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We investigate the phase behavior of a model for colloidal hard platelets and rigid discotic molecules:
oblate hard spherocylinders (OHSC). We perform free energy calculations using Monte Carlo sim-
ulations to map out the phase diagram as a function of the aspect ratio L/D of the particles. The
phase diagram displays a stable isotropic phase, a nematic liquid crystal phase for L/D ≤ 0.12, a
columnar phase for L/D � 0.3, a tilted crystal phase for L � 0.45, and an aligned crystal phase
for L/D � 0.45. We compare the results to the known phase diagram of hard cut spheres. Thin
cut spheres are almost cylinder-shaped, while the interactions between real discotic mesogens and
colloidal platelets are more consistent with the toroidal rims of the OHSC. Since the shapes of the
OHSC and the cut spheres are otherwise similar, the phase diagrams of the two types of particles are
quite akin. However, the tilted crystal phase for OHSC, which is of a crystal type that is frequently
found in experiments on disklike molecules, has not been found for hard cut spheres. Furthermore,
although we have found a cubatic phase, it was shown to be definitely unstable, whereas the stability
of the cubatic phase of cut spheres is still disputed. Finally, we also show that the phase boundaries
differ significantly from those for cut spheres. These are remarkable consequences of a subtle change
in particle shape, which show that for a detailed comparison with the phase behavior of experimen-
tal particles, the OHSC should be used as a model particle. © 2011 American Institute of Physics.
[doi:10.1063/1.3552951]

I. INTRODUCTION

Disklike molecules are one of the most common parti-
cles that form liquid crystal phases, in particular columnar
phases, which are interesting for technological applications.1

The most common model for hard disks or platelets that form
a columnar phase is the cut sphere,2–7 which is a sphere where
the top and bottom sections are chopped off. The resulting
particle is shaped almost like a cylinder for thin cut spheres.
Some concern has been expressed8 that the almost flat rims
of such a model particle make it a less realistic model for
the shape of disklike molecular mesogens. Furthermore, it is
difficult to add attractions to the model that have the same
shape anisotropy as the core. As there is no upper limit on the
size of the molecules that can display liquid crystalline be-
havior, as long as sufficient thermal motion is present, also
colloidal rods9, 10 and disks11, 12 can form liquid crystalline
phases. These colloids are stabilized either by charge repul-
sive or steric interactions, which tend to round off any sharp
features of the underlying bare particles. Rodlike colloids are
usually modeled as spherocylinders and disklike colloids as
cut spheres.2–4, 6 While a spherocylinder has a smooth sur-
face, the cut sphere has sharp edges and might not show the
same phase behavior as the colloids it should correspond to.
In short, the understanding of the phase behavior of both disk-
like colloids and disk-shaped molecular mesogens can likely
be enhanced by considering an improved model for platelets.

a)Electronic mail: M.Dijkstra1@uu.nl.

In analog to the (prolate) spherocylinder, where the par-
ticle is defined as the volume within a certain distance from
a line, an oblate spherocylinder can be defined by the vol-
ume within a certain distance to a disk.13 For prolate and
oblate spherocylinders the particle–particle interactions are
defined using the closest distance between the lines or disks,
respectively. For hard particles an overlap occurs if this clos-
est distance is smaller than a certain distance. This hard-core
interaction can be replaced by a soft and/or attractive poten-
tial, that is a function of only one variable, the closest dis-
tance. Defining the potential in this way preserves the shape
of the particles.14–16 In Refs. 8, 14, and 15, the phase diagram
of oblate hard spherocylinders (OHSC) was tentatively ex-
plored using direct simulations. Three columnar phases were
found for 0.1 ≤ L/D ≤ 0.5, where L is the thickness of the
platelet and D its diameter. At high densities the particles
form columns that are interdigitated in the so-called inter-
digitated columnar phase (Dhi). As the density is decreased
this Dhi phase melts into a columnar phase (Dho) with local
ordering within the columns, which melts into a disordered
columnar phase (Dhd) at even lower density. In this paper,
we study the phase behavior of oblate hard spherocylinders
using free energy calculations. First, candidate crystal struc-
tures have to be found for which free energies can be cal-
culated to determine their stability. In a recent paper,17 two
of us, in collaboration with others, developed a new method
to predict these candidate crystal structures, and we applied
this method to a large variety of systems including the OHSC
system. As a demonstration that these crystals were indeed
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stable, a part of the phase diagram of OHSC was shown as
well, as determined from free energy calculations described in
this paper. The two different crystals found using the method
of Ref. 17 were indeed shown to be stable. In the present pa-
per, we only briefly touch upon the method for finding the
crystal structures for completeness, and focus in more detail
on the simulation techniques used to map out the phase di-
agram. We will discuss the full phase behavior (in Ref. 17
only the crystals were discussed briefly) and compare it to
the phase diagram of cut spheres. The phase diagram will
also be compared to the earlier work of Refs. 8, 14, and 15
on hard oblate spherocylinders. We will show that the two
newly found crystal phases effectively replace Dhi in the
phase diagram, in the sense that their combined regions of
stability corresponds approximately to the region of stabil-
ity of Dhi in Refs. 8, 14, and 15. To determine the continu-
ous transition from Dhd to Dho with similar accuracy as the
other transitions, a proper finite size scaling analysis would
be required (see Sec. IV), which is beyond the scope of the
present study. Therefore, we have not distinguished between
Dhd and Dho and simply label the combined region of sta-
bility of the (hexagonal) columnar phase “col” in the phase
diagram. In addition to the phase diagram, the maximum
packing fractions of the various crystals are shown, which
is of use to predict the phase behavior at infinite pressures.
Well-packed structures can also serve as candidate crystal
structures for other disklike systems (for instance repulsive–
attractive disks14–16).

II. MODEL

We consider a system of hard platelets modeled as
OHSC, which have been extensively described in previous
works.8, 13, 14, 18–23 Therefore, we will only briefly describe the
shape of our platelets. The OHSC consists of a flat cylindrical
core with diameter σ and height L , and a toroidal rim, with
tube diameter L (see Fig. 1). Consequently the total diame-
ter of the OHSC is D = L + σ . We detect overlaps between
OHSC using the efficient, although partially numerical algo-
rithm, which was introduced in Ref. 8. Since that work, the

FIG. 1. Side view of the oblate hard spherocylinders (OHSC) considered in
this study (top) compared to cut spheres (bottom) for L/D = 0.2, where L
is the thickness of the platelets and D the diameter. An OHSC is obtained by
padding a disk of diameter σ , as indicated by the black line, with a layer of
uniform thickness L/2.

overlap algorithm has been improved and some brief remarks
on these changes are presented in the Appendix. As a result
of these improvements, the algorithm is now faster and, more
importantly, the presence or absence of an overlap can be ex-
actly determined for all configurations that are likely to be
encountered in our Monte Carlo (MC) simulations (see the
Appendix for more details).

III. METHODS

In this section, we briefly reiterate the methods we em-
ployed to study the phase behavior using MC simulations, as
these methods have been described extensively in Refs. 24
and 25. First, we use the pressure annealing method17, 25 to
obtain candidate crystal structures. Here, we simulate a single
unit cell of a crystal using a constant pressure MC in which
the lengths of the edges of the simulation box and the an-
gles between them can vary independently.26, 27 Because we
only simulate a single unit cell (2–6 particles in the simula-
tion box), the fluctuations are large and many different crys-
tal structures are probed.25 A fast compression finally results
in well-packed crystal structures, among which is the stable
crystal structure. Then we use the modified Einstein integra-
tion method, as described in Ref. 24 using simulations with
many particles (1000–3000 particles typically), to obtain the
free energy of these crystals at a certain reference density.
As in the original Einstein integration technique,28 we couple
each particle to its lattice position using a harmonic potential.
Subsequently, the hard-core potential is replaced by an inter-
penetrable potential, which is slowly tuned from essentially
hard to zero by decreasing the interaction strength γ . This in-
terpenetrable interaction between each pair of particles, i and
j , is given by

βϕ(ri j , ui , u j , γ )=
{

γ (1 − A(ρi j/L)2), ρi j ≤ L ,

0, ρi j > L ,
(1)

where ri j = r j − ri , ρi j is equal to the closest distance be-
tween the disks in the middle of particles i and j , A is an
adjustable parameter that is kept fixed at a value A = 0.5
during the simulation, γ is the integration parameter, and
β = 1/kB T , with T being the temperature and kB being the
Boltzmann’s constant. We also use the Widom particle inser-
tion method29 to obtain the chemical potential and therefore
the free energy of the isotropic fluid and the nematic phases
at a reference density. Third, we use the method by Bates and
Frenkel,30 adapted for particles with finite thickness,25 to get
the free energy difference between the columnar phase at a
reference density and the fluid phase at a lower density. Sub-
sequently, we integrate the equation of state24 to obtain the
free energy as a function of density. The equations of state for
the crystal and the columnar phase were calculated using NPT
MC simulations, where the length of the box vectors were
allowed to change, but the angles between the box vectors
were fixed at 90◦. It was not necessary to allow these angles
to adjust as the stable crystals all have rectangular unit cells.
We checked that there was no difference between the equa-
tions of state that were obtained using NPT MC simulations
with a rectangular box shape and simulations with a fully ad-
justable box shape. The equations of state for the isotropic
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fluid and the nematic phases were taken from Refs. 8 and
14, which were augmented with results from additional NPT
MC simulations at other densities and event-driven molecu-
lar dynamics (MD) simulations, which we will describe now.
Two oblate spherocylinders overlap, when the closest distance
between the two central disks (see Fig. 1) is shorter than L .
Therefore, one can easily determine a collision event that oc-
curs when the closest distance between two particles is equal
to L . As a result, we can use event-driven MD simulations
to investigate the phase behavior of hard oblate spherocylin-
ders. The advantage of event-driven MD simulations over
MC simulations is the fast accumulation of statistics of the
pressure.31 In our NPT MC simulations the density changes
by volume moves, which slows down equilibration of the den-
sity considerably, especially for large numbers of particles. In
the MD simulations, the pressure is calculated from the mo-
mentum transfer during the collisions between the particles,31

and therefore comes for free with the integration of the equa-
tions of motion. Unfortunately, the shape of the simulation
box needs to be known a priori, since the equilibration of
the shape is just as slow or slower than the equilibration of
the density. Therefore, the event-driven MD simulations were
most useful for the isotropic fluid and nematic phases. For
these phases, the equation of state from event-driven MD sim-
ulations and MC simulations gave the same results, although
the MD results had a considerably lower statistical error. We
implemented the event-driven MD simulation similarly as de-
scribed in Ref. 32, except for the way we checked for grazing
collisions (i.e., near misses). In an event-driven MD simula-
tion of anisotropic particles, one searches for collisions on a
grid in time; i.e., pairs of particles are moved forward in time
and checked for overlap at regular intervals. In the event of
a grazing collision, an overlap occurs in between two grid
points, while no overlap is found at the grid points. With-
out a way to check for these grazing collisions, they will be
missed, resulting in overlaps. In Ref. 32, a change in sign of
the time derivative of the closest distance signals the presence
of a minimum, which is a necessary condition for a grazing
collision. Unfortunately, we were unable to find a robust and
efficient way to calculate the time derivative of our numerical
closest distance. Instead, we search for a minimum by com-
paring the closest distance at the middle of three grid points
to the closest distance at the other two. If this closest distance
is smaller than a certain cut off, we use a standard numerical
routine to find the minimum and check whether this closest
distance is smaller than L , in which case a collision is de-
tected. Once a collision has been found we use a standard
numerical root finder to locate the exact time of the collision.

To determine the isotropic–nematic (IN) coexistence, we
use a comparatively simple method, devised for cut spheres
by Fartaria and Sweatman:7 An NPT MC simulation is per-
formed near the coexistence pressure Pcoex (Pcoex is first esti-
mated by the pressure at which an isotropic fluid transforms
into a nematic phase in a direct simulation). The histogram
of observed values for the nematic order parameter S2 is mea-
sured during this simulation. We stress that we did not employ
the umbrella sampling technique to determine the histogram
as was done in Ref. 7. This probability is double peaked near
coexistence, where one peak at low S2 corresponds to the

isotropic phase and the other peak corresponds to the nematic
phase. The applied pressure is equal to the pressure at co-
existence when the heights of these two peaks are the same.
This way of finding the coexistence pressure is rather slow,
as a new simulation has to be performed for every pressure.
However, we employ the histogram reweighing technique33

to determine the histogram at a pressure P ′, which is close to
the pressure P at which the simulation was performed, using

P(V, S2|P ′) ∝ exp(−β(P ′ − P)V )P(V, S2|P), (2)

where P(V, S2|P) is the probability of finding a certain value
V for the volume and a certain value S2 for the nematic order
parameter. [In this equation, the proportionality factor is the
ratio between the normalization constants of P(V, S2|P ′) and
P(V, S2|P).] The Gibbs free energy is easily obtained using

G(S2)

NkB T
= − ln[P(V, S2|P)] + const. (3)

For L/D = 0, the P(S2) always showed a significantly double
peaked behavior with two maxima at S2,I and S2,N and the
coexistence densities were simply defined as the densities at
those values of S2:

ρI ≡ ρ(S2,I ) and ρN ≡ ρ(S2,N ). (4)

However, for small systems of OHSC with L/D ≥ 0.05, the
nematic order parameter of the isotropic phase is relatively
high due to the presence of spinodallike nematic fluctuations
in the isotropic fluid, caused by clusters with nematic order,7

whose sizes diverge as the spinodal is approached.34 As a re-
sult, the separation between the two peaks in the Gibbs free
energy barrier is too small to distinguish them from statistical
fluctuations. However, it is possible to obtain a flat distribu-
tion for a range of values of S2 for a certain pressure; this
pressure is defined as the coexistence pressure Pcoex for small
systems. The definition (4) of the coexisting densities fails
when G(S2) does not have a double peak. In order to perform
finite size scaling, a definition for the coexisting densities that
also works for these small system sizes is required. The sim-
plest definition which gives the correct result for the infinite
system is

ρα ≡
∫ Sb

2,α

Sa
2,α

d S2 ρ(S2)P(S2), for α = I, N , (5)

where P(S2) = ∫
dVP(V, S2|Pcoex) is the probability distri-

bution of the nematic order parameter at coexistence, ρ(S2)
= ∫

dV (N/V )P(V, S2|Pcoex) is the density as a function of
the nematic order parameter, and Sa

2,α and Sb
2,α are the up-

per and lower boundaries of the nematic order parameter
for phase α. At coexistence, the probabilities of finding the
system in the isotropic phase and the nematic phase should
be equal, and Sa

2,N = Sb
2,I was chosen accordingly, while the

other boundaries are obviously, Sa
2,I = 0 and Sb

2,N = 1. This
method of defining the coexistence densities was only re-
quired for L/D ≥ 0.05. Both definitions of the coexistence
densities give the same finite size corrected densities within
the statistical error. The results for L/D = 0 are of con-
siderable interest, since L/D = 0 is the limiting case for
all disklike particles. Therefore, we spent more effort in
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determining the isotropic–nematic coexistence for L/D = 0.
Furthermore, the overlap criterion for infinitely thin platelets,
i.e., L/D = 0, is much faster. For these reasons, we have con-
sidered system sizes from N = 720 to N = 4000 for L/D
= 0, while our largest system size for L/D > 0 consisted of
N = 2048 particles. We also used a second method to obtain
the isotropic–nematic coexistence: We simply measured the
pressure from the momentum transfer during particle colli-
sions in an event-driven MD and the chemical potential by the
Widom particle insertion method.29 Subsequently, we fit lines
through the chemical potential as a function of pressure and
define the coexistence as the crossing point of these two lines.
This would not have been possible using an NPT MC simu-
lation, because (i) very long simulations would be required to
sufficiently reduce the statistical error and (ii) the large system
size that would be required to prevent the system from fluc-
tuating between the isotropic and the nematic phases would
slow down the NPT MC simulations even further.

Gibbs ensemble MC simulations are often used to study
phase coexistence.35, 36 In this method, two coexisting phases
are simulated in two simulation boxes simultaneously. Moves
that exchange particles and volume between the boxes at a
fixed total number of particles N and total volume V ensure
equal chemical potential and pressure between the two boxes.
The densities and other properties of the coexisting phases
can be determined by measuring the quantity of interest in
each box separately. This method is quite often used for gas–
liquid phase coexistences, for which particle insertions into
the higher density phase are relatively successful. However,
when the temperature is raised such that the critical point is
approached, the Gibbs ensemble method is abandoned for a
histogram-based methods similar to the one we have used.36

Presumably, the Gibbs ensemble MC method is less accurate
for weakly first order phase transitions. A possible argument,
based on finite size scaling, might be as follows. First, we
write the pressure as Pα(ρα, Nα) and the chemical potential
as μα(ρα, Nα) for the two phases, say α = I, II , where the
finite size dependence has been made explicit by the second
argument. For an equilibrated Gibbs ensemble simulation of
systems I and II , the pressures and the chemical potentials in
the separate boxes obey

PI (ρI , NI ) = PII (ρII , NII ),

μI (ρI , NI ) = μII (ρII , NII ), (6)

and, of course, NII + NI = N and NI /ρI + NII /ρII = VI

+ VII = V . The solution of this set of equations is strictly
speaking only equal to the coexistence point in the thermo-
dynamic limit (NI , NII → ∞). However, if the resulting den-
sities are close to the true coexisting densities and NI , NII

are not too small, any thermodynamic variable Xα of phase
α = I, II can be approximated as

Xα(ρα, Nα) 
 Xα(ρc
α) − X (1)

α

Nα

+ ∂ Xα

∂ρα

(ρα − ρc
α), (7)

where Xα(ρc
α) = Xα(ρc

α,∞), X (1)
α is a finite size scaling co-

efficient and ρc
α is the coexistence density of phase α for

Nα → ∞. Inserting this approximation for the pressure and
chemical potential at coexistence into Eq. (6) and solving

for ρI and ρII , the densities obtained by the Gibbs ensemble
method obey

ρI − ρc
I

ρc
I

= f (1)
II ρc

I χ
c
I

N−1
I − N−1

II

ρc
II − ρc

I

, (8)

and similarly for ρII , where f (1)
α = ραμ(1)

α − P (1)
α for phase

α and χ c
α ≡ ρ−1

α (∂ρα/∂ P), the isothermal compressibility of
phase α at coexistence for Nα → ∞. In our case, I denotes
the isotropic phase and II the nematic phase. Using the mea-
sured kB T χI D−3 ∼ 0.02 and estimated β f (1)

II ρII ∼ 10 [see
Fig. 6(c)], χI f (1)

II can be estimated to be of order 1 for all
aspect ratios. Equation (8) shows that Gibbs ensemble simu-
lations for weakly first order transitions (ρc

II − ρc
I � ρc

I , ρ
c
II )

have to be performed on either very large systems or at
a value of N/V chosen such that NI 
 NII . However, the
Gibbs ensemble method has been used previously5, 37 to find
the isotropic–nematic phase transition and, therefore, we also
made an attempt to locate the isotropic–nematic coexistence
using Gibbs ensemble simulations for OHSC with L/D > 0.
We compare the results to those of the other methods in
Sec. IV.

IV. RESULTS

A. Packing

We employ the pressure annealing method to find can-
didate crystal structures for the oblate hard spherocylinders.
We find two crystal structures for 0 < L/D < 0.5, a rela-
tive small number of candidate structures compared to the
six structures found for bowls in Ref. 25. The particles in
both crystal structures are stacked in columns and both crys-
tals have a body-centered orthorhombic unit cell (see Fig. 2).
One phase that we expected to find is the equivalent of the
close packed phase for cut spheres, although slightly stretched
to accommodate the slightly different shape of the OHSC.
This phase consists of columns of platelets that are aligned
along the z-axis; i.e., ui is along z for all particles i , where
the z-direction is in the direction of the column. The columns
are shifted with respect to each other in the z-direction, such
that each column interdigitates with four of its neighboring
columns, while each particle is at the same z-position as two
particles in the other two neighboring columns. In the other
crystal phase, particles again form columns. The particles in
half of these columns tilt compared to the z-axis in the x-
direction, where the x-axis is along the lattice vector perpen-
dicular to z. The other half of the particles is tilted by the same
angle in the −x-direction. In this way, each column interdig-
itates with all six of its neighbors. Some molecular mesogens

FIG. 2. The unit cells of the tilted crystal phase for L = 0.3D (a) and the
aligned crystal phase for L = 0.5D (b).
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for the more complex tilted crystal phase, we used single high pressure runs
with most of the degrees of freedom fixed, as described in the text (dashed
line). The maximum packing fraction φ ≡ π

4 L(D2 − L2/3)N/V of cut
spheres as a function of L∗ ≡ L/D is shown for comparison (dot-dashed
line).

also form tilted crystals,1 which were explained by calculat-
ing packing energies,38 but cut spheres do not.2

We determine the maximum packing fraction of these
structures as described in Sec. III. The resulting packing frac-
tions are shown in Fig. 3 as a function of L . The packing
fraction is defined as φ = v N/V , where

v = π

6
L3 + π2

8
σ L2 + π

4
L σ 2 (9)

is the volume of an OHSC.13 Additionally, we determined the
lattice vectors (of the primitive unit cell) of the aligned crystal
phase (Xaligned):

a1 = Dx̂, a2 = Lẑ,

a3 = D

2
x̂ +

√(
σ + L

2

√
3

)2

−
(

D

2

)2

ŷ + L

2
ẑ,

(10)

and the particles are aligned along z-direction. These lattice
vectors result in a density:

ρD3 = DL

√(
σ + L

2

√
3

)2

−
(

D

2

)2

. (11)

We determined the lattice vectors and the direction vectors
(u±) of the tilted crystal phase (X tilted) up to a free parameter
b,

a1 = (
σuz + L

√
L2 − σ 2 sin2 θ0

)
x̂, a2 = bŷ, (12)

a3 = (L/ cos θ0)ẑ and u = ± sin θ0 x̂ + cos θ0 ẑ, (13)

where cos(2θ0) =
√

1 − (L/σ )2 and θ0 is the angle between
the direction vectors and the z-axis. The free parameter b can-
not be determined analytically, since the closest distance be-
tween some of the neighboring particles in the tilted crystal

can only be determined numerically. Instead, the lattice con-
stant b in the y-direction was determined in NPT MC simula-
tions, which only include moves that change b. To be precise,
we performed a single simulation of two particles at a pressure
β P D3 = 106 for each value of L/D = 0.01, 0.02, . . . , 0.5.
The resulting average maximum packing fractions for the
X tilted phase are shown in Fig. 3 as a function of L/D along
with the analytical result for the Xaligned phase as a solid and a
dashed line, respectively. For comparison, we show the pack-
ing fraction of the close packed crystal for cut spheres in
Fig. 3, which is clearly higher than the maximum packing
fraction of OHSC for all aspect ratios.

B. Isotropic–nematic coexistence

While discotic liquid crystals usually form columnar
phases, the most common and well-studied phase transition
for colloidal disks is the IN coexistence.11, 12, 39–41 Surpris-
ingly, the IN coexistence for platelets is only weakly de-
pendent on size polydispersity.37 For these reasons, a rela-
tively large amount of effort has been devoted to locating
the isotropic–nematic coexistence for OHSC in the present
paper by employing three different methods: (i) event-driven
MD simulations, (ii) histogram method to determine the prob-
ability distribution of the nematic order parameter S2, and
(iii) direct NPT MC simulations. A fourth method that uses
simulations in the Gibbs ensemble did not produce reliable
results (see below). Using the first method, the coexistence
between the isotropic fluid phase and the nematic phase were
determined from the pressure and the chemical potential that
were both directly measured in event-driven MD simulations.
In Fig. 4, the chemical potential as a function of pressure is
plotted for L/D = 0.1 along with fits to the data. The pres-
sure at coexistence defined by the intersection of these fits
is D3 PI N /kB T = 32.0 ± 0.1. The packing fractions of the
coexisting phases as obtained using local fits to the equa-
tion of state are shown by the pluses at L/D = 0.1 in the
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fits to the data.
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phase diagram [Fig. 10(a)] and are tabulated in Table I. As
explained in Sec. III, we have also used a second method of
determining the isotropic–nematic coexistence, by finding the
pressure for which the probability distribution function for
the nematic order parameter S2 has two equally high peaks.
Subsequently, the Gibbs free energy G(S2)/NkB T can be ob-
tained from the probability distribution function at the co-
existence pressure. Examples of G(S2) are shown in Fig. 5
for different aspect ratios L/D and N = 2048 particles, the
largest system studied for OHSC with L/D > 0. The barrier
height g∗ ≡ G/NkB T and the nematic order parameter
S2,N of the nematic phase both decrease, when L/D is in-
creased from 0 to 0.05, but little change is observed when
L/D is increased further to 0.1. The barrier height G is de-
fined as the difference between the Gibbs free energy G at
the maximum and at the minima (see Fig. 5). The scaling of
G(S2) with the size of the system is shown in Fig. 6(a) for
L/D = 0. Apparently, G(S2) depends only on system size for
low S2. This is a direct consequence of the well-known fact
that the nematic order parameter of the isotropic phase has
a larger finite size dependence (S2 ∼ 1/

√
N ) than S2 of the

nematic phase (S2 ∼ 1/N ).42 Interestingly, once the two min-
ima in G(S2) become clearly separated, the dependence of the
barrier between the minima on the system size seems to be
very weak or even absent. This is caused by the absence of a
clear isotropic–nematic interface in our simulations (such an
interface would give rise to a N−2/3 dependence). However,
such an interface should form for systems larger than what we
have studied (up to N = 10000) and indeed it does form for
colloidal platelets.41 We have performed finite size scaling for
three values of L/D = 0, 0.05, and 0.1. The results are shown
in Figs. 6(b) and 6(c) again for L/D = 0. Finally, the values
for the nematic order parameter of the isotropic and nematic
phases at coexistence can be fitted by well-known expressions
(as discussed above).42

The methods described in Sec. III are quite elaborate and
require considerable computing power. A much simpler, but
less accurate approach is to perform NPT MC simulations,
starting from the isotropic phase and increasing the pressure,
as well as starting from the nematic phase and decreasing the
pressure. The coexistence is approximately located at the (av-
erage) density and pressure at which the transition between

TABLE I. The isotropic–nematic phase transition: reduced densities of
the isotropic phase ρI D3, and the nematic phase ρN D3, pressures β P D3,
and nematic order parameters S2,N at coexistence for OHSC and hard
cut spheres with thickness L and diameter D. The results for OHSC are
obtained by direct simulation (†), by the calculation shown in Fig. 4 (∗),
and by the histogram method. The results for cut spheres are obtained
from the literature; references are indicated in the second column.

L/D ρI D3 ρN D3 β P D3 S2,N

OHSC
0 4.029 (6) 4.340 (10) 15.304 (7) 0.521 (6)
0.05 3.957 (4) 4.046 (6) 21.00 (3) 0.42 (1)
0.05 3.97 (13)† 20.8 (6)
0.07 3.96 (13)† 24.2(2)
0.09 3.91 (14)† 28.5 (5)
0.1 3.968 (1) 4.012 (3) 32.27(3) 0.420(3)
0.1∗ 3.94 4.01 32.0 (1)
0.11 4.06 (8)† 36.0 (7)
0.12 4.17 (3)† 42 (1)
L/D Ref. ρI D3 ρN D3 β P D3 S2,N

Cut spheres
0 44 3.78 4.07 0.37
0 37 3.68 (2) 3.98 (5)
0 45 3.344 3.680 0.492
0.001 7 4.02 (4) 4.30 (4) 15.4 (1) 0.54 (8)
0.01 7 3.94 (2) 4.12 (2) 16.1 (1) 0.52 (9)
0.04 7 3.85 (2) 4.04 (2) 19.6 (1) 0.47 (4)
0.05 3 3.9 4.17 21.5(5)
1/15 4 3.86 4.11 24.8(1.0)
0.07 7 3.88 (1) 4.05 (1) 26.0 (3) 0.63 (4)
0.1 2 3.82 3.87
0.1 5 4.11 4.26
0.1 3 4.03 4.17 35.7 (3)
0.1 7 4.17 (1) 4.30 (1) 38.2 (3) 0.83 (2)

the isotropic and nematic phases occurs in these simulations.2

We hardly find any hysteresis, and hence the transition in a
compression and expansion run occurs at roughly the same
density. Therefore, the width of the coexistence, i.e., the dif-
ference between the two coexisting densities, cannot be found
using this method. In Fig. 7, we present the densities of the
coexisting isotropic and nematic phases for varying aspect ra-
tios of the OHSC. We find that the result for L/D = 0.1 ob-
tained from event-driven MD simulations matches well with
the histogram method. Surprisingly, we also find good agree-
ment between the results from the direct method and the his-
togram method within the statistical error bars, providing con-
fidence in our results. The isotropic–nematic–columnar triple
point lies somewhere between L/D = 0.12 and 0.13, since
for L/D = 0.13 a direct (spontaneous) transition from the
isotropic phase to the columnar phase was observed. For com-
parison, we also plot the results for cut spheres from Ref. 7
based on the histogram method using umbrella sampling MC
simulations. For small L/D, the effects of the sharpness of
the circular edges of the cut spheres compared to the rounded
edges of the OHSC should be minimal, especially for low
packing fractions at which the isotropic–nematic coexistence
occurs. Surprisingly, the coexisting densities are dissimilar for
the two different model particles, as shown in Fig. 7, where
we compare the phase boundaries for cut spheres with a cer-
tain L/D as defined in Fig. 1 with those of OHSC with the
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FIG. 6. Finite size effects of the isotropic–nematic coexistence for OHSC with L/D = 0. (a) The dimensionless Gibbs free energy G(S2)/NkB T as a function
of the nematic order parameter S2 for the four system sizes considered (from top to bottom) N = 720, 1044, 2048, and 4000. [(b)–(d)] Finite size scaling of the
coexistence pressure β P D3 (b), the coexisting densities of the isotropic phase ρI D3 and the nematic phase ρN D3 (c) and the nematic order parameter S2 of
the isotropic (“iso”) and nematic (“nem”) phases at coexistence (d).

same L/D. For a detailed comparison between different stud-
ies, we show literature results for cut spheres together with
our results for OHSC in Table I. It is worth noting here that
if we compare the phase boundaries for cut spheres with a
certain L/D with those for OHSC with the same thickness L
and the same particle volume v , we find essentially the same
results. In fact, the volumes of the two types of particles are al-
most equal for the small values of L/D, at which the nematic
phase is stable. Consequently, a comparison by packing frac-
tions, instead of dimensionless densities ρD3 will also give
the same result. In Ref. 7, systematic deviations inherent to
the umbrella sampling method43 can play a role, while in our
version of the histogram method no umbrella sampling was
used. This could be a possible reason for the difference in the
locations of the IN coexistence for OHSC and the results for
cut spheres from Ref. 7. As the IN transition is weakly first
order, the jump in density and nematic order parameter at the
transition is not only very small, but also huge spinodallike
nematic fluctuations34 appear in the isotropic fluid phase upon
approaching the transition, which makes it extremely difficult
to locate the transition. This difficulty is apparent from the
large spread in literature values for the IN transition for cut
spheres in Table. I. We would also like to mention that we
performed extremely long runs in order to obtain histograms
with enough statistics (more than 108 MC cycles typically,
where a MC cycle consists of N particle moves and 2 volume
moves). Hence, equilibration problems seem unlikely. An al-
ternative cause for the deviation might be that the weakly first
order IN transition of platelets is extremely sensitive to the

precise details of the particle shape, which requires further in-
vestigations. The minimum in the coexistence densities of the
isotropic and nematic phases as a function L/D that was ob-
served for cut spheres7 is also found for OHSC in this paper.
However, if coexisting packing fractions are plotted as a func-
tion of L/D instead of coexisting densities, no minimum is
found, because the L/D dependence of the reduced volume
of the OHSC dominates the dependence of the coexistence
densities on L/D.

For completeness, we also attempted to find the coex-
istence using Gibbs ensemble simulations for OHSC with
L/D > 0. The resulting coexistence densities together with
the coexistence as obtained using Gibbs ensemble simula-
tions by Bates and Frenkel for L/D = 0 (Ref. 37) are com-
pared with the results from the histogram method in Fig. 8.
When comparing Fig. 8 with Fig. 7, it can be seen that the
differences between the Gibbs ensemble method and the his-
togram method are larger than the differences between the
two particles shapes and the difference between the histogram
method and the much simpler direct method. From Eq. (8)
with (ρc

N − ρc
I )/ρc

I less than 0.1, the isotropic density as ob-
tained from the Gibbs ensemble simulations has a relative de-
viation (ρI − ρc

I )/ρc
I of a few percent or more for typical val-

ues of NI and NN used here and in Ref. 37, which explains
the deviations from the histogram results in Fig. 8. These re-
sults clearly confirm that the Gibbs ensemble method should
not be used to study weakly first order phase transitions.

Interestingly, the isotropic–nematic transition becomes
more strongly first order for cut spheres with L/D
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= 0.1,5, 7 such that the Gibbs ensemble MC method5 can
be used more reliably: the coexistence densities from the
Gibbs ensemble simulations5 are ρI D3 = 4.11 and ρN D3

= 4.26, while using the biased histogram method ρI D3

= 4.17(1) and ρN D3 = 4.30(1) were obtained.7 These val-
ues should be compared with the coexisting densities for
the OHSC with L/D = 0.1, which are ρI D3 = 3.968 and
ρI D3 = 4.012. The agreement between the results for the
cut spheres for L/D = 0.1 signifies that the marked differ-
ence between our results for the OHSC for L/D = 0.1 (see
Table II) and the results for cut spheres for L/D = 0.1 is not
a result of equilibration or biasing problems in the various
simulation methods, but rather a physical effect. The slightly
higher value for the coexistence density of the nematic phase
for cut spheres with L/D = 0.1 compared to that for OHSC
with L/D = 0.1 has a rather large effect on the structure of
the nematic phase at coexistence, see Fig. 9, which shows typ-
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FIG. 8. A comparison between our results for the IN phase coexistence for
OHSC obtained from the histogram method (solid line) and from Gibbs en-
semble MC simulations (dashed line), completed with the results for the IN
phase coexistence for L/D = 0 from Ref. 37 based on the Gibbs ensemble
method. The coexistence region between the solid lines is marked by the gray
area.

FIG. 9. Snapshots of the nematic phase near coexistence (a) for cut spheres
with L/D = 0.1 for φ = 0.332 or ρD3 = 4.24 and (b) for OHSC with
L/D = 0.1 for φ = 0.300 or ρD3 = 3.99. The nematic order parameter
measured in the snapshot of (a) was S2 
 0.79 and for (b) it was S2 
 0.46.

ical configurations of the nematic phase of cut spheres and
OHSC near coexistence with the isotropic phase. Remarkably,
the nematic order parameter of the nematic phase is S2 
 0.79
for cut spheres, while it is S2 
 0.46 for OHSC, which is
mainly due to the difference in density, not the difference in
shape. Clearly, the subtle details of the particle shape have a
huge effect on the IN phase coexistence.

C. Phase diagram

We now turn our attention to the remainder of the
phase diagram. While the dimensionless densities ρD3 of the
isotropic and nematic phases at coexistence between the two
are nearly constant (ρD3 
 4, see Fig. 7 and Table I), the tran-
sitions between the nematic phase and the columnar phase and
between the columnar phase and the crystal occur at inconve-
niently large dimensionless densities for thin OHSC. There-
fore, we will discuss the remainder of the phase diagram in
terms of the packing fraction φ ≡ (

π
6 L3 + π2

8 σ L2 + π
4 σ 3

)
ρ

rather than the dimensionless density ρD3. Our simulations
showed that the aligned crystal phase (Xaligned) changed spon-
taneously into the X tilted crystal phase for L/D � 0.4 in a
diffusionless transition (which is not a Martensitic transition,
because there is no shear involved). Since this transition is
diffusionless it is either second order or weakly first order,
which allowed direct determination of the location of the
transition. In order to determine the location of the transi-
tion, we performed two series of NPT MC simulations for
P∗ ≡ β P D3 = 75 with increasing values of L/D for the first
series and decreasing values of L/D for the second series of
simulations. The first simulation of the first series started with
an aligned crystal phase, while each next simulation was ini-
tiated from the final configuration of the previous simulation.
When L/D was decreased from L/D = 0.45 to L/D = 0.44,
the system transformed into the tilted crystal phase, which
was only possible because the aspect ratios of the simula-
tion box were allowed to change. A similar series of simu-
lations was performed for increasing L/D starting from the
tilted crystal phase. In this series of runs, the tilted crys-
tal phase transformed into the aligned crystal phase between
L/D = 0.46 and L/D = 0.47. Therefore, at some aspect ra-
tio L/D in between 0.44 and 0.47 the coexistence pressure
must be P∗ = 75. At infinite pressure, the PV term in the
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Gibbs free energy G = F + PV is the only important term
and, therefore, the transition between the X tilted and Xaligned

crystal phases must occur at the aspect ratio at which their
close packed densities intersect (see Fig. 3), which was de-
termined (numerically) to be L/D 
 0.46232. Aside from
the nematic phase and the two crystal phases, that were al-
ready mentioned, the phase diagram also features a columnar
phase. The coexistences between the isotropic fluid and the
crystal and columnar phases were calculated using common
tangent constructions on the free energy curves. The
columnar–crystal coexistence pressure is the pressure at
which the crystal melted and the corresponding coexistence
densities are found using a fit to the equation of state. This
means that these coexistence densities are actually lower
bounds, except for L/D = 0.3, where the columnar phase
crystallized spontaneously with very little hysteresis. The free
energy calculations at L/D = 0.3 show that the columnar-to-
crystal phase transition is only very weakly first order or even
second order. The coexistences between the various phases

for OHSC are shown in the phase diagram (Fig. 10) and tab-
ulated in Table II.

We compare the phase diagram for OHSC obtained in
this paper with the previously reported phase diagrams for
OHSC of Ref. 8 and with the phase diagram for hard cut
spheres of Ref. 2 in the panel on the right in Fig. 10.
Figure 10(b) shows the phase diagram as obtained using di-
rect simulations of OHSC in Ref. 8, along with the present
coexistence regions (in gray). The present phase diagram
shows similar trends as the phase diagram obtained from di-
rect simulations:8, 14, 15 an isotropic fluid at the lowest densi-
ties for all aspect ratios L/D, a (discotic) nematic phase at low
densities and aspect ratio L/D � 0.1, and phases in which
the OHSC form aligned columns at high densities. However,
using the pressure annealing method, we found two different
crystals, X tilted and Xaligned, which were found to be stable (us-
ing free energy calculations) in, respectively, the lower and
higher L/D regions of the phase diagram. Their combined
region of stability is approximately, where the Dhi phase of

TABLE II. Packing fractions φ, dimensionless pressures β P D3, and chemical potentials μ∗ = βμ − ln(V/D3) of the coexisting phases for hard oblate
spherocylinders with thickness L and diameter D, where V is the thermal volume. See Table I for the isotropic–nematic coexistence. The coexisting densities
marked by a ‘†’ are the average of two coexisting densities determined by locating weakly first order or second order phase transitions in direct simulations.
The transitions between the X tilted and Xaligned crystal phases at β P D3 = 75 and ∞ occur for OHSC with L/D 
 0.46232 and L/D 
 0.455, respectively
(see text).

L/D Phase 1 Phase 2 φ1 φ2 β P D3 μ∗

0.1 nem col 0.4297 0.4646 66.96 21.2
0.1 col X tilted 0.7551† 325
0.2 iso col 0.5051 0.5691 57.35 25.27
0.2 col X tilted 0.695† 115
0.3 iso col 0.5433 0.6155 54.67 29.35
0.3 col X tilted 0.6436† 62
0.455(15) X tilted Xaligned 0.6891 0.6909 75
0.46232 X tilted Xaligned 0.8135 0.8135 ∞ ∞
0.4 iso X tilted 0.5818 0.6632 59.01 35.5
0.5 iso Xaligned 0.5939 0.6527 53.59 37.36
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Ref. 8 is located. The simulations in Ref. 8 were initiated in a
columnar phase, which is the reason that these crystal phases
were not found. When re-examining the configurations ob-
tained in the work of Ref. 8, we arrived at the conclusion
that the configurations of the Dhi columnar phase from Ref.
8 are actually defective X tilted or Xaligned crystals. We also
observe from Fig. 10(b) that the strongly first order phase
transitions, i.e., from the isotropic to the columnar or crys-
tal phases, are shifted to higher densities in the present phase
diagram compared to that of Ref. 8. This is to be expected,
since Ref. 8 showed the location of the spontaneous melting
of the columnar and crystalline phases. In Ref. 8, a distinction
is made between two columnar phases, the Dho phase with
long-range intercolumnar and intracolumnar correlations and
the Dhd phase, in which the columns become fluidlike. As al-
ready pointed out by De Gennes,46 the transition from Dho to
Dhd, where the correlation length of the particles within a col-
umn becomes smaller than a certain threshold value (e.g., a
few particle dimensions) is not sharp at all; the spatial corre-
lations within a column will always have a finite correlation
length. Hence, the transition will depend strongly on this pre-
cise threshold value, and in order to determine accurately the
correlation length within the columns in simulations, a proper
finite size scaling analysis is required, which is beyond the
scope of the present study. Therefore, we simply labeled the
combined region of stability of the columnar phases Dhd and
Dho as “col” in Fig. 10(a). In summary, we find that our phase
boundaries deviate from the earlier work in Ref. 8, but this
can easily be explained by the fact that our phase diagram is
obtained using free energy calculations and features crystal
structures predicted by the pressure annealing method, while
the previous phase diagram was obtained using direct simula-
tions starting from a columnar phase.

The location of the isotropic–nematic coexistence for
OHSC was already compared to that of cut spheres in
Sec. IV B. The remainder of the phase diagram for hard cut
spheres from Ref. 2 is compared with the present phase di-
agram for OHSC (in gray) in Fig. 10(c). We observe that
the phase diagram of cut spheres is very similar to the one
for OHSC, which is to be expected, since the shape of the
cut sphere is not very different from the OHSC shape. There
are a few interesting differences, such as the position of the
isotropic–columnar–crystal triple point. This triple point is lo-
cated in the range 0.1 < L/D < 0.2 for cut spheres, where
L/D is the thickness-to-diameter ratio of cut spheres as de-
fined in Fig. 1, while in our case it lies in the range 0.2
< L/D < 0.3. This is caused by the increased stability of the
crystal phase of cut spheres compared to the X tilted phase of
OHSC, which can probably be related to the better packing
of cut spheres in the corresponding crystal phase, see Fig. 3.
The other difference between the phase diagram of OHSC
and that of cut spheres is the absence of the cubatic phase
for OHSC. Upon compression of an isotropic phase of OHSC
with L/D = 0.2, we did find a structure which resembled
the cubatic phase, but it always transformed into the colum-
nar phase (in an event-driven MD run). At packing fractions
below that of the coexisting columnar phase, we have never
found any evidence for the presence of a cubatic phase. The
appearance of a cubatic phase in the phase diagram for cut

spheres might be caused by the almost cylindrical shape of cut
spheres with L/D 
 0.2 (see Fig. 1, which stabilizes stacks
of around four particles, that are rotated by 90◦ compared to
adjacent stacks. However, the stability of the cubatic phase is
still under debate.6

The phases present in our phase diagram represent some
of the most commonly found phases in experiments on one-
component thermotropic liquid crystals.47, 48 Generalizations
of the OHSC model (beyond the scope of this paper) to molec-
ular shapes that are not cylindrically symmetric, to potentials
that include (anisotropic) attractions,14–16 and finally to mix-
tures of different mesogens could lead to similar richness in
phase behavior as experimentally observed for molecular liq-
uid crystals.46 An example of the type of phase which could
be found by a suitable generalization of our model is the
nematic columnar phase. In this phase, disks stack to form
columns that order like rods in a nematic phase. Such a phase
has only been found experimentally for mixtures of disklike
molecules with strong attractions between their central cores
and various (typically) smaller molecules.49–53

V. SUMMARY

We determined the phase behavior of a model for hard
cusp-free platelets: oblate hard spherocylinders (OHSC).
Two crystal phases were found using the pressure annealing
method. The first crystal structure for OHSC is similar to the
one for cut spheres, albeit with a considerably lower close
packed density. The second crystal structure that we predicted
consists of columns of particles that are tilted with respect to
the column and with respect to particles in other columns. In-
terestingly, tilted crystals are also commonly found for disk-
like molecules.1 However, only an aligned crystal phase was
found for cut spheres, which indicates that the OHSC is a bet-
ter model for molecular mesogens. The tilted crystal phase
of OHSC also has a lower close packed density than the
crystal phase of cut spheres. We used three different meth-
ods for tracing the phase boundary between the isotropic and
the nematic phase. We find good correspondence between the
three methods. However, we find larger differences than ex-
pected between the IN coexistence for OHSC and that of cut
spheres7 even for thin platelets (except from L/D 
 0). How-
ever, the finding of Fartaria and Sweatman7 that the coex-
isting densities as a function of aspect ratio display a mini-
mum also holds for OHSC. Subsequently, we calculated the
full phase diagram of OHSC using free energy methods and
compared it to the phase diagram of cut spheres and to ear-
lier preliminary studies on OHSC using direct simulations for
OHSC.8, 14, 15 The present paper confirms the trends found in
the preliminary study, giving more accurate values for the lo-
cation of the coexistence between the various phases. The im-
proved accuracy will be necessary to apply the OHSC model
in more complex studies, for instance, of platelets under grav-
ity or studies of homogeneous or heterogeneous nucleation of
platelets. Furthermore, the Dhi phase that was found in Ref.
8 is most likely a defect-rich variant of one of our crystal
phases. We also find that the overall shape of the phase dia-
gram for OHSC is very similar to that of cut spheres, display-
ing stable isotropic, nematic, columnar, and crystal phases.
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Cut spheres have only one crystal phase (which is also sta-
ble for thick OHSC), while an additional stable crystal phase
was found for OHSC. Furthermore, we did not find a stable
cubatic phase which was found for cut spheres. These dif-
ferences were explained on the basis of subtle differences in
the shape of the respective particles. The isotropic–columnar–
crystal triple point for the OHSC is shifted to lower L com-
pared to cut spheres, which can be understood from packing
arguments. It is surprising that the phase behavior depends so
sensitively on the precise details of the particle shape, which
justifies the current paper and motivates the use of the OHSC
as a model for particles that do not have sharp edges, like most
experimental systems.
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APPENDIX: SOME NOTES ON THE OVERLAP
ALGORITHM

In Ref. 8, an efficient algorithm for finding the clos-
est distance ρi j between (infinitely thin) disks i and j was
presented. Using this algorithm the overlap criterion for the
OHSC simply corresponds to testing whether this distance
ρi j is larger or smaller than L . Furthermore, ρi j can be used
to define a soft interaction potential between two disklike
particles.15 However, optimizations can be implemented in
the case where simply the overlap between two OHSC is re-
quired. As a first optimization, the square of ρi j can be calcu-
lated instead of ρi j itself, which avoids the calculation a few
(expensive) square roots. However, we will discuss distances
rather than squared distances to simplify the notation. We will
briefly describe the original algorithm (for further details see
Ref. 8) and mark the points where further optimizations are
possible. It should be noted that these optimizations are not
required to successfully detect overlaps and, in fact, no dif-
ference between the two implementations could be detected
apart from an increase in speed. In the first step of the overlap
algorithm, it is checked whether the closest distance is be-
tween the edge of one of the disks i and the face of the other
disk j . Early on in this analytical step, the closest distance
between disk i and the plane in which disk j lies is calcu-
lated. Clearly, if this distance is larger than L no overlap can
occur. In this case the other steps of the overlap algorithm
can be avoided. If it is determined that the closest distance
between the two disks is not between the edge of one disk
and the face of the other, then the closest distance must be
between the edges. It is here (and only here) that a numeri-
cal algorithm must be used. The iterative method of Ref. 8 is
considerably faster than the standard minimization approach
we have used to test against. In both methods, the distance
between two points, pi on the edge of disk i and p j on the
edge of disk j , is minimized. The difference vector between

the two points is r ≡ p j − p j . A very simple optimization
of any minimization method of this type is to stop whenever a
distance r ≡ |r| is found which is smaller than L , because
in this case the overlapping between the two OHSC is certain.
Also the nonexistence of an overlap can be determined be-
fore the minimization procedure is complete. In order to do
this, we have to consider the plane perpendicular to r at
pi + (L/2)r/r . This plane is by construction tangent to
particle i at pi and there is at least one point on the surface of
particle i on one side of it pi + (L/2)r/r and a point on
particle j on the other side p j − (L/2)r/r since r > L .
So if the closest distances between disk i and the plane and
disk j and the plane are larger than L/2 there can be no over-
lap. The modifications to the numerical part of the overlap
algorithm imply that the existence or nonexistence of overlap
between two OHSC can be exactly determined for all con-
figurations of particles whose surfaces are further apart than
a certain ε, which is the smallest possible precision which
can be achieved using a given minimization method (all min-
imization methods have such an ε; it is typically of the order
of the square root of the machine precision54). For modern
computers, this number is ε 
 10−11. Such small surface-to-
surface distances are very unlikely to occur even once in a
typical simulation, let alone that the incorrect assignment of
(non)overlap to such a configuration would influence the re-
sults of the simulation noticeably.

As an aside, we note that if the algorithm iterates until
the change of r in a single iteration step is below a certain
number εit and i and j are nearly aligned and stacked on top
of each other (a common configuration in the columnar or
crystalline phases), then the error in the current estimates for
pi and p j can be much larger than εit: In that case, the itera-
tive procedure gives the correct closest distance between the
disks r up to about εit, but as r depends only weakly on pi

and p j for stacklike configurations, little effort is spent in de-
termining these points in the iterative procedure. Therefore,
a standard minimization technique was used for performing
a collision in the event-driven MD, where pi and p j play an
essential role.32
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