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We report on the diffusion of purely repulsive and freely rotating colloidal rods in the isotropic, nematic, and
smectic liquid crystal phases to probe the agreement between Brownian and Monte Carlo dynamics under the
most general conditions. By properly rescaling the Monte Carlo time step, being related to any elementary move
via the corresponding self-diffusion coefficient, with the acceptance rate of simultaneous trial displacements
and rotations, we demonstrate the existence of a unique Monte Carlo time scale that allows for a direct
comparison between Monte Carlo and Brownian dynamics simulations. To estimate the validity of our theoretical
approach, we compare the mean square displacement of rods, their orientational autocorrelation function, and the
self-intermediate scattering function, as obtained from Brownian dynamics and Monte Carlo simulations. The
agreement between the results of these two approaches, even under the condition of heterogeneous dynamics
generally observed in liquid crystalline phases, is excellent.
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I. INTRODUCTION

The dynamics of colloidal particles are well described by
the classical theory of Brownian motion [1], named after the
botanist Robert Brown who, in 1827, observed organelles
suspended in water performing persistent and casual jumpy
moves [2]. Briefly speaking, the Brownian motion is due to the
random collisions between suspended colloidal particles and
the molecules of the fluid surrounding them. Because of this
random drifting, colloidal systems are very good candidates
to be described via Brownian dynamics (BD) or Monte Carlo
(MC) simulations. In both methods, a stochastic rather than
deterministic approach is applied. More specifically, in BD
simulations stochastic differential equations are solved to
describe the time-evolution of suspended particles under the
effect of thermal fluctuations. By contrast, in MC simulations,
a sequence of random numbers is generated to make the
particles perform random walks in the space of configurations:
their moves are accepted with a given transition probability
satisfying the condition of detailed balance [3,4].

In the past few years, there has been a growing interest
in the field of molecular simulation on applying stochastic
algorithms to investigate the dynamics of equilibrium and
out-of-equilibrium colloidal fluids, such as liquid crystals and
supercooled liquids, respectively. In particular, the high effi-
ciency of the MC technique allowed to handle the significantly
long relaxation dynamics of glass-forming systems [5,6] and
liquid crystals [7–11], to study the crystal nucleation rate
in hard-sphere colloids [12], and the dynamics of several
self-assembling systems [13–16]. These studies did not limit
the application of the MC method to systems of hard particles,
where the molecular dynamics (MD) or BD approaches cannot
be straightaway implemented, but extended to systems of
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particles interacting via a soft potential, where MD or BD
should be the most appropriate choice. In these studies, the
MC simulation method is usually referred to as dynamic MC
(DMC). More precisely, the DMC technique is based on the
standard Metropolis algorithm, where any new state of the
system stems from the former one according to a probability
which depends on the energy jump between the two states [17].
Strictly speaking, this nondeterministic progression of states
follows a time-independent path through the phase space.
However, in the limit of very small displacements, where
configurational biased moves, cluster moves, swaps, or other
unphysical moves are not allowed, Metropolis-based DMC
simulations may mimic the Brownian motion of particles and
describe time-dependent processes. The application of the
MC method to investigate the Brownian evolution of a given
colloidal system implies (i) to define a unique MC time scale
being independent from the size of the MC change of any
degree of freedom; and (ii) to relate such an MC time scale
to the BD time scale. Addressing these two crucial aspects is
fundamental to correctly compare both simulation methods on
a quantitative basis.

Recently, Sanz and coworkers have proposed an algorithm
to mimic the Brownian dynamic with DMC simulations. These
authors reported on comparative studies between DMC and BD
in the isotropic phase of smooth and patchy spherical particles
[18,19]. In their most general scenario, where translational and
rotational degrees of freedom are involved, they performed
DMC simulations by attempting, on average, N rotations and
N translations in each cycle, with N the number of particles
in the system. This scheme generates two distinct values of
the acceptance rate, one for translations (at ) and another
for rotations (ar ), which clearly depend on the maximum
translation (δt ) and rotation (δr ) allowed. In order to map DMC
into BD, these authors showed that the following condition,
where the Einstein and Stokes-Einstein relations are involved,
must hold 3δt/δr = σ

√
ar/at , with σ the particle diameter
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[19]. A trial-and-error iterative procedure, consisting of few
short preliminary simulations, is recommended in order to fix
the value of δt and δr satisfying this a priori requirement.

In the present work, we introduce an alternative DMC
algorithm for particles with arbitrary degrees of freedom,
which does not make use of any preliminary simulation and
therefore bypasses the trial and error procedure described in
Refs. [18,19]. In order to check the validity of our approach,
we compared few dynamic properties computed by performing
DMC and BD simulations in liquid crystalline phases of
colloidal rod-like particles. In such systems, the diffusion
along the nematic director and that in the plane perpendicular
to it are significantly different, and therefore imply distinct
maximum displacements while maintaining a common time
scale. Particles are displaced and rotated simultaneously and a
single value of the acceptance rate is therefore generated. The
acceptance rate represents the scaling factor relating the time
scales of BD and DMC simulations. To introduce the concept
of MC time, we make use of the Einstein relations, linking any
elementary move with the MC time step via the corresponding
diffusion coefficients [20]. By rescaling any MC time step
by this acceptance rate, we obtain a unique MC time scale
which does not depend on the maximum displacements and
rotations. Regardless of the dynamic properties discussed here,
the rescaled results of DMC simulations collapse on a single
master curve and are in excellent agreement with the results
of BD simulations at high acceptance rates, being still very
satisfactory at those acceptances usually required in standard
MC simulations.

This paper is organized as follows. In Sec. II, we de-
scribe the theoretical framework applied to compare the two
stochastic approaches. In Sec. III, the model and methodology
to perform BD and DMC simulations are presented. In
Sec. IV, we discuss our results by focusing on the qualitative
and quantitative agreement between BD and DMC. Finally,
some conclusions wrap up the paper.

II. THEORY

In this section, we investigate the link between the evolution
of a system of particles in Brownian motion and in MC
dynamics. To this end, it is key to establish a consistent and
rigorous time scale being independent from the acceptance
rate of DMC simulations. For the sake of clarity, the trivial
case of a system with only one degree of freedom is first
discussed. Let’s consider a particle j originally located at
x = 0. In a standard MC scheme, where unphysical moves are
not allowed, j can be displaced to a new randomly selected
position in the interval [−δx,δx]. According to the Metropolis
algorithm, the probability to accept this move depends on
the interactions established by particle j in the old and new
configuration of the system. More specifically, this probability
is a function of the size of the displacement: the shorter the
displacement, the higher the probability to accept the move.

Here, we assume that this acceptance probability does
not depend on the step size of displacement, but remains
constant in the interval [−δx,δx]. The validity of this
crucial assumption might be significantly affected at high
concentrations and/or when the interactions between particles
become stronger. In these cases, the acceptance rate might

be strongly dependent on the step size of displacement and
hence a very small time step would be required in order to
obtain a satisfactory approximation. However, in the limit of
infinite dilution as well as at infinitely small displacements,
exact results are expected. This level of approximation is
equivalent to that employed in [18] for the 1D case, where
an expansion up to first order of the force exerted over the
particle as function of the displacement was considered. Under
this approximation, the probability of finding a particle in
its original position after a rejected trial move is defined
as Preject = A′. Accordingly, the probability to accept the
move is Paccept = 1 − A′ = A. The normalized probability to
successfully move a particle to the position x ∈ [−δx,δx] is
Pmove = A/2δx, being the general solution to the problem
of random walk with hesitation [21]. Therefore, the mean
displacement reads 〈x〉 = ∫ δx

−δx
xPmovedx = 0, as expected for

Brownian motion of suspended colloids. Whereas, the mean
square displacement, limited to a single MC step, reads

〈x2〉 =
∫ δx

−δx

x2Pmovedx = A(δx)2

3
. (1)

In an MC step, we attempt to move a randomly selected
particle in the interval [−δx,δx]. It is straightforward to extend
this result to a system of N particles performing CMC cycles,
being a cycle equal to N statistically independent MC steps. In
this case, the mean square displacement reads

〈x2〉 = CMC
A(δx)2

3
, (2)

where A is again the probability to accept the move for each
MC step.

In a 3D space, the number of degrees of freedom increases
to five for particles with axial symmetry: three of them are
associated with the displacement of the center of mass of the
particles, and the remaining two with their rotation. Here, we
discuss the most general case of f degrees of freedom. A given
particle is moved from the origin to a point ξ = (ξ1,ξ2, . . . ,ξf )
belonging to an f-dimensional hyperprism of sizes [−δξk,δξk],
with k = 1,2, . . . ,f . As in the f = 1 case, it is supposed
that this move can be accepted with a uniform probability
A independent on the displacement. Hence, the normalized
probability of a successful displacement of a particle to any
point inside this interval reads

Pmove(ξ ) = A
V�

, (3)

where V� = ∏f

i (2δξk) is the volume of the hyperprism defined
above. As obtained for the 1D case, the expected value of
the mean displacement is 〈ξk〉 = 0 for any degree of freedom
k � f . By contrast, the mean square displacements take the
following form:

〈
ξ 2
k

〉 =
∫

V�

ξ 2
k Pmovedξk = A(δξk)2

3
. (4)

It should be noticed that this result is independent on the
number of degrees of freedom. This might not be the case if
the acceptance probability could not be considered uniform in
the f-dimensional hyperprism. Again, it is straightforward to
extend this result to the case of N identical particles performing
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CMC cycles. In this case, the mean square displacement reads

〈
ξ 2
k

〉 = CMC
A(δξk)2

3
. (5)

This result allows us to define a time unit for a DMC
simulation (tMC), which can be easily related to the time unit
of a BD simulation (tBD). An MC step consists of an attempt
to simultaneously modify all the degrees of freedom of a
randomly selected particle. Eventually, this attempted move
is accepted with a probability A. An efficient way to relate the
displacements and rotations of a particle to a temporal scale in
a self-consistent way is through the Einstein relation (the same
as the Langevin equation at long times) [20]. If the MC moves
are statically independent, time and space are related through
the self-diffusion coefficient. Hence, an MC time step could
be defined through the equation (δξk)2 = 2DkδtMC, where Dk

is the self-diffusion coefficient associated to the kth degree of
freedom and δtMC is the time needed to perform an MC cycle
in the MC timescale. By combining this result with Eq. (5),
the following expression is obtained:〈

ξ 2
k

〉 = 2
3ADkCMCδtMC. (6)

The Einstein relation for a BD simulation reads〈
ξ 2
k

〉 = 2DktBD. (7)

By substituting Eq. (6) in Eq. (7), a relation between both
timescales is obtained:

tBD = A
3
CMCδtMC. (8)

This equation provides a relation between the timescales
in BD and DMC simulations. It should be noticed that
Eqs. (6)–(8) are exact only at infinite dilution, a limit where
the acceptance rate can be considered independent on the size
of displacement. By contrast, at finite dilution, due to the
collisions between particles, these equations are not exact and
give approximated results. A is strictly related to the complete
set of δξk , which depend, in turns, on the MC time unit δtMC

as defined above. Distinct values of δtMC furnish a unique
MC timescale, equal to the BD timescale, when scaled by
the corresponding acceptance rate A. In other words, Eq. (8)
establishes a unique timescale for DMC simulations, given the
definition of MC step provided above.

The question that arises here is how small the maximum
displacements δξk should be. As already mentioned, we are
supposing that the acceptance ratio A is independent on
the displacement and uniform in the hyperprism of sizes
[−δξk,δξk]. This assumption is not compatible with a large
time step δtMC. However, although a small δtMC is necessary
to ensure the equivalence between DMC and BD simulation,
this should not be excessively small to collect significant
statistics in an acceptable period of simulation time. Apart
from an overall rescaling of the time lengths, any appropriate
and efficient selection of displacements and rotations should
not affect the dynamics of the system at long time scales, as
we demonstrate in this paper.

III. MODEL AND SIMULATION METHODOLOGY

We studied pure systems of rod-like particles containing
N = 1000 freely rotating spherocylindrical rods with aspect
ratio L∗ = L/σ = 5, where L and σ are, respectively, the
length and diameter of a cylinder capped by two hemispheres
with diameter σ . Particles interact via a shifted and truncated
Kihara potential [22,23], which assumes a mere repulsive
form:

Uij =
{

4ε
[(

σ
dm

)12 − (
σ
dm

)6 + 1
4

]
dm � 6

√
2σ

0 dm >
6
√

2σ ,
(9)

where Uij = Uij (rij ,ûi ,ûj ). The subscripts i and j refer to
a pair of interacting particles: rij is their center-to-center
distance, ûi and ûj their orientations, ε the strength of their
interaction, and dm = dm(rij ,ûi ,ûj ) the minimum distance
between them. For more details on the computation of the
minimum distance between two spherocylinders, we refer the
interested reader to Ref. [24]. We use σ , ε, and τ = σ 2/D0

as length, energy, and time units, respectively, with D0 =
kBT /(μσ ) a diffusion constant and μ the viscosity coefficient
of the solvent [25].

With these general characteristics, we performed DMC and
BD simulations in several mesophases. For isotropic (I), ne-
matic (Nm), and smectic (Sm) phases, we set T ∗ = kBT /ε =
20.0, 5.0, and 3.0, respectively, with kB the Boltzmann constant
and T the absolute temperature. Additionally, the packing
fractions are equal to η = 0.490 in the I and Nm phases, and
η = 0.556 in the Sm phase. To limit the finite size effects,
periodic boundary conditions have been applied. To equilibrate
the system, long standard MC simulation in the NVT ensemble
were carried out. The systems were considered at equilibrium
when the total energy, U/ε, achieved a steady value within
the statistical fluctuations. For each phase of interest, a given
equilibrated configuration was chosen as the initial one for all
the production runs.

A. DMC simulations

In the production runs, DMC simulations have been
performed in the NV T ensemble, with simultaneous at-
tempts to displace and rotate random selected particles.
More specifically, translational and rotational moves were
accepted according to the standard Metropolis algorithm, that
is with probability min[1, exp(−	U/kBT )]. If the move is
accepted, the total energy of the system is increased by the
amount 	U . To properly mimic the Brownian dynamics of
the colloids, no unphysical moves, such as swaps or cluster
moves, were performed. For the displacement of the center
of mass of a given particle j , the motion is decoupled into
three terms: δrj = X||ûj + X⊥,1v̂j,1 + X⊥,2v̂j,2, where ûj is
the orientation vector, and v̂j,m, with m = 1 or 2, are two
randomly chosen vectors perpendicular to each other and to ûj .
In each direction, the magnitude of the displacement is chosen
at random with the conditions |X||| � δr|| and |X⊥,m| � δr⊥.
For the rotations, the orientation vector of particle j changes
from ûj to ûj + δûj with δûj = Yϑ,1ŵj,1 + Yϑ,2ŵj,2. Again,
ŵj,m are two randomly chosen vectors perpendicular to each
other and to ûj . The random numbers Yϑ,j are chosen in the
interval [−δϑ,δϑ], where δϑ is the elementary rotation of
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the long axis of the rods. This scheme satisfies the balance
condition, as shown in the Appendix. The Einstein relation
links the displacements and the rotations to the respective
self-diffusion coefficients via the time step δtMC:

δr⊥ =
√

2D⊥δtMC, (10)

δr‖ = √
2D‖δtMC, (11)

δϑ =
√

2DϑδtMC. (12)

With regard to the translational and rotational self-diffusion
coefficients, we have applied the analytical expressions avail-
able for prolate spheroids [26,27]. In particular:

D⊥ = D0
(2a2 − 3b2)S + 2a

16π (a2 − b2)
b, (13)

D‖ = D0
(2a2 − b2)S − 2a

8π (a2 − b2)
b, (14)

Dϑ = 3D0
(2a2 − b2)S − 2a

16π (a4 − b4)
b, (15)

where a = L/2, b = σ/2, and S is a geometrical parameter
given by

S = 2

(a2 − b2)1/2
log

a + (a2 − b2)1/2

b
. (16)

Therefore, by fixing a given value for the time step δtMC,
the microscopic rotation and displacements listed in Eqs. (10)–
(12) are univocally determined. More specifically, in order to
ascertain the quality of the comparison between DMC and
BD, we performed simulations at time steps δtMC/τ = 10−4,
10−3, 10−2, and 3 · 10−2. Each time step determines different
acceptance rates, as reported in Table I.

It should be noticed that Eqs. (13)–(15) are exact at infinite
dilution, that is when the diffusion of a given particle is not
hampered by its surrounding neighbors, and all the attempted
moves are accepted (A = 1). Increasing the time step implies
lower acceptance rates and introduces an approximation in
the MC dynamics, as already pointed out in Refs. [18,19],
where the optimal translational acceptance rate for systems

of patchy spheres was found to be ∼ 0.7. This optimal value
is a compromise between the efficiency of the MC method
and the quantitative agreement with BD simulations. To check
the limit of applicability of the DMC method, we have also
run simulations at time steps giving acceptance rates A � 0.4,
being the typical interval generally imposed in many standard
MC simulations.

B. BD simulations

In a BD simulation, a stochastic differential equation, the
so-called Langevin equation, is integrated forward in time and
trajectories of particles are created [25,28]. Let’s define rj as
the position of the center of mass of particle j , ûj the unit vector
oriented along the long axis of j , v̂j,m and ŵj,m, with m = 1 or
2, two independent pairs of perpendicular unit vectors being
also perpendicular to ûj . Furthermore, Fj and Tj are the total
force and torque acting over the particle j . To compute them
for systems of particles interacting via a Kihara potential, we
refer to Ref. [29]. In a BD step, the position of the center of
mass and the orientation of each particle is updated in time by
the following set of equations:

r‖
j (t + 	t) = r‖

j (t) + D‖
kBT

F‖
j (t)	t + (2D‖	t)1/2R‖ûj (t)

(17)

r⊥
j (t + 	t) = r⊥

j (t) + D⊥
kBT

F⊥
j (t)	t

+ (2D⊥	t)1/2[R⊥
1 v̂j,1(t) + R⊥

2 v̂j,2(t)] (18)

ûj (t + 	t) = ûj (t) + Dϑ

kBT
Tj (t) × ûj (t)	t

+ (2Dϑ	t)1/2[Rϑ
1 ŵj,1(t) + Rϑ

2 ŵj,2(t)
]
, (19)

where r‖
j and r⊥

j indicate the projections of the positions of
particle j along ûj and along the directions perpendicular to
ûj , respectively; F‖

j and F⊥
j are the parallel and perpendicular

components of the forces, respectively; and R‖,R⊥
1 ,R⊥

2 ,Rϑ
1 ,

and Rϑ
2 are independent Gaussian random numbers of variance

TABLE I. Details of the systems studied in this paper, consisting of spherocylindrical particles (rods) with length to diameter ratio
L∗ = L/σ = 5. For comparison, we report the reduced temperature T ∗ = kBT /ε, packing fractions η, diffusion coefficients D⊥, D‖, and Dϑ

in units of σ 2/τ , time step δtMC in units of τ , maximum displacements δr⊥ and δr‖, in units of σ , maximum rotation δϑ , and acceptance rates
A.

Rods

Phase I Nm Sm

T ∗ 20 5 3
η 0.490 0.490 0.556
D⊥τ/σ 2 0.793 0.198 0.119
D‖τ/σ 2 1.079 0.270 0.162
Dϑτ/σ 2 0.175 0.044 0.026

δtMC/τ 10−4 10−3 10−2 3 · 10−2 10−4 10−3 10−2 3 · 10−2 10−4 10−3 10−2 3 · 10−2

δr⊥/σ · 102 1.26 3.99 12.6 21.8 0.631 1.99 6.30 10.9 0.488 1.54 4.88 8.45
δr‖/σ · 102 1.47 4.65 14.7 25.5 0.735 2.32 7.35 12.7 0.569 1.80 5.69 9.86
δϑ · 102 0.837 2.65 8.40 10.3 0.418 1.32 4.18 7.25 0.324 1.02 3.24 5.61
A 0.923 0.757 0.362 0.157 0.955 0.855 0.575 0.356 0.958 0.868 0.609 0.397
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1 and zero mean. The diffusion coefficients D‖, D⊥, and Dϑ

have been defined in Eqs. (13)–(15). In all BD simulations, the
time step was set to 	t = 10−4.

C. Comparison of simulation techniques

In order to compare the MC dynamics with the Brownian
dynamics, some dynamical observables are computed: (i) the
mean square displacement (MSD), (ii) the orientation auto-
correlation functions (OAF), and (iii) the self part of the inter-
mediate scattering function (ISF). For all the systems studied,
we computed the MSD resulting from the displacements along
the three axes of the simulation box. It reads:

〈	r2(t)〉 =
〈

1

N

N∑
j=1

[rj (t) − rj (0)]2

〉
, (20)

where the delimiters 〈. . .〉 denote ensemble average. For
systems in the Nm or Sm phase, we also computed the MSD
parallel, 〈	r2

‖ (t)〉, and perpendicular, 〈	r2
⊥(t)〉, to the nematic

director n̂ of the liquid crystalline phase.
The OAF is given by the second Legendre polynomial of

the dot product between the unit orientation vectors, ûj (0) and
ûj (t), of particle j calculated at time 0 and time t :

E2(t) = 1

N

N∑
j=1

1

2
{3〈[ûj (0) · ûj (t)]2〉 − 1}. (21)

The self-ISF gives a measure of the structural relaxation
decay of the density fluctuations and reads:

Fs(q,t) = 1

N

〈
N∑

j=1

exp{iq · [rj (t + t0) − rj (t0)]}
〉
, (22)

where q = q⊥ + q‖ is the wave vector calculated at the first
peak of the static structure factor in the perpendicular and
parallel directions to the nematic director, and rj (t) is the
particle position at time t . In particular, the transverse and
longitudinal relaxations will be given by F⊥

s (t) = Fs(q⊥,t)
and F

‖
s (t) = Fs(q‖,t), respectively.

In order to obtain good statistics in the production of the
averaged quantities, all these dynamical observables were
averaged over trajectories with multiple time origins.

IV. RESULTS

In this section, we compare the results from DMC and BD
simulations in the I, Nm, and Sm phases of rod-like particles.
An illustrative configuration for each phase is given in Fig. 1.
In the I phase, no long-range order exists and the rods are
randomly distributed throughout the simulation box. The Nm
phase presents some order in the direction of the rods, which
tend to be aligned with a common axis, the nematic director n̂,
whose orientation is arbitrary in space. Finally, the Sm phase
is a lamellar structure whose translational symmetry is broken
in the direction of n̂, and the rods are free to diffuse inside
each layer as in a two-dimensional liquid [30]. By contrast, the
diffusion from layer to layer is hampered by transient cages and
permanent barriers, as recently investigated by theoretical [31],
experimental [32], and computational [7,8] works.

FIG. 1. (Color online) Isotropic (a), nematic (b), and smectic (c)
phases of rod-like particles with length-to-diameter ratio L∗ = 5 and
reduced temperature T ∗ = 20, 5, and 3, respectively. The packing
fraction is η = 0.490 for the isotropic and nematic phases, and
η = 0.556 for the smectic phase.

In Figs. 2–4, we show the mean square displacements
(MSDs) of rod-like particles in the I, Nm, and Sm phases,
respectively. Due to the homogeneous spatial distribution in
the I phase, we only calculate the total MSD, defined in
Eq. (20). On the other hand, for the Nm and Sm phases, we
also report the MSDs perpendicular, 〈	r2

⊥(t)〉, and parallel,
〈	r2

‖(t)〉, to the nematic director n̂. For each system, the time
was rescaled by applying Eq. (8) with the acceptance rates
listed in Table I. Additionally, the MSDs calculated by DMC
simulations with not rescaled MC time are also plotted in
Fig. 2. As a general tendency, rescaling the MC time produces
a very good agreement between the MSDs calculated with the
two simulation techniques. Such an agreement is excellent at
very low time steps and still very good at δtMC/τ > 10−2, when
the acceptance rates become significantly smaller as well as the
accuracy of Eq. (8). In the inset of each figure, a double linear
scale helps to distinguish the deviations between the rescaled
MSDs obtained with DMC and BD simulations. We observe
that all the rescaled results of the MSD collapse on a single
master curve, which confirms the existence of a single time

FIG. 2. (Color online) Mean square displacement (MSD) in the
isotropic phase of rod-like particles. The empty circles indicate the
MSD obtained from BD simulations, whereas the black (upper),
red, green, and blue (lower) dashed lines refer to the results
from DMC simulations at times δtMC/τ = 10−4, 10−3, 10−2, and
3 · 10−2, respectively. The solid lines are the same MSDs from DMC
simulations with the time rescaled according to Eq. (8). Note the
double linear scale of the inset.
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FIG. 3. (Color online) Mean square displacement (MSD) in the
nematic phase of rod-like particles in the direction parallel (top
frame) and perpendicular (middle frame) to the nematic director.
In the bottom frame, the total MSD is also given. The empty circles
indicate the MSD obtained from BD simulations, whereas the black
(upper), red, green, and blue (lower) lines refer to the results from
DMC simulations at times δtMC/τ = 10−4, 10−3, 10−2, and 3 · 10−2,
respectively, with the time rescaled according to Eq. (8). Note the
double linear scale of the insets.

scale with physical consistency. At δtMC/τ = 3 · 10−2 (solid
blue curves in Figs. 2–4), the deviations of the rescaled MSDs
from the master curve become more evident, although their
behavior is still more than satisfactory. The parallel MSDs in
the Sm phase show the three typical time-dependent regimes
observed in previous works [7,8], where the formation of an
intermediate plateau, due to the trapping cage effect of the
particles surrounding each other and to the periodic permanent
barriers due to the layered arrangement, slows down the motion
of the rods and signs the crossover between the short- and
long-time diffusive regimes. This effect is captured by both
BD and DMC simulations. On the other hand, in the Nm and
I phases, the shape of the MSD is that typically observed
in fluid-like systems, where the particles enter the diffusive
regime in a very short period of time, and no relevant change
in the slope of the MSDs is observed.

In Fig. 5, the orientation auto-correlation functions, E2(t),
as calculated from Eq. (21), are given. As expected for liquid
crystal phases, where the structural order forces the particles
to keep a quasi-aligned orientation, these functions do not
decay to zero but saturate to a finite value, which is roughly
0.5 in the Nm phase of Fig. 5(b), and 0.9 in the Sm phase of
Fig. 5(c). On the other hand, E2(t) decays to zero in roughly
five time decades in the I phase. Rescaling the results of DMC
simulations gives an excellent agreement with the output of
BD simulations for the three phases of interest.

Finally, in Fig. 6, we study the long-time relaxation
dynamics by computing the ISFs at the wave vectors q, q‖,
and q⊥, corresponding to the first peak of the static structure
factor in the three spatial directions and along those parallel
and perpendicular to the nematic director, respectively. More
specifically, in both Nm and Sm phases, we find |q‖| � 1

FIG. 4. (Color online) Mean square displacement (MSD) in the
smectic phase of rod-like particles in the direction parallel (top
frame) and perpendicular (middle frame) to the nematic director.
In the bottom frame, the total MSD is also given. The empty circles
indicate the MSD obtained from BD simulations, whereas the black
(upper), red, green, and blue (lower) lines refer to the results from
DMC simulations at times δtMC/τ = 10−4, 10−3, 10−2, and 3 · 10−2,
respectively, with the time rescaled according to Eq. (8). Note the
double linear scale of the insets.

and |q| � |q⊥| � 6; whereas, in the I phase, the ISF is only
calculated at |q| = 6. The relaxation dynamics in the I phase
and in the direction perpendicular to n̂ in the liquid crystalline
phases, is relatively fast with the ISFs decaying to zero between
three and four time decades. On the other hand, the motion of
the rods along the direction of n̂ is much slower, especially

FIG. 5. (Color online) Orientation auto-correlation functions,
E2(t), in the isotropic (a), nematic (b), and smectic (c) phases
of rod-like particles. The empty circles refer to BD simulations,
whereas the solid lines are the results from DMC simulations at
times δtMC/τ = 10−4, 10−3, 10−2, and 3 · 10−2, with the time rescaled
according to Eq. (8).
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FIG. 6. (Color online) Self-intermediate scattering functions,
Fs(q,t), in the isotropic (a), nematic (b), and smectic (c) phases of rod-
like particles. All the open symbols are results from BD simulations.
Circles refer to the total ISF, whereas triangles and squares, in
frames (b) and (c), refer to the parallel and perpendicular directions,
respectively. Solid lines are the results from DMC simulations at
δtMC/τ = 10−4, 10−3, 10−2, and 3 · 10−2, with the time rescaled
according to Eq. (8).

in the Sm phase, where the formation of a plateau, similar
to that observed in the MSDs above, delays the relaxation of
the system well beyond our simulation time. The agreement
between DMC and BD simulations is again remarkably good,
with a slight discrepancy in the I phase for δtMC/τ = 3 · 10−2.
At this time step, the acceptance rate is exceptionally low
(A = 0.157; see Table I) and it is reasonable to expect some
quantitative deviations from the BD results. All the remaining
time-rescaled DMC curves of Fig. 6, where A is above
0.3, don’t show any significant difference, apart from small
statistical fluctuations, with the corresponding curve obtained
from BD simulation.

V. CONCLUSIONS

In summary, in this work we propose a dynamic Monte
Carlo approach to estimate the dynamic observables of a
system as equivalently obtained by performing Brownian Dy-
namic simulations. In order to perform a comparative analysis
between DMC and BD simulations, we have investigated
the dynamics of isotropic phases, and nematic and smectic
liquid crystals, containing merely repulsive rod-like colloidal
particles interacting via a shifted and truncated Kihara po-
tential. In DMC simulations, the particles are displaced and
rotated simultaneously, and the attempted moves are accepted
or rejected according to the standard Metropolis algorithm.
The DMC trajectory yields to an acceptance rate whose value
strictly depends on the MC time step, which in turn determines
the maximum displacement and rotation allowed to each
particle along the simulation run, as established by the Einstein
relation. By rescaling the MC time with the acceptance rates,
each of the dynamic properties computed by performing DMC

simulations at different time steps collapses into a single
master curve, confirming the existence of a unique MC time
scale. These curves overlap the corresponding results obtained
with BD simulations, showing a very good agreement between
the two simulation techniques, especially at high acceptance
rates or, equivalently, at low MC time steps. Since rotations
and displacements are performed simultaneously in DMC
simulations, only one value of the acceptance rate is produced
and no preliminary simulations are needed to tune their
maximum values. The dynamic behavior in the three phases
of interest has been analyzed by the computation of the mean
square displacement, orientation auto-correlation functions,
and self-intermediate scattering functions. We observed a
very good qualitative and quantitative agreement between the
results as computed by performing DMC and BD simulations.
In particular, both simulation approaches are able to describe
the physics of rod diffusion in the nematic and smectic liquid
crystalline phases, where the motion in the direction of the
nematic director and that perpendicular to it present significant
differences.

The DMC method proposed in this work is in principle
applicable to any kind of systems containing particles with
orientational degrees of freedom, such as platelets, patchy
colloids, or other anisotropic particles. In any case, our
algorithm presents some restrictions that should be pointed
out. First, it is strictly valid only for stationary situations,
where the acceptance ratio, apart from reasonable oscillations
due to thermal fluctuations in the system, can be assumed to be
constant along the whole simulation. Therefore, to investigate
the dynamics of out-of-equilibrium systems, a time-dependent
acceptance rate should be used to rescale the MC timescale
to the BD time. Second, Eq. (6) cannot be straightaway
applied to systems containing polydisperse particles (in shape
and/or size) or to inhomogeneous systems. Further work is
required to extend our results to these particular cases. Taking
into account these considerations, the algorithm presented
in this work, which partially extends and completes that
proposed by Sanz and Marenduzzo in Ref. [18], represents an
efficient computational tool to qualitatively and quantitatively
address the dynamics of those systems where performing
Brownian dynamic simulations might introduce additional
difficulties.
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APPENDIX: BALANCE IN DYNAMIC MONTE CARLO

For a MC algorithm to be valid, it is important to ensure that,
at the equilibrium, the distribution function remains stationary.
In most of these algorithms, this requisite is satisfied by
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imposing the detailed-balance condition, summarized by the
following equation:

Pi�i,j = Pj�j,i , (A1)

where Pi represents the probability to find a system in state i

and �i,j the transition probability from state i to state j [4].
The transition probability is usually factorized in two terms,
�i,j = αi,j acci,j , where αi,j is the probability to generate a
new state j from i, whereas acci,j is the probability to accept
j as a new state.

In the present paper, we have proposed a dynamic MC
algorithm that mimics the time evolution of the system under
Brownian dynamics. An important aspect of the proposed
methodology is that it does not ensure the detailed-balance
condition, but still results in a correct MC sampling. For the
sake of clarity, we first discuss the 2D case of a rod-like particle
p confined in a plane. The extension to the more general 3D
case is straightforward. In the 2D case, only one perpendicular
vector to the orientation of p should be considered to calculate
δr and δu, being the maximum displacement and rotation
allowed, respectively. If the particle moves to the new position
(δr||,δr⊥) and simultaneously changes its orientation, the
reverse move is not possible and the detailed balance is
not satisfied regardless of the attempted displacement and
rotation. Nevertheless, it has been shown that for an MC
algorithm to be valid, the detailed balance is sufficient but
not necessary [33]. A sufficient and necessary condition,
usually referred to as a simple balance condition, provides a
correct criterion to check the effectiveness of an MC scheme.
As we show here, our dynamic MC algorithm satisfies this
condition.

The simple balance condition implies that the number of
accepted moves from state i to j must be equal to the accepted
moves leading the system to i:∑

j

Pi�i,j =
∑

k

Pk�k,i ∀i, (A2)

where we only have considered transitions with non-null
probability. In this equation, we remark that the sums are
over states that are generally different, as the complete set
of accessible states from i (states j ) does not coincide with
the set of states from which i is accessible (states k). As
the transition probability is normalized,

∑
j �i,j = 1. The

transition probabilities in the right-hand side of Eq. (A2) can
be rewritten as �k,i = αk,iacck,i . States i accessible from k
with αk,i = 0 are those obtained with a particle rotation lower
than the maximum rotation δϑ defined in Eq. (12). For each
of these orientations, all the points inside the rectangle of
size 2δr|| × 2δr⊥ have the same a priori probability to be
displaced to position of state i. Similarly, for the more general
f-dimensional case, the number of states from which i is
accessible is V�, where V� is the volume of the hyperprism
defined in Sec. II. Therefore, as all the transitions have the
same a priori probability, αk,i = 1/V� if i is accessible from
k, or zero otherwise. With all of these considerations, Eq. (A2)
reads

1

V�

∑
k

Pk

Pi

acck,i = 1 (A3)

There are many possible choices for acck,i . If Pi is the
Boltzmann distribution and acck,i is defined according to
the Metropolis rule, then Pk/Piacck,i = 1 and the balance
condition is satisfied.
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[25] H. Löwen, Phys. Rev. E 50, 1232 (1994).
[26] F. Perrin, J. Phys. Radium 5, 497 (1934).
[27] H. Shimizu, J. Chem. Phys. 37, 765 (1962).
[28] H. Pei, S. Allison, B. M. H. Haynes, and D. Augustin, J. Phys.

Chem. B 113, 2564 (2009).
[29] C. Vega and S. Lago, J. Chem. Phys. 93, 8171 (1990).

[30] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Clarendon Press, Oxford, 1993).

[31] M. Bier, R. van Roij, M. Dijkstra, and P. van der Schoot, Phys.
Rev. Lett. 101, 215901 (2008).

[32] M. P. Lettinga and E. Grelet, Phys. Rev. Lett. 99, 197802 (2007).
[33] V. I. Manousiouthakis and M. W. Deem, J. Chem. Phys. 110,

2753 (1999).

011403-9

http://dx.doi.org/10.1016/0097-8485(94)80023-5
http://dx.doi.org/10.1103/PhysRevE.50.1232
http://dx.doi.org/10.1051/jphysrad:01934005010049700
http://dx.doi.org/10.1063/1.1733159
http://dx.doi.org/10.1021/jp803505t
http://dx.doi.org/10.1021/jp803505t
http://dx.doi.org/10.1063/1.459295
http://dx.doi.org/10.1103/PhysRevLett.101.215901
http://dx.doi.org/10.1103/PhysRevLett.101.215901
http://dx.doi.org/10.1103/PhysRevLett.99.197802
http://dx.doi.org/10.1063/1.477973
http://dx.doi.org/10.1063/1.477973

