

i.e.,

Sid = − kB� d3r�c�r��ln�4��3�c�r�� − 1� , �6�

where � is the thermal de Broglie wavelength and �c�r� is
the local ionic density at point r, measured in the simula-
tions. In Fig. 5 we have represented this theoretical �ideal�
contribution of the entropy of the counterions for colloidal
charge Z=50 and Z=500, in both cases without added salt. It
can be observed that for Z=50 the ideal contribution is
smaller than the statistical noise. On the contrary, for Z
=500 the ideal part is the main contribution to the entropy,
showing the same dependence with the colloidal distance
that the global entropy, and almost quantitative agreement.
Hence, we can conclude that the main contribution to the
increase of the entropy when two colloids approach at high
colloidal charge is a purely ideal contribution that comes
from the confinement of the counterions in small volumes
around the colloids, i.e., the structure of the double layer.
The deviation of the simulated entropies from the prediction
of Eq. �6� comes from the contribution of the correlation
between ions. In our simulations we observe that this contri-
bution is relatively small even for high colloidal charges.
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FIG. 4. Free energy of the system as a function of the colloidal separation.
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salt are studied: �a� Z=50, �b� Z=100, �c� Z=200, �d� Z=500, and �e� Z
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Since the ions group around the colloidal particles more
densely as the colloids approach each other, this effect can
also be studied by monitoring the number of counterions in
the electric double layer. The radial distribution functions of
counterions around the isolated colloids are shown in the
inset in Fig. 7 for Z=500 with different concentrations of
added salt. Since the density of counterions has decayed al-
most to the bulk value at 
1.5�, we take this value as the
radius of the electric double layer �EDL�; ions located at
distances shorter than REDL=1.5� are then assumed to be-
long to the EDL. The number of counterions in the EDL is
presented in Fig. 7 for different values of the colloid charge
with Ns=0 �upper panel� and for Z=500 with different
amounts of ion pairs �lower panel�.

It is interesting to note that the isolated particles form
EDL only for high charges �Z�200�. This corresponds to the
charge where the colloid-counterion coupling is equal to the
thermal energy �note that � /�B=142.86�. In this case, when
the colloidal particles are held close to each other, more ions
are forced into the region between them. The growth in the
number of ions in the EDL is quite significant: from 
70 to

145 for Z=500 and from 
120 to 
220 for Z=600, caus-
ing the important decrease of the internal energy and the total

entropy discussed above. In the lower panel of Fig. 7, we
show that this behavior persists when ion pairs are added to
the system. For larger Ns, the EDL contains more counteri-
ons, pointing to the competition between electrostatics �forc-
ing the counterions to the EDL� and entropy �driving the
particles away from them�.

The results here presented indicate that there is no attrac-
tion between like-charged colloids with monovalent ions,
even for high colloidal charges. We have shown that this is a
consequence of pure electrostatic repulsion �at low electro-
static coupling� and to the accumulation of ions and subse-
quent loss of entropy �at high electrostatic coupling�. This is
the same behavior predicted by the DLVO theory, at least at
a qualitative level.4 Since the simulation provides a direct
route to compute the internal energy, the entropy, and the
free energy, it is interesting to compare the latter with the
DLVO effective potential.

To see whether the simulated free energies reproduce the
classical Yukawa-like functionality of the DLVO potential in
the linear approximation, we have fitted the simulated data to
the function

u�r� = A0
e−A1R

R
− A0

e−10A1

10�
, �7�

where A1 should theoretically correspond to the inverse De-
bye length of Eq. �2�, whereas A0 is related to an effective

FIG. 6. Number concentration of counterions in the cylinder of radius � /2
that contains both colloidal particles. As labeled, the salt-free and Ns=500
cases are studied, for Z=500, at different particle separations. The vertical
dashed lines show the position of the particles. Snapshots for X0=7 and
X0=2 with Ns=500 are also included �ions are represented with diameter
� /10 to be visible�.
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FIG. 7. Inset to lower panel: Radial distribution function of counterions
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The vertical dashed line shows the estimated radius of the double layer.
Main panels: Number of counterions in the double layer of every colloidal
particle as a function of the colloidal separation, for different colloid charges
with Ns=0 �upper panel: Z increases from bottom to top� and Z=500 and
different values of �a� Ns=0, �b� 500, and �c� 1000.
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colloidal charge, which according to the DLVO theory �for
spherical colloids at constant charge in the linear approxima-
tion� should be6,7,35

A0 = Z�2e2/�, Z� = Z
exp���/2�
1 + ��/2

. �8�

In Fig. 8 we plot the simulated free energies and the
result of the fitting to Eq. �7� in a log-linear scale. We must
note that the second term in Eq. �7� is added in order to fulfill
the same condition as the free energy from the simulations
�F�R=10��=0�. The fitting procedure is restricted to small
and moderate distances to avoid spurious effects from this
condition. Results of the best fitted parameters and the theo-
retical values are shown in Table I.

We observe that the simulation data reproduce a
Yukawa-like functionality in all cases, at least at short and
moderate distances. This result is consistent with the findings
of Amico and Löwen35 and Allahyarov and Löwen,36 who
also predict Yukawa-like interactions from molecular dynam-
ics and Monte Carlo simulations. This is also consistent with
the theoretical prediction about the validity of a mean field
approximation, such as the PB theory, when the parameter
2�B

2Z /�2 is small.1 In our case, the maximum value of this
parameter is around 0.1.

The qualitative agreement between theory and simula-
tion becomes almost quantitative at low colloidal charges
and no salt, where the simulated free energies reproduce the
theoretical DLVO values of the prefactor and the screening

parameter of Eqs. �2� and �8�. This is explained by the fact
that at conditions of weak electrostatic coupling, the linear-
ization of the PB equation becomes more accurate. Hence, as
the colloidal charge is increased, or more salt is added, the
departure from the simple DLVO theory is augmented. How-
ever, the pure Yukawa functionality is maintained for all
cases studied.

The failure of the simple DLVO potential at conditions
of high colloidal charge can be due to either influence of
correlations or breakdown of the linear approximation. How-
ever, the comparison of the ideal entropies with the simula-
tion data indicates that correlations do not contribute signifi-
cantly to the structure of the ions around the colloidal
particles, which is what determines the colloid-colloid effec-
tive interactions. Hence the failure of the linear approxima-
tion �i.e., electrostatic potential much larger than the thermal
energy� is the most likely cause of the departure from the
theoretical DLVO potential. Nevertheless, the fact that the
simple Yukawa functionality is maintained suggests that it is
possible to find renormalized values of the screening length
and the colloidal charge. As a matter of fact Belloni21 dem-
onstrated that it is possible to keep the linearized version of
the PB equation with a renormalized charge to achieve an
accurate description of the colloid-colloid structure factor.
The importance of this charge renormalization is controlled
by the parameter Z�B /�.37 In our case this parameter
changes from 1 to approximately 5, which is the limit where
this effect starts to become relevant. In this work, our renor-
malized charges would be those extracted from Table I. In-
terestingly enough, the effective charges are smaller than the
theoretical ones at high colloidal charges, as it could be ex-
pected from the usual renormalization procedures.21 It must
be born in mind that the simulations show that the accumu-
lation of ions in the vicinity of the colloidal surface is very
strong at high colloidal charges, hence explaining the de-
crease of the effective charge.

IV. CONCLUSIONS

We have carried out Monte Carlo simulations of a sys-
tem comprised of two colloids and monovalent co- and coun-
terions interacting via a pure coulombic potential plus a
hard-sphere interaction. Colloidal charges ranging from 50 to
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FIG. 8. Simulated free energies �symbols� and numerical fittings to Eq. �7�
�lines� for different colloidal charges without added salt �upper panel� and
for Z=500 and different values of Ns. Note that although the whole function
is plotted, the fitting is restricted to the region of short and intermediate
distances.

TABLE I. Fitting parameters of the simulated free energies to Eq. �7� and
theoretical values of Eqs. �2� and �8�. The correlation index was above 0.99
in all cases. Top: results for different colloidal charges without added salt.
Bottom: results for several values of Ns at colloidal charge Z=500.

Z A0 A1� �� �Eq. �2�� A0 �Eq. �8��

50 21.1 0.066 0.060 17.5
100 73.3 0.065 0.085 70.1
200 297 0.116 0.120 280
500 1171 0.130 0.190 1764
600 1506 0.150 0.208 2545

Ns A0 A1� �� �Eq. �2�� A0 �Eq. �8��
0 1161 0.126 0.190 1764

500 1072 0.194 0.269 1779
1000 1046 0.255 0.329 1793
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1000 elementary charges have been studied as well as differ-
ent concentrations of added salt. The simulation results have
been used to obtain the internal free energy, the entropy, and
the free energy as a function of the colloid-colloid distance.
It is found that whereas the internal energy becomes attrac-
tive at high colloidal charges, the free energy �which corre-
sponds to the true effective colloid-colloid interaction� re-
mains repulsive in all cases. The analysis of the simulated
entropies indicates that the origin of the repulsion is, at low
colloidal charges, purely electrostatic, whereas at high
charges, the repulsion arises from the loss of entropy that
takes place when the colloids approach each other. In addi-
tion, the effective interaction is found to reproduce a Yukawa
potential at both low and high electrostatic coupling, but the
theoretical DLVO potential is reproduced quantitatively only
at low colloidal charges and no salt. It should be stressed that
this extreme conditions �low salt concentrations or high col-
loidal charge� are out of the conditions where the original
DLVO theory applies. In any case, our results suggest that
the Yukawa potential can be used to simulate charged col-
loids with very high charges and low salt concentration.

The good agreement between simulation results and
theory indicates that no attraction is expected from the primi-
tive model of colloids at least for monovalent ions in the
bulk. It also highlights the good performance of the linear-
ized PB theory, which works efficiently even for high colloi-
dal charges provided a suitable renormalization of the bare
charge is applied. Furthermore, the Monte Carlo method here
devised, which includes an umbrella technique to compute
the free energy with reasonable computer resources, proves
to be an efficient tool to extract colloid-colloid effective in-
teractions with colloidal charges of up to 1000 elementary
charges. This opens the way to study colloidal stability in
more cumbersome scenarios such as confined systems, mul-
tivalent ions, and suspensions in solvents of low dielectric
constant. Work on this line is being carried out.
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