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ABSTRACT

The selective aggregation of discotic molecules or colloids is the key factor be-
hind the outstanding properties of many substances, of natural or synthetic ori-
gins, like clays used in cosmetics and other coatings or polycyclic aromatic hy-
drocarbons employed in optoelectronic devices. These are just two examples
from a plethora of substances where the interplay between shape anisotropy and
interaction anisotropy is at hand in the constituents provoking the emergence of
interesting macroscopic features. Keeping that perspective, this thesis is writ-
ten with the firm belief that a better understanding of the aggregation and self-
assembly processes will render in better technological applications. In that sense,
the problem to be tackled is very broad in terms of the number of variables im-
plied, since we are investigating the reach of specific properties of individual par-
ticles into the behaviour of the substance they compose. Being the specific aim of
this thesis to characterize the importance of anisotropy in shape and interactions
in the self-assembly processes. To accomplish this, computer simulation of dis-
cotic particles modelled using coarse grain models were run on model systems.
A reasonable strategy to perform them was to fix as many variables as possible
for each study, as it was done in the first half of this thesis. Firstly a system of soft
particles is used to gain some insight into the effect of shape anisotropy on the
diffusion in structured fluids, comparing the diffusion of equivalent prolate and
oblate particles. Then with a fixed oblate shape anisotropy, it is pointed out the
decisive role played by the anisotropy in the interaction potential for the internal
structure of aggregates and the location of the phase transitions. This knowledge
is then applied in the second half of the thesis, where the dynamics of particles
are studied with different interactions potentials during aggregation. Finally, to
exploit everything learned, it is proposed and simulated a clay model.
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RESUMEN

La agregación selectiva de moléculas o coloides discoticos es el factor clave
detrás de las propiedades sobresalientes de muchas sustancias, de origen nat-
ural o sintético, como las arcillas utilizadas en cosméticos y otros recubrim-
ientos o hidrocarburos aromáticos policı́clicos empleados en dispositivos opto-
electrónicos. Estos son solo dos ejemplos de una gran cantidad de sustancias en
las que la interacción entre la anisotropı́a de forma y la anisotropı́a de interacción
van de la mano en los constituyentes provocando el surgimiento de caracterı́sticas
macroscópicas interesantes. Manteniendo esa perspectiva, esta tesis está escrita
con la firme convicción de que una mejor comprensión de la agregación y los pro-
cesos de autoensamblado se traducirán en mejores aplicaciones tecnológicas. En
ese sentido, el problema a ser abordado es muy amplio en términos del número de
variables implı́cadas. Ya que estamos investigando el alcance de las propiedades
especı́ficas de las partı́culas individuales en el comportamiento de la sustancia que
componen. Siendo el objetivo especı́fico de esta tesis caracterizar la importancia
de la anisotropı́a en su forma e interacciones en los procesos de autoensamblaje.
Para lograr esto, la simulación por computadora de partı́culas discóticas mod-
eladas usando modelos de grano grueso se ejecutó en sistemas modelo. Una
estrategia razonable para realizarlas fue fijar tantas variables como fuera posible
para cada estudio, como se hizo en la primera mitad de esta tesis. En primer lu-
gar, se utiliza un sistema de partı́culas blandas para obtener una idea del efecto
de la anisotropı́a de la forma en la difusión en fluidos estructurados, compara-
ndo la difusión de partı́culas prolatas y oblatas equivalentes. Luego, con una
anisotropı́a de forma oblata fija, se señala el papel decisivo desempeñado por la
anisotropı́a en el potencial de interacción para la estructura interna de los agrega-
dos y la ubicación de las transiciones de fase. Este conocimiento se aplica luego
en la segunda mitad de la tesis, donde se estudia la dinámica de las partı́culas
con diferentes potenciales de interacción durante la agregación. Finalmente, para
explotar todo lo aprendido, se propone y se simula un modelo de arcilla.
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1
Introduction

This chapter aims to serve as a brief contextualization of the work, as well as
a compendium of short descriptions of techniques and concepts which might be
unfamiliar for the reader.

The topics covered in this thesis can be classified in the field that today is
called soft-matter, term that since Pierre-Gilles de Gennes spoke of it [1], is
used to frame systems whose individual constituents scale from∼ 1nm to∼ 1µm
and manifest a change in their behaviour when forces in the magnitude of ther-
mal fluctuations are applied. This scale ranges from small organic molecules to
viruses, bacteria and cells. Therefore, involving many interesting phenomenons
of chemistry and biology, which surround us in our daily lives. Most of the time,
this involves that complex interactions help to scaffold bigger structures, a pro-
cess usually referred to as self-assembly. Even without fully understanding the
processes behind it initially, humans have exploited these properties throughout
history, from clay constructions or simple culinary preparations, such as whipped
cream, or mayonnaise, to present optoelectronic devices. This thesis is written
with the very ambitious purpose of increasing fundamental knowledge of some
topics of key relevance in the understanding of processes ruling many systems in
soft matter, as well as provide the tools to link microscopic features to the final
self-assembled structures. Thus helping to improve or discover new applications
of these materials.

Substances whose constituents are in the mentioned size range experience
very interesting phase transitions and coexistences. When the attributes of these
materials are in the midway of crystalline solids and liquids, those are coherently
named liquid crystals (LCs). Forming in many cases what is called mesophases,
because they arrange spontaneously with a partial degree of orientational or po-
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sitional ordering of their constituents, generally called mesogens.

Present technology has taken a bottom-up approach to fine-tune their specific
macroscopic properties [2], making them decisive in the fabrication of many de-
vices. LCs are well known to be used in displays, but with the plethora of possible
compositions yet to be explored, the number of applications keeps increasing ev-
ery day. Many of them are still optical, like photonic crystals [3, 4], but they
can also have interesting charge transport properties [5] making them suitable for
solar cells, organic light-emitting diodes, field-effect transistors, thermometers,
lasers, and nanowires [6–10].

Most of these applications make use of molecular LCs, namely LCs whose
mesogens are molecules. But to study LCs scientists usually resort to bigger par-
ticles named colloids (from the Greek word κ óλλα , which means glue), since
Graham coined the term in 1861 [11], when he observed how some gluey sub-
stances could not diffuse through a membrane. Colloidal LCs, consist of colloidal
particles in suspension and are of key relevance to understanding a number of pro-
cesses at the molecular scales that are usually too fast to be studied by conven-
tional microscopy. In other words, colloidal LCs are excellent model systems to
unveil the behaviour of molecular LCs. However, we should always bear in mind
that time scales will change accordingly when we compare the evolution of any
magnitude e.g. relaxation times [12], having a significant impact on experiment
design.

The dynamics of colloidal systems were first reported by Robert Brown In
1827, the Scottish botanist, on his study about pollen grains suspended in water
and moving as persistently perturbed by random forces of uncertain nature [13].
Almost eighty years later, Einstein realized that this intriguing movement was
due to the thermal energy that colloidal particles dissipate as a result of their
collisions with the surrounding solvent molecules [14]. Einstein’s theoretical in-
tuitions, together with the work by Smoluchowski [15] and Langevin [16], were
corroborated experimentally by Perrin in 1909 [17]. At that time the only possi-
bility to test a model was to perform an experiment, but thanks to the development
of computer technology, simulations have gained momentum. Now they play a
decisive role in scientific research because they provide information often un-
reachable for technical reasons and allows us to avoid dangerous experiments or
reduce costs. In particular, all the studies of this thesis were performed with tech-
niques of molecular simulation, which we discuss further below, using the rest of
this introductory chapter to provide brief descriptions of the tools and methods
used through out this thesis.
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1.1 Thermodynamics and Statistical Mechanics

Thermodynamics was born as an experimental discipline and retain most if this
character to date. If we take a thermodynamic approach to describe a system we
will be omitting any a microscopic description of it to understand its macroscopic
behaviour. Meanwhile, statistical mechanics will help us to fill this gap, linking
microscopic features of the system to macroscopic variables easily measurable in
a laboratory.

A thermodynamic state is controlled by a few variables. In the absence of an
external field, for a multicomponent system the first principle of thermodynamics
can be expressed like:

dU = T dS− pdV +∑
i

µidNi (1.1)

This equation shows the change in energy dU is controlled by a change in
entropy dS, a change in volume dV and another one in the number of particles of
each species dNi (all the extensive variables). Just holding their associated inten-
sive variables (temperature T , pressure p and chemical potential of each species
µi). Starting from here, the conditions of maximum entropy or minimum energy
can be derived as the equilibrium conditions of the system [18]. Likewise, ap-
plying the Legendre transformation we can derive the rest of the thermodynamic
potentials, allowing us to present the same thermodynamic state through the most
suitable variables to our purposes, yielding:

Enthalpy

H =U + pV (1.2)

Helmholtz free-energy

F =U−T S (1.3)

and Gibbs free energy

G =U + pV −T S (1.4)

Any of the potentials can be used as a fundamental equation of the system to
determine its stability conditions as a function of the system variables. Starting
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from Helmholtz free-energy we can derive the entropy, pressure and chemical
potentials of the system like:

S =−
(

∂F
∂T

)
V,Ni

(1.5)

p =−
(

∂F
∂V

)
T,Ni

(1.6)

µi =

(
∂F
∂Ni

)
T,V,N j 6=i

(1.7)

Controlling these variables is equivalent to control the fundamental equation
of the system, nevertheless from now on, we will refer to equation 1.6, as equation
of state, as it relates pressure (an intensive variable) with the rest of independent
variables of the system.

1.1.1 Thermodynamic stability and phase transitions
Any part of a system which shows homogeneity in all its points with an average
composition and the same intensive variables can be considered as a phase [19].
For this phase to be in thermodynamic equilibrium, it needs to be maximizing the
entropy or minimizing any of the thermodynamic potentials. Therefore, given the
fundamental equation as S = S(U,V,Ni) this would be expressed like:

dS = 0 (1.8)

d2S≤ 0 (1.9)

And given any thermodynamic potential as a function of its independent vari-
ables, B = B(xi), the stability condition would read:

dB = 0 (1.10)
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d2B≥ 0 (1.11)

This conditions of equilibrium can hold for several phases in the same sys-
tem at the same time. But this phases must be at the same temperature to avoid
heat transfer and at the same pressure to avoid mechanic works. In the case of
multicomponent systems the chemical potential should also be the same to avoid
diffusions, arriving to the conditions in the case of C components and f phases:

pα = pβ = pγ = · · ·= p f

T α = T β = T γ = · · ·= T f

µ
α
1 = µ

β

1 = µ
γ

1 = · · ·= µ
f

1

µ
α
2 = µ

β

2 = µ
γ

2 = · · ·= µ
f

2 (1.12)
·
·
·

µ
α
C = µ

β

C = µ
γ

C = · · ·= µ
f

C

Providing C(f-1) equations and 2+f(C-1) unknown variables, therefore the
number of possible solutions reads:

L = 2+ f (C−1)−C( f −1) = 2+C− f (1.13)

Equation known as Gibbs Phases Rule, which gives us the number of phases
that can coexist. For a monocomponent system the equilibrium of two phases
arise in a line (L = 2+1−2 = 1), known as binodal, and the equilibrium of three
phases in a point (L = 0) known as triple point [19, 20]. Not being possible the
coexistence of more than three phases.

1.1.2 Statistical mechanics
This discipline is capable to relate the microscopic degrees of freedom of a system
with its thermodynamic properties. A macroscopic system holding an Avogadro’s
number (NA) of particles with r degrees of freedom each, leave us with a number



10 Chapter 1

of equations in the order of NA, precisely describing the system, but in the end
unsolvable in practice.

The physical state of a system with r ·NA degrees of freedom in the context
of classical physics in a given instant will be characterized by its generalize co-
ordinates qi and their correspondent generalized momenta pi. The mathematical
space constituted by {qi, pi} is called phase space. Thermodynamic variables like
temperature or entropy do not depend on coordinates in this space explicitly, but
thanks to the work of Maxwell, Gibbs and Boltzmann we are able to relate both
of them.

The state of a system can be represented as a point in the phase space and as
we will see, averaging over a number of them we will find the thermodynamic
magnitudes we are looking for. The set of points in the phase space corresponding
to a macroscopic state are named Ensemble. If our system has a fixed volume,
temperature and number of particles it is called Canonic Ensemble. In it we can
define the classical partition function as [21–23]:

QN(V,T ) =
1

N!
Λ
−3NZN,rotZN(V,T ) (1.14)

where Λ = h(2πmκBT )−1/2 is the thermal De Broglie wave length,
ZN,rot the orientational partition function [23,24] and ZN(V,T ) the configura-

tion integral:

ZN(V,T ) =
∫

exp [−βVN(1, . . . ,N)]d1 . . .dN (1.15)

where VN(1, . . . ,N) is the potential energy of the system depending on the
position and orientation of every particle di = dridΩi with ri the position vector
of the ith particle and Ωi the set of angles defining their orientation.

From the partition function we can calculate the Helmholtz free energy like:

F =−κBT ln(
Λ−3N

N!
ZN,rotV N)−κBT ln

ZN(V,T )
V N (1.16)

Now this equation together with Eqs. 1.5 to 1.7 allows us to finally calculate
the pressure, entropy and chemical potentials.

To exploit this powerful machinery we rely on the ergodicity principle, telling
us that for a system to be ergodic it is necessary that its evolution in time allows it
to access any point of the phase space compatible with the macroscopic system in
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a finite time [25]. This could only be proven for hard spheres [22]. Nevertheless,
in simulation this hypothesis is assumed unless proven the contrary.

In an ergodic system the time average over any thermodynamic magnitude
is equivalent to the average over the ensemble compatible with the macroscopic
state. During this time the system will describe a trajectory over the phase space
responsible for the value of this magnitude f = f (qi, pi) then the macroscopic
observable measured will be [26]:

fobs = lim
tobs→∞

〈 f (qi, pi)〉t = lim
tobs→∞

1
tobs

∫ tobs

0
f (qi, pi)dt (1.17)

In an ergodic system, this limit would be the same as the average over the set
of microscopic configurations

lim
t→∞
〈 f 〉t = lim

m→∞
〈 f 〉m (1.18)

Where m is the number of points in the phase space compatible with the
macroscopic system. This equation provides two paths for computer simulations
to arrive to thermodynamic variables. On one hand simulate the time evolution
of the system as the techniques of Molecular Dynamics (MD) do, and on the
other hand, to reproduce compatible points of the phase space as the techniques
of Monte Carlo (MC) type do.

1.2 Simulation methods
Between the variety of simulation techniques available from the two main dif-
ferent approaches. Molecular Dynamics (MD) and its variants where particles
trajectories are determined by numerically solving Newton’s equations of motion
or Monte Carlo (MC) variants where the system explores the phase space ran-
domly. The most suitable for our purposes among them were chosen and adjusted
to meet the needs of each study. When it was needed to compute dynamic magni-
tudes over time, it was used a special type of MD known as Brownian Dynamics,
where the degrees of freedom of the solvent are not explicitly considered to re-
produce the moves of colloids in suspension. In cases where the interest relied
on equilibrium states, to achieve them Monte Carlo techniques were employed
for faster exploring the phase space, in each case under the necessary ensemble
for the variables involved. These techniques and some other computations are
described below.
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1.2.1 Spherocylinders as a model

To reduce computation time in molecular simulation a possible choice is to sim-
plify the model employed. This is to fixate some degrees of freedom of our
system, in a way that impacts as minimum as possible the observables we are
trying to compute. When we assume a level of simplification that allows us to
group several atoms into an indivisible particle of our model we refer to this as a
coarse grain model. Currently, many simulations use a conglomerate of beads to
model different shapes of particles with interactions, in this thesis a coarse grain
model [27] is used to simulate flat and elongated shapes with only one body per
particle. The advantage of it is that instead of computing the interaction with ev-
ery bead pertaining to every particle interaction, there is just needed to compute
the minimum distance between particles. The improvement of the calculations is
increased as the aspect ratio becomes more extreme.

If we decide to model a system of particles without homogeneous shape,
hence not using spheres, the next most simple models have D∞,h symmetry, there-
fore are uniaxial objects. To obtain a spherocylinder rotating a two dimensional
shape we need to use the geometric place at a distance σ/2 from a segment of
length L (See figure 1.1). Using the direction of the segment as a revolution
axis we would obtain a prolate spherocylinder. However, using a revolution axis

=D

Figure 1.1: a) Schematic representation of an oblate (left) and prolate (right)
solid of revolution. b) Examples of spherocylinders with anisotropies (from left
to right) equal to 0.1, 0.5, 1, 5, and 10.
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an imaginary coplanar line perpendicular to the segment placed in its centre we
would obtain an oblate one. This shape is visually similar to the space occupied
by electronic clouds or at least fits it better (especially on the edges) than the
commonly employed ellipsoids that appear in the Gay-Berne potential [28].

We decided to employ spherocylinders throughout the whole thesis for the
reasons exposed above, with different prolate (ap > 1) and oblate anisotropies
(ao < 1) as depicted in figure 1.1, where for the same aspect ratio ap = a−1

o , when
defined as follows:

ap = (L+σ)/σ ; ao = σ/(L+σ) (1.19)

Efficient algorithms are able to provide the minimum distance between two
segments [29] or two disks [30], for the cases of prolate and oblate spherocylin-
ders respectively, necessary to compute the potential energy for the different inter-
action models. These shapes allow expressing the packing fraction as η = ρ∗Vsc
where, Vsc is the volume of the spherocylinder, and ρ∗ = N/(L+σ)3, being N
the number of particles.

1.2.2 Monte Carlo methods
The Monte Carlo methods make use of a random number generator to produce
system configurations compatible with its evolution following a Markov chain.
Trough this method our system will not follow a real route in the phase space,
exploring it more efficiently, to later average the properties of interest from the
explored configurations. This implies, in fact, an easier implementation than
molecular dynamics, also allowing the use of hard potentials inaccessible to MD.
But it is neither suitable to study systems out of equilibrium (it would not satisfy
equation 1.18), nor to calculate transport properties or other dynamical properties.
Unless very novel techniques are applied in its implementation [31–33].

In essence, the MC method is based on the calculation of averages of ther-
modynamical properties over a set of points of the phase space, in the canonical
ensemble, this can be written as:

〈 f 〉m =

∫
f (1, . . . ,N)exp [−βVN(1, . . . ,N)]d1 . . .dN∫

exp [−βVN(1, . . . ,N)]d1 . . .dN
(1.20)

Where the denominator is the configurational partition function ZN (eq 1.15).
We could randomly generate a big number of configurations, however finite, and
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substitute the integrals by sums [34]:

〈 f 〉m '
∑m f (m)exp [−βVN(m)]

∑m exp [−βVN(m)]
(1.21)

Where m goes from 1 to the total number of configurations Nc. This calcu-
lation would generate a very small Boltzmann factor, meaning that even when
possible, these configurations would be rather improbable and with little influ-
ence in the averages.

To perform this calculation efficiently the Monte Carlo method usually recurs
to the Markov chain proposed by Metropolis et al. [35]. Assuming the probability
to find the system in a point of the phase space with coordinates (1,2, · · · ,N), in
the canonical ensemble is given by the Boltzmann factor and the configurational
partition function as:

P(1,2, · · · ,N) =
exp[−βVN(1,2, · · · ,N)]

ZN
(1.22)

If we generate random points of the phase space following this probability
distribution function, the average of points generated in a differential volume
centred in (1,2, · · · ,N), this is ni =P(1,2, · · · ,N) ·Nc where Nc is the total number
of generated points [36]. Now equation 1.21 derives into:

〈 f 〉m '
1

Nc

Nc

∑
m=1

f (m)P(m) (1.23)

This method employs a Markov chain to be able to follow the probability
distribution. Starting from an initial configuration, we build some other close to
it in the phase space evaluating the probability to transition from one to the other,
defined in such a way that this probability distribution converges to the canonical
probability distribution (equation 1.22). To achieve this, it is necessary to fulfil
the microscopic reversibility condition, which can be expressed mathematically
like [36]:

P(i)Πi→ j = P( j)Π j→i (1.24)
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Where Πi→ j is the probability to transition from i to j and P(i) is the proba-
bility to find the system in point i. This equation can be satisfied in many forms
of the probability matrix Πi→ j. The choice of Metropolis was:

Πi→ j =
P( j)
P(i) = exp [−β (VN( j)−VN(i))] i f P( j)≤ P(i)

Πi→ j = 1 i f P( j)≥ P(i)

To make the system follow this Markov chain we pick a random particle from
an initial configuration (i) and displace it moving the system into configuration
( j). Then we evaluate Πi→ j = exp(−β∆VN) which is compared with a random
number in the interval [0,1]. When this number is less than Πi→ j the configura-
tion change is accepted and rejected in other cases. This process is then repeated
from wherever configuration the system is now on. In this way, the system ex-
plores regions of the phase space which are compatible with the macroscopic
state.

The implementation of this method extended from the NVT ensemble to the
Isotension-Isothermal ensemble is presented in section 1.2.3.

1.2.3 Isotension-Isothermal ensemble
To be able to equilibrate states of solid phases it is mandatory that our simulation
box adapts to the system to be sure that our equilibrium structure is not produced
by applied stress. Or we might want to investigate the effect of some specific
stress on the structure. The first to put this into practice were Parrinello and Rah-
man [37, 38], and apparently, after their work, several authors independently de-
veloped similar Monte Carlo techniques to implement the Isotension-Isothermal
ensemble. With the first publication usually atributed to Najafabadi [39]. In the
latter approach, it is only needed a transformation of the space of coordinates that
allows changing the shape of the simulation box, using an adequate acceptance
rule for the volume moves [36]. The transformation can be operated as follows:

ri = Hsi (1.25)

where H is a 3×3 matrix whose columns are the three vectors that define the
edges of the simulation box, ri are the coordinates in the real space and si are the
coordinates in a cube of 1× 1× 1. Therefore, the real volume of the system is
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the determinant of this matrix (V = detH) and can be readily introduced in the
acceptance rule, this observable has to be detH > 0, otherwise we might fall into
the absurd of a negative volume or into irreversible transformations (detH = 0).
During each volume move, a random element of the matrix H is modified to
efficiently explore the phase space of the system. To compute the acceptance
probability we use the function W defined as follows [40]:

W = ∆U +P∆V −NκBT ∆(logV ) (1.26)

where U is the energy from the sum of the pair potentials, V the volume, N
the number of particles, κB the Boltzmann constant and T the temperature. Then
the volume move is accepted with probability P:

P = 1 i f W ≤ 0

P = exp(−W/κBT ) i f W > 0

and rejected with probability (1−P). In order to implement these transfor-
mations into a simulation code, we need to understand how every part of the code
is related to the relative positions of the particles to avoid artefacts in our results
especially when working with anisotropic particles. Any algorithm relying on the
adjacency of particles, like the ones dealing with periodic boundary conditions or
cell lists should use si to address particles meanwhile any other relying on real
distances, like the computation of the minimum distance between particles should
use ri. In this implementation, the orientations of anisotropic particles are not af-
fected by the deformation of the simulation box and will behave well controlled
by the acceptance rule as usual.

The classical Isobaric-Isothermal ensemble (NPT) implementation does not
care about the shape of the simulation box and can be understood as a simplifi-
cation of the isotension-isothermal ensemble, where only the diagonal elements
of H matrix are varied. In it, if we start the simulations in an orthogonal box we
will keep its shape, and the elements H11, H22 and H33 will be representing the
sides of the box. Therefore, this shape transformation won’t be needed any more
and it would be enough to rescale the coordinates (for more details on this see
reference [36]).

1.2.4 Brownian Dynamics of anisotropic particles
Brownian Dynamics (BD) simulation technique is employed to mimic the be-
haviour of suspensions of colloidal particles, whose size is significantly larger
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than that of the solvent molecules. Hence, the presence of the solvent is effec-
tively incorporated by imposing a random drifting of the particles, whose trajec-
tories are obtained by integrating the Langevin equation [26], instead of numer-
ically solving Newton’s equations of motion as it is usually done in Molecular
Dynamic techniques. In BD simulations of non-spherical particles, the position,
r j, and orientation, û j, of a particle j over time t are calculated by the following
set of equations [41]:

r‖j(t +∆t) = r‖j(t)+
Ds,‖
κBT

F‖j(t)∆t+

+(2Ds,‖∆t)1/2R‖û(t)
(1.27)

r⊥j (t +∆t) = r⊥j (t)+
Ds,⊥
κBT

F⊥j (t)∆t+

+(2Ds,⊥∆t)1/2(R⊥1 v̂ j,1(t)+R⊥2 v̂ j,2(t))
(1.28)

û j(t +∆t) = û j(t)+
Ds,ϑ

κBT
T(t)× û(t)∆t+

+(2Ds,ϑ ∆t)1/2(Rϑ
1 v̂ j,1(t)+Rϑ

2 v̂ j,2(t))
(1.29)

where r‖j and r⊥j are the projections of the position vector r j on the direction
parallel and perpendicular to û j, respectively; T j is the total torque acting over
particle j [42]; F‖j and F⊥j are the components of the force parallel and perpen-
dicular, respectively, to û j; R‖, R⊥1 , R⊥2 , Rϑ

1 and Rϑ
2 are independent Gaussian

random numbers of variance 1 and zero mean; v̂ j,1 and v̂ j,2 are two random per-
pendicular unit vectors, being also perpendicular to vector û j. The short time
diffusion coefficients in the direction parallel and perpendicular to the molecular
axis, and rotational difusion coefficient, Ds,‖, Ds,⊥ and Ds,ϑ , have been calculated
for both prolate and oblate particles with the analytical expressions proposed by
Shimizu for spheroids [43]:

Ds,⊥ = D0
(2a2−3b2)S+2a

16π(a2−b2)
b,

Ds,‖ = D0
(2a2−b2)S−2a

8π(a2−b2)
b,

Ds,ϑ = 3D0
(2a2−b2)S−2a

16π(a4−b4)
b,

(1.30)
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In the above equations, D0 = κBT/µsσ , where kB is the Boltzmann constant,
T the absolute temperature, and µs the viscosity of the medium. S is a geometric
parameter that for prolate particles reads [43]

with S =
2

(a2−b2)1/2 log
a+(a2−b2)1/2

b
,

(a = (L+σ)/2, b = σ/2)
(1.31)

and for oblate particles reads

with S =
2

(b2−a2)1/2 arctan
(b2−a2)1/2

a
,

(a = σ/2, b = L/2)
(1.32)

1.2.5 Cluster move

Simulations in the NPT ensemble can suffer from long equilibration times during
compressions due to particle overlaps [44]. To overcome this and inspired by the
work of Ashton and collaborators [45], their cluster move algorithm (see pseudo-
code in alg. 1) has been implemented to explore low density regions of the phase
diagrams presented in this thesis.

There are systems where aggregates can not compress internally, therefore
during a volume move the simulation box can not shrink unless every cluster
moves as a whole. But instead of rescaling coordinates, in this move a point
reflection about a random pivot point is performed, to better sample the phase
space. In order to easily obey detailed balance, any move producing a change
in energy is considered an overlap obtaining a rejection free move. Even so,
every system investigated at densities below 1 particle per unit volume (given a
length unit equal to the biggest dimension of the particles involved) experienced
a faster equilibration. At higher densities, this algorithm becomes useless when
overlaps drive it to mirror the configuration of every particle of the system, what
is pointless under periodic boundary conditions.
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Algorithm 1: Pivot point cluster move
1: Select random particle pi and pivot point
2: Label pi and its cluster as ”To move”
3: while ”To move” stack is not empty do
4: Remove first particle pi from the ”To move” stack
5: Label it as ”Moved” and point reflect it
6: if pi overlaps with UNLABELED particles then
7: Label those overlapped particles and their clusters as ”To move”
8: end if
9: end while

1.3 Distribution Functions and order parameters

The relative position and orientation of the constituents of a substance are key
parameters to characterize its state. In this thesis, all studies are performed over
monocomponent systems, this denies us the possibility to define these magni-
tudes from the relative positions and orientations of the particles of different
components, what would be very useful given the case. Although thermodynamic
variables such as density, entropy or enthalpy undergo abrupt changes in phase
transitions, the internal order is characteristic of each mesophase. Therefore, the
ability to quantify it makes of order parameters and distribution functions indis-
pensable tools in this field.

Since we are dealing with anisotropic particles and forcefields, it will be use-
ful to track structural properties. We start by defining the Nematic Order Param-
eter S2 as:

S2 = 〈
1
N

N

∑
1

P2(ûi · n̂)〉 (1.33)

Where P2 is the second order Legendre polynomial, N the number of parti-
cles, 〈· · · 〉 denotes the statistical average over configurations and ûi and n̂ are
the unitary vectors of the orientations of the particles and the nematic director
respectively. The nematic director is usually dominated by an external field but
can also arise from an orientational symmetry break during a phase transition. In
those cases the vector is unknown beforehand and it is usually calculated from
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the Order Parameter Tensor Q :

Qαβ =
1

2N
〈

N

∑
1
(3ûiα · ûiβ − δαβ )〉 (1.34)

Where δαβ is the Kronecker delta and α and β indicate the vector compo-
nents. This tensor can be diagonalized being S2 its biggest eigenvalue and n̂ the
correspondent eigenvector. S2 Can vary from values close to 0 in an isotropic
situation to values close to 1 when all particles are almost parallelly oriented.

However, to investigate structural properties, the distribution functions are a
more powerful tool, since with it we also obtain detailed information about the
orientational order or any other parameter which can be computed as a function
of the distance between particles. We will use a set of them starting from the ra-
dial distribution function g(r), which can give us the average amount of particles
between r and r+ dr as, 4πr2ρg(r)dr. To define other distributions of interest
we have to particularize it depending on the region of the space where we are in-
terested to know the probability of finding a particle. A common feature of these
functions is its asymptotic tendency to one at long distances (in the thermody-
namic limit). To our purpose we can summarize the distributions of interest with
the formula:

gζ (rζ ) =
NH(ζ )

ρNNcV (ζ )
(1.35)

This function when multiplied by the density, remains to be the average over
particles and configurations found in the volume V (ζ ) surrounding position rζ ,
from a particle located at the coordinates’ origin. Where NH is the total number
of particles inside the volume V (ζ ), N the total number of particles and Nc the
number of sampled configurations and ρ the density of the system. In table 1.1 are
indicated the definitions of V (ζ ) and rζ correspondent to each particular example
of distribution function used in this thesis, being each row a specific choice on
how to implement equation 1.35, among many possibilities.

Each one of these functions can be used to measure a different level of partial
order or the system structure. The radial distribution functions can easily tell us
if we are leaving the isotropic phase starting to display any sort of peaks when we
find them at small values of r/σ it is a sign some level of order in the first neigh-
bours. In the cases where we are studying a system with layers the maximums of
the parallel distribution function g‖(r‖) mark their location. If we are interested in
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rζ V (ζ )

g(r) r = |r| 4π

3

(
(r+∆r/2)3− (r−∆r/2)

)
g‖(r‖) r‖ = r ·n π

(
R2∆r‖−1/3((r‖+∆r‖/2)3− (r‖−∆r‖/2)3)

)
g⊥(r⊥) r⊥ = |r− (r ·n)n| 4π/3

(
(R2− (r⊥+∆r⊥)2)

3
2 − (R2− r2

⊥)
3
2

)
g0
⊥(r

0
⊥) r⊥ = |r− (r ·n)n| π((r⊥+∆r⊥)2− r3

⊥)L
being |r ·n|< L

Table 1.1: Terms employed to calculate each distribution function. Where R is
half the length of the simulation box and L is the thickness of the layer. ∆rζ is
the width of the volume element Vζ surrounding position rζ .

the average order of the layers we can use the perpendicular distribution function
g⊥(r⊥), but if we want to focus on the inner order of the layer where the origin
of coordinates is located, we should use the ground perpendicular distribution
function g0

⊥(r
0
⊥)

For our purpose is useful to define one more distribution function g2(r), which
averages the value of the second Legendre polynomial obtained for particles at
each distance, formulated as follows:

g2(r) = 〈P2(ui ·u j)〉 (1.36)

This coincides with the spherical harmonic Y20, frequently employed for the
study of polyatomic fluids.

1.4 Dynamic observables

1.4.1 Mean Squared Displacement
The Mean Squared Displacement (MSD) computes, as its name indicates the
displacement of particles from an initial position over time. Therefore, quantifies
particle diffusions at different times and is calculated as follows:

〈
∆r2(t)

〉
=

〈
1
N

N

∑
j=1

(r j(t)− r j(0))2

〉
, (1.37)
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where the brackets 〈...〉 denote ensemble average. We have also computed the
MSD parallel, 〈∆r2

‖(t)〉, and perpendicular, 〈∆r2
⊥(t)〉, to the nematic director n̂.

This vector has been calculated diagonalizing a symmetric traceless tensor incor-
porating the orientation vectors of all the particles [46]. The MSDs at long time
scales are used to estimate the long time diffusion coefficients as follows for the
perpendicular, parallel and total respectively:

Dl,⊥ = lim
t→∞

〈∆r2
⊥(t)〉
4t

,

Dl,‖ = lim
t→∞

〈∆r2
‖(t)〉
2t

,

Dl = lim
t→∞

〈∆r2(t)〉
6t

,

(1.38)

We stress that these diffusion coefficients are different from those calculated in
Eq. 1.30, which only take into account the effect of the solvent, but disregard the
interaction with other colloidal particles.

We have also estimated the rotational diffusivity in the isotropic and nematic
phases. To this end, we have calculated the orientational time-correlation func-
tions [34]

C1(t) =< P1[ui(t) ·ui(0)]> (1.39)

The typical decay time, τ1, of this function could be estimated as

τ1 =
∫

∞

0
C1(t)dt (1.40)

From this decay time, it is possible to define a rotational diffusion coefficient as
Drot = 1/2τ1 [34].

1.4.2 Self-intermediate scattering function
The Self-intermediate scattering function (s-ISF) gives a measure of the structural
relaxation decay of density fluctuations and reads:

Fs(q, t) =
1
N

〈
N

∑
j=1

exp[iq · (r j(t + t0)− r j(t0))]

〉
, (1.41)
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where q is the wave vector calculated at relevant peaks of the static structure
factor and r j(t) is the particle position at time t.

1.4.3 Four-point susceptibility function
This function determines the eventual occurrence of collective motion by map-
ping the dynamics in two different spatial domains at two different times, hence
its four-point nature. To explore the occurrence of collective motion, we can
compute the four-point susceptibility function, χ4(q, t), which in fact measures
the fluctuations of the s-ISF and provides information on the size and time evolu-
tion of the transient clusters formed in the fluid [47–49]. It is calculated as:

χ4(q, t) = N
[〈

f 2
s (q, t)

〉
−F2

s (q, t)
]

(1.42)

where fs(q, t) = 1/N ∑
N
j=1 cos(q[(r j(t+t0)−r j(t0))] is the real part of the instan-

taneous value of the s-ISF.
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2
Dynamics of particles with opposite geometries

The thermodynamics of anisotropic particles have been extensively studied in the
past. Phase diagrams and equilibrium structures obtained in systems of prolate
[50,51] and oblate [52,53] purely repulsive particles have been well characterized
and also a number of potentials, such as the Gay-Berne [28], Kihara [54] or the
more recent Gay-Berne-Kihara potential [27, 55] have been investigated. In this
chapter, a specific framework is set to compare, in a meaningful way, oblate and
prolate geometries in the context of ordered fluids.

As described in section 1, this thesis is focused on systems with a significant
degree of orientational and/or positional order, like liquid crystals (LCs). In this
kind of systems, structural properties are the key to the plethora of applications
and molecular simulation has been crucial to understand and characterize liquid
crystalline materials [56, 57], but not so many studies have been dedicated to the
study of their dynamical properties, especially for oblate particles.

Dynamical properties are equally important and contribute to determining the
performance of a material. Laschat et al. showed that discotic mesogens are not
useful as switching units in LC displays due to the fact that their LCs typically
have larger viscosity than that measured in LCs of rod-like mesogens [58]. This
gives us a hint on the impact of particle anisotropy on the transport properties and
on the consequent design of devices for the above-mentioned applications.

If we keep up the comparison of particles with opposite geometries we could
vary the aspect ratios of each to obtain the same values in terms of anisotropy,
volume, or diffusion coefficients. The scope of the work in this chapter is to com-
pare the relative ability of prolate and oblate particles of diffusing in their nematic
phases, where particles are free to flow as in a liquid with their centre of mass po-
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sitions randomly distributed, but maintaining long-range directional order. To
this end, we impose the same values of the infinite-dilution translational or ro-
tational diffusion coefficients for both prolate and oblate particles (See equation
1.30 ). This choice represents an important change with respect to past studies
that assumed the same particle volume or aspect ratio [59, 60].

Very early theoretical studies predicted an anisotropy in the diffusion of the
particles in nematic fluids [59, 60], later corroborated by simulations [61, 62].
Specifically, it was concluded that in the nematic phase of prolate particles the
diffusion is faster in the direction parallel to the nematic director. In particular,
the long-time diffusion coefficient parallel to the nematic director, D‖, is larger
than the diffusion coefficient perpendicular to the nematic director, D⊥. The
opposite tendency is observed in nematic phases of oblate particles. Nevertheless,
in positionally order smectic and columnar LCs, the layer-to-layer and column-
to-column diffusion results to be significantly reduced and becomes slower than
the in-layer or in-column diffusion [63–68].

For this system, we expect that the particle mean-square displacement (MSD)
to be a linear function of the time t, whereas the particle displacements are Gaus-
sian distributed. The linear behaviour of the MSD with time is generally referred
to as Fickian diffusion, after Adolf Fick, who derived the laws of diffusion in
1855 [69]. To perform this study we used Brownian Dynamics (BD) simulations
(See section 1.2.4), with them we study the dynamics of nematic colloidal LCs
of disk-like and rod-like particles and show that a typical Fickean diffusion is
observed at short and long time scales, meanwhile at intermediate time scales,
when particles start to collide with each other, this appears to be yet Fickean but
not Gaussian (FNG). This feature is very attractive to investigate in nematic LCs
where at different time scales, this can be addressed over two independent direc-
tions at distinctive particles anisotropies, what will occupy the first part of this
study. In Nematic systems, it is observed that they can induce non-Fickian sub-
diffusion or superdiffusion of host particles, generally referred to as anomalous
diffusion [70]. In addition, the relatively moderate packing fractions of nemat-
ics, as compared to smectic or columnar LC phases, allow to more easily achieve
the asymptotic limit of long time scales and distinguish it from the non-Gaussian
signature of the caging effect at shorter times. Previous works observed non-
Gaussian dynamics in smectic [64, 66, 68] and columnar [67, 71] LCs, where the
diffusion perpendicular, respectively, to the layers and columns, is especially slow
and determining the onset of the long time diffusive regime not always straight-
forward.

The non-Gaussian diffusion observed in heterogeneous systems has been in-
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vestigated by stochastic models assuming random diffusivities, such as the gen-
eralised grey Brownian motion [72,73] and the diffusing diffusivities model [73–
75]. The observation of FNG diffusion in very dilute colloidal suspensions of
hard-sphere PMMA particles, which would be expected to follow a canonical
Brownian dynamics, has been interpreted as a convincing argument supporting
its ubiquitous nature [76]. However, the FNG signature in especially complex
systems, such as colloidal liquid crystals (LCs), where an anisotropic diffusion is
observed, is still to be explored.

To close this study, three case scenarios are defined, to complete the compar-
ison of this opposite geometries observing the differences and similarities of the
difusion in equivalent fluids of prolate and oblate spherocylinders. The cases of
particles with (i) equal aspect ratio, (ii) equal infinite-dilution translational diffu-
sion coefficients, and (iii) equal infinite-dilution rotational diffusion coefficients.
This infinite-dilution diffusion coefficients, defined in section 1.4.1, are the same
as those calculated in concentrated suspensions at very short time scales, when
the particles are still rattling around their original position and have not yet inter-
acted with their nearest neighbors.

2.1 Model and methodology

For this study as well as for the whole thesis we have used spherocylindrical par-
ticles as described in section 1.2.1 with the desired anisotropies. Since we are
comparing the relative ability of oblate and prolate spherocylinders to diffuse in
a nematic LC phase, one obvious choice would be to impose the same particle
aspect ratio for the two geometries. Nevertheless, this choice, which allows one
to consistently assess the phase behaviour of particles of different anisotropies,
would not reproduce the same conditions of mobility at very short timescales or
in extremely dilute suspensions. However, since the aim of the second part of
this chapter is to have an insight into the effect of anisotropy on the long-time
diffusion in structured fluids, we also equate the isotropic infinite-dilution trans-
lational, Ds = (2Ds

⊥+Ds
‖)/3, or rotational, Ds

ϑ
, diffusion coefficients of oblate

and prolate particles. To make this comparison we have chosen the anisotropies
ap = 27 and ao = 0.1 for the case of translational equivalence, and ap = 15.6
and ao = 0.1 for the case of rotational equivalence. To fully clarify the effect
of this choice, we have benchmarked our result with the case of identical shape
anisotropy, where ap = 1/ao = 15.6 employed in the first part of the study.

To describe the inter-particle interactions, we have used the Soft Repulsive
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Spherocylinder (SRS) potential, which is obtained by truncating and shifting the
Kihara potential [54] and was used in the past to model prolate [77–79], and
oblate mesogens [55]. The SRS potential reads

USRS =

 4ε

[(
σ

dm

)12
−
(

σ

dm

)6
+ 1

4

]
σ

dm
≤ 6
√

2

0 σ

dm
> 6
√

2
(2.1)

In the above equation, ε is the unit of energy, while dm is the minimum dis-
tance between the central cores of the particles, being a segment of length L for
prolate particles, and a disk of diameter L for oblate particles. Efficient algo-
rithms to calculate the minimum distance have been published for both particle
geometries [30, 42]. As mentioned before, σ represents the diameter of prolate
particles as well as the thickness of oblate particles.

To simulate the Brownian motion of the particles, we have carried out Brown-
ian Dynamics (BD) simulations as described in section 1.2.4. Using cubic boxes,
for each of the mentioned scenarios (i,ii and iii), we have started from an ini-
tial configuration of N perfectly parallel particles randomly distributed in a cubic
box, with N = 1260−2232 at the desired packing fraction η = ρvm, being ρ the
numeric density of particles and vm the volume of the particles [80]. To equili-
brate the system, we have run BD simulations of about t = 2000τ for prolate and
t = 20000τ for oblate particles, where τ = σ3µs/kBT is the time unit and σ is
our system’s length unit is. The time step was fixed to ∆t = 10−3τ for prolate
and 10−5τ for oblate particles, while the temperature is T ∗ = kBT/ε = 1.465 for
both geometries. At this temperature, the phase behaviour of soft spherocylinders
resembles that of a fluid of hard spherocylinders [77,78]. The equilibration of the
system has been monitored by checking the evolution of total energy and nematic
order parameters. After equilibration, an additional BD simulation was carried
out to compute a number of dynamical observables described in chapter 1: (i) the
mean square displacement (MSD), (ii) the self part of the intermediate scattering
function (s-ISF), and (iii) the four point susceptibility χ4(q, t).

Besides the already mentioned, the most relevant observables in this work are
the parallel, perpendicular and total self-van Hove functions, which are calcu-
lated, respectively, as

Gs,1(r‖, t) =
1
N

〈
N

∑
j=1

δ (r‖−|r‖, j(t)− r‖, j(0)|

〉
(2.2)
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Gs,2(r⊥, t) =
1
N

〈
N

∑
j=1

δ (r⊥−|r⊥, j(t)− r⊥, j(0)|

〉
(2.3)

Gs,3(r, t) =
1
N

〈
N

∑
j=1

δ (r−|r j(t)− r j(0)|

〉
(2.4)

where the symbol δ is the Dirac delta, r|| and r⊥ are, respectively, the projections
of the displacement parallel and perpendicular to the nematic director n̂, and the
angular brackets denote ensemble average over all the particles and at least 100
independent phase space trajectories starting off at regular time intervals within
the same simulation run. The director n̂ is calculated with the standard procedure
of diagonalization of the traceless tensor incorporating the particles’ orientation
vectors [46]. The functions in Eqs. 2.2, 2.3 and 2.4 should be normalised as
follows:

∫
∞

0 Gs,1dr‖ =
∫

∞

0 2πr⊥Gs,2dr⊥ =
∫

∞

0 4πr2Gs,3dr = 1. Finally, to assess
the Fickian diffusion at long time scales, we have calculated the MSD, including
that in the direction parallel and perpendicular to n̂. Parallel, perpendicular and
total MSDs are defined in section 1.4.1.

2.2 Fickean diffusion and its gaussianity in nematic
liquid crystals

Before introducing the details of our theoretical and computer simulation results,
it is useful to recall the three main time regimes of diffusion in a colloidal sus-
pension. At short time scales, particles diffuse through the solvent and dissi-
pate their thermal energy as a result of the collisions with the solvent molecules.
This regime is diffusive (or Fickian) and the MSD is a linear function of time,
or
〈
∆r2〉 ∝ t. In particular,

〈
∆r2〉 = 2dDst, with d the dimensionality of the

move and Ds the translational diffusion coefficient of an isolated particle in a
medium. At intermediate time scales, the diffusion of individual particles is
slowed down by a sort of temporary cage formed by other particles [63]. The
duration of this caging effect is mainly determined by the system packing and
inter-particle interactions. Finally, at long time scales, the diffusion is controlled
by the inter-particle collisions and the Fickian regime is recovered. In this case,
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〈
∆r2〉= 2dDlt, with Dl the long-time translational diffusion coefficient, being in

general smaller than its infinite-dilution counterpart [81].
At each of this time scales, the distribution of the particle displacements can

be measured by the self-part of the van Hove correlation function, Gs,d(r, t) =
1/N

〈
∑

N
i=1 δ (r−|ri(t)− ri(0)|

〉
, where N is the total number of particles, δ the

Dirac-delta, and 〈...〉 denotes ensemble average over different trajectories. If the
displacements are Gaussian distributed, then Gs,d(r, t) is a Gaussian function of r
at all times:

Gs,d(r, t) = (4πDtt)−d/2 exp
(
− r2

4Dtt

)
, (2.5)

where the subindex t indicates a generic dependence on time of the diffusion coef-
ficient, such that Dt = Ds and Dt = Dl at short and long time scales, respectively.
The space variable r refers to the longitudinal or radial direction in cylindrical co-
ordinates if d = 1 or d = 2, respectively, whereas it refers to the radial coordinate
in spherical coordinates if d = 3. The difficulty to determine the time regimes
in which a Gaussian diffusion actually holds and perform measurements at very
large length and long time scales, a limit where the non-Gaussian character of
Fickian diffusion is especially challenging to be proven [82], has challenged the
general applicability of Eq. 2.5 to complex fluids [83].

In Fig.2.1, we report the parallel and perpendicular components of the MSD
for oblate and prolate particles with shape anisotropy ap = a−1

o = 15.6 in nematic
LCs with packing fraction η = 0.35. In it we can distinguish the three mentioned
timescales. At very short time scales, with t/τ < 0.5, prolate particles diffuse
faster in the direction perpendicular to n̂ and 〈∆r2

⊥(t)〉 > 〈∆r2
‖(t)〉, which is co-

herent with the short time (or infinite-dilution) diffusion coefficients calculated
from Eq. 1.30. At intermediate times, the perpendicular mobility of this pro-
late particles becomes slower than the parallel mobility and an inversion in the
trend observed at shorter times is observed. In particular, 〈∆r2

⊥(t)〉< 〈∆r2
‖(t)〉 at

t/τ > 1.
It is then possible to observe an intermediate regime where the slope of the

perpendicular component of the MSD decreases significantly. Although 〈∆r2
⊥(t)〉

does not reach a clear plateau as previously observed in glasses [84] or smectic
phases [64–66], the transport of prolate particles in this direction shows a sub-
diffusive regime, indicating the time and length scales over which particle start to
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collide with other particles in the direction perpendicular to n̂. At long times, this
component shows a diffusive regime, characterised by the long-time diffusion co-
efficient obtained from the slope of 〈∆r2

⊥(t)〉. By contrast, the parallel component
of the MSD shows a smoother behaviour, with an almost insignificant variation
of the slope at intermediate times. Consequently, at long times the diffusion of
prolate particles is mainly in the direction parallel to the nematic director, being
the main contribution to the total MSD (not shown here). In summary, the diffu-
sion of prolate particles in nematic LCs is clearly anisotropic with a fast and slow
component in the direction, respectively, parallel and perpendicular to n̂. The be-
haviour of oblate particles with identical aspect ratio is characterised by opposite
tendencies. Again, a clear anisotropy in particle diffusion is observed. Neverthe-
less, the fast component is the one perpendicular to n̂, while the slow component,
which exhibits a sub-diffusive regime at intermediate times, is parallel to it.

We detect a non-Fickian (sub-diffusive) regime at intermediate time scales.
But our results agree very well with previous works [41, 61, 62] and confirm
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Figure 2.1: Parallel (solid lines and symbols) and perpendicular (dashed lines and
open symbols) components of the MSD of prolate (black lines and circles) and
oblate (blue lines and squares) particles with shape anisotropy ap = a−1

o = 15.6
in nematic liquid crystals with packing fraction η = 0.35.



32 Chapter 2

the Fickian character of the long-time isotropic diffusion, with Dl , and of the
diffusion parallel and perpendicular to the nematic director n̂, with Dl,‖ and Dl,⊥,
calculated as showed in equation (1.38).

In the light of these preliminary considerations, we now consider whether the
particle displacements as well as their parallel and perpendicular projections to n̂
are Gaussian distributed. To this end, we calculate the parallel, Gs,1(r‖, t), per-
pendicular, Gs,2(r⊥, t), and total, Gs,3(r, t), self-van Hove correlation functions,
which are shown in Figs. 2.2 and 2.3) for rods and disks, respectively, at short
(left frames), intermediate (middle frames), and long (right frames) time scales.
In the same figures, we fit our simulation results with the Gaussian approxima-
tions calculated from Eq. 2.5, where Dt is a fitting parameter.

We observe that the Gaussian approximation to Gs,1(r‖, t) and Gs,2(r⊥, t) is
very good at both short and long time scales, while, at intermediate times, where
the diffusion is however not Fickian, moderate discrepancies are detected. We
then conclude that at least in the direction of n̂ and perpendicularly to it, prolate
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Figure 2.2: Parallel (�), perpendicular (4) and total (#) self-van Hove corre-
lation functions for a nematic LC of prolate particles at times t/τ = 10−2 (left
frame), t/τ = 1 (middle frame) and t/τ = 103 (right frame). Results are nor-
malised by vd = 1, 2πr⊥ or 4πr2 for d = 1, 2 or 3, respectively. Symbols are
simulation results, while solid lines are Gaussian approximations as given in Eq.
2.5, with Dt fitting parameter.
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and oblate colloidal particles exhibit Fickian and Gaussian diffusion at short and
long times. A more detailed analysis deserves the total self-van Hove function,
Gs,3(r, t), which clearly appears underestimated by the Gaussian fit at interme-
diate and long time scales, and less significantly also at short times (circles and
black lines in Figs. 2.2 and 2.3). While at intermediate times the diffusion is
not Fickian and a non-Gaussian behaviour is not astounding, at short and long
times one would conclude that prolate and oblate particles follow an FNG diffu-
sion. Nevertheless, we notice that the Gaussian approximation in Eq. 2.5 results
from the integration of the Langevin equation under the assumption of a spa-
tial isotropy, where Ds,‖ = Ds,⊥ and Dl,‖ = Dl,⊥ [81]. This assumption does not
hold in a nematic LC and, more generally, in any complex fluid with anisotropic
morphology.

Therefore, we propose an ellipsoidal, rather than spherical, Gaussian approx-
imation of Gs,3(r, t), where the displacements in the direction parallel and per-
pendicular to n̂ are still assumed to be Gaussian distributed, but independent of
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Figure 2.3: Parallel (�), perpendicular (4) and total (#) self-van Hove corre-
lation functions for a nematic LC of oblate particles at times t/τ = 10−2 (left
frame), t/τ = 10.8 (middle frame) and t/τ = 2× 104 (right frame). Results are
normalised by vd = 1, 2πr⊥ or 4πr2 for d = 1, 2 or 3, respectively. Symbols are
simulation results, while solid lines are Gaussian approximations as given in Eq.
2.5, with Dt fitting parameter.
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each other [85]. The new form of the total self-van Hove correlation function is
determined by combining the displacements’ distributions along the parallel and
perpendicular directions to n̂ and read

Gs(r‖,r⊥, t) = Gs,1(r‖, t) Gs,2(r⊥, t) =

1(
(4πt)3D2

t,⊥Dt,‖

)1/2 exp

(
−

r2
‖

4Dt,‖t
−

r2
⊥

4Dt,⊥t

)
(2.6)

where Gs,1(r‖, t) and Gs,2(r⊥, t) have been obtained by substituting, respectively,
d = 1 and d = 2 in Eq. 2.5. The probability to find a particle at distance r =
(r2
⊥+ r2

‖)
1/2 from its original position at t = 0, is obtained by integrating Eq. 2.6

over a spherical surface Σ of radius r:

G′s,3(r, t) =

∫
Σ

dΣ Gs(r‖,r⊥, t)∫
Σ

dΣ
, (2.7)

The solution of the above integral can either take the form

G′s,3(r, t) =
Ω

(4πt)3/2 exp

(
−r2t−1

4Dt,‖

)
F(r∆

1/2
p )

r∆
1/2
p

(2.8)

or equivalently

G′s,3(r, t) =
Ω
√

π

2(4πt)3/2 exp
(
− r2t−1

4Dt,⊥

)
erf(r∆

1/2
o )

r∆
1/2
o

, (2.9)

where F(...) is the Dawson’s integral, erf(...) the error function, Ω= 1/(D2
t,⊥Dt,‖)

1/2,
and ∆p = −∆o = 1/(4Dt,⊥t)− 1/(4Dt,‖t). Eqs. 2.8 and 2.9 are mathematically
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identical, being the former more suitable for prolate geometries, where Dt,‖ >
Dt,⊥, and the latter for oblate geometries, where Dt,‖ < Dt,⊥.

The total self-van Hove functions calculated from Eqs. 2.8 and 2.9 are shown
as solid lines in Fig.2.4, along with our simulation results. For comparison,
we also show the Gaussian approximation of Gs,3(r, t) as obtained from Eq. 2.5
(dashed lines). The agreement between simulations and theoretical predictions is
excellent, confirming the Gaussian nature of the Fickian diffusion at long times
and thus discarding the occurrence of an FNG diffusion for the two particle ge-
ometries. We stress that the dashed and solid curves in Fig.2.4 are not fits, as the
diffusion coefficients, Dl,‖ and Dl,⊥, at long times have been obtained from the
corresponding MSDs. The theoretical predictions of G′s,1(r⊥, t) and G′s,2(r‖, t)
obtained from Eq. 2.5 with the instantaneous values of Dl,‖ and Dl,⊥ from the
MSDs, are also in excellent agreement with the simulation results and are shown
in Figs. 2.5 and 2.6 for prolate and oblate spherocylinders, respectively.

The non-Gaussian character of Gs,d(r, t) can also be assessed by expanding
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rod-like and disk-like particles at t/τ = 103 and 2× 104, respectively. Symbols
are simulation results, dashed lines are Gaussian distributions obtained from Eq.
2.5, and black solid lines are Gaussian distributions obtained with Eq. 2.8 (rods)
and 2.9 (disks).
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this function in a series of Hermite polynomials, whose first term incorporates
most of the function’s non-Gaussianity in the following coefficient [86]:

α2,d(t) =
〈∆r4(t)〉

(1+2/d)〈∆r2(t)〉2
−1. (2.10)

In particular, α2,d(t), which is usually referred to as non-Gaussian parameter
(NGP), vanishes if no deviations from Gaussian behaviour are observed. Parallel
(d = 1), perpendicular (d = 2), and total (d = 3) NGPs are plotted in Fig.2.7 for
nematic phases of prolate particles. Very similar results are observed for oblate
particles and are not shown here.

At short time scales, α2,1 and α2,2 are very close to zero, whereas α2,3 is
clearly positive even at very short times. At intermediate times, when the dif-
fusion is not Fickian, both parallel and perpendicular NGPs are observed to in-
crease, but this tendency is especially evident for the latter, whose maximum
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tions for a nematic LC of prolate particles at t/τ = 103. Results are normalised
by vd = 1 or 2πr⊥ for d = 1 or 2, respectively. Symbols are simulation results.
Lines are Gaussian distributions obtained from Eq. 2.5.
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value is achieved at approximately t/τ = 12. We notice that the total NGP pre-
dicted by Eq. 2.10, α2,3, significantly increases in this time regime. At long times,
both the parallel and perpendicular NGPs start to decrease, reaching values very
close to zero. Different is the tendency displayed by α2,3, which seems to reach a
maximum at roughly t/τ = 102 and then eventually decays over a time scale that
goes beyond our simulation time. This result is however obtained by employing
a Gaussian form of the self-van Hove function that is not able to describe the
dynamics of anisotropic systems. Therefore, by following similar arguments to
those illustrated above, we employ Eqs. 2.8 and 2.9 to derive an expression for
the total NGP that incorporates parallel and perpendicular diffusion coefficients.
To this end, we first re-write the total NGP as

α2,d(t) = K
[
〈∆r4〉/〈∆r2〉2

]
sim−1, (2.11)
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Figure 2.6: Parallel (�) and perpendicular (4) self-van Hove correlation func-
tions for a nematic LC of oblates at t/τ = 2× 104. Results are normalised by
vd = 1 or 2πr⊥ for d = 1 or 2, respectively. Symbols are simulation results.
Lines are Gaussian distributions obtained from Eq. 2.5.
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where K ≡
[
〈∆r2〉2/〈∆r4〉

]
th and the functions in [· · · ]sim and [· · · ]th are calcu-

lated, respectively, by simulation and employing the theoretical distribution of
the displacements. More specifically, if we make use of the Gaussian distribution
given in Eq. 2.5, then K takes the values 1/3, 1/2 or 3/5, for d =1, 2 or 3, respec-
tively, and the standard form of the NGP (Eq. 2.10) is recovered. Alternatively,
if we incorporate the space anisotropy by using Eqs. 2.8 and 2.9, the theoretical
values of 〈∆r2〉 and 〈∆r4〉 read

〈∆r2〉=
∫

∞

0
r4Gs,3(r, t) dr =

(
2Dt,‖+4Dt,⊥

)
t (2.12)
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and

〈∆r4〉=
∫

∞

0
r6Gs,3(r, t) dr = 4

(
3D2

t,‖+8D2
t,⊥+4Dt,‖Dt,⊥

)
t2 (2.13)

We can now define an alternative form of the NGP, which reads

α
′
2,3 =

D2
t,‖+4D2

t,⊥+4Dt,‖Dt,⊥

3D2
t,‖+8D2

t,⊥+4Dt,‖Dt,⊥

〈∆r4〉
〈∆r2〉2

−1 (2.14)

Similarly to the NGP given in Eq. 2.10, also α ′2,3 can be applied to any parti-
cle geometry. The key difference is that α ′2,3 depends on the instantaneous value
of the diffusion coefficients parallel and perpendicular to n̂, as highlighted by the
subindex t in the equations above. In particular, to calculate α ′2,3 over time, the
diffusivities Dt,‖ and Dt,⊥ have been estimated from the instantaneous values of
the MSD as obtained by computer simulation. We plot α ′2,3 in Fig.2.7, where it is
compared to the total NGP, α2,3, that has been derived neglecting the anisotropy
of diffusion. As already found for G′s,3(r, t), the diffusion at short time scales ap-
pears to be Gaussian, with α ′2,3 ≈ 0 for t/τ < 10−1. At intermediate times, α ′2,3
becomes slightly larger than zero, revealing deviations from Gaussian behaviour,
which are anyway significantly softer than those detected with α2,3 and consistent
with those of α2,1 and α2,2. At t/τ > 102, when the diffusion recovers its Fickian
nature, α ′2,3 reaches again values that are very close to zero.

2.3 Compared diffusion in nematic liquid crystals
In this section, we keep discussing the general characteristics of the diffusion
in nematic fluids of prolate and oblate particles with (i) equal aspect ratio(C1),
(ii) equal infinite-dilution translational diffusion coefficients(C2), and (iii) equal
infinite-dilution rotational diffusion coefficients(C3). First, to analyse the relative
ability of oblate and prolate particles of identical aspect ratio to diffuse in nemat-
ics, we calculate the total long-time diffusion coefficients, D+

l = (2D+
l,⊥+D+

l,‖)/3
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and D−l =(2D−l,⊥+D−l,‖)/3, of prolate (+) and oblate (−) geometries, respectively.
The resulting diffusivities show that the diffusion of prolate particles in the ne-
matic phase is faster than that of oblate particles. This can be observed in Fig.2.8,
where we compare the parallel, perpendicular and total long-time diffusion coeffi-
cients in the nematic phase. For the sake of comparison, we also add the diffusiv-
ities obtained in the isotropic phase. The dependence of the long time rotational
diffusion coefficient (details on its calculation in section 1.2.4) with the packing
fraction in the isotropic and nematic phases both for prolate and oblate particles
is shown in the inset of figure 2.8. The qualitative behaviour of Drot is very simi-
lar in the two phases. More specifically, in the isotropic and nematic phases and
for both oblate and prolate spherocylidenders, Drot decays at increasing η . This
inverse dependence on η is stronger in the isotropic than in the nematic phase.
In general, Drot is smaller for oblate than for prolate particles, further confirming
that the dynamics of oblate particles is slower than that of prolates. The analy-
sis of the rotational diffusion coefficients does not indicate the occurrence of the
non-monotonic behaviour observed for the translational diffusion coefficients.

As far as the nematic phase is concerned, the total diffusion coefficient of
prolate particles is at least twice as large as that of oblate particles, depending on
the packing of the phase. Of the same order of magnitude is the ratio between the
main diffusivities of the two geometries, that is D+

l,‖ ≈ 3D−l,⊥. If one compares
the minor contributions to the total particle diffusivity, prolate geometries are still
faster, with D+

l,⊥ > D−l,‖, especially at particularly large packing fractions, where
the diffusion of oblate spherocylinders along the director decreases dramatically.

The dependence of the diffusivities in the nematic phase on the packing frac-
tion does not appear to be monotonic. In particular, the total diffusion coefficients
gradually increase with the system density up to a maximum, beyond which an
inverse correlation is found. This tendency is the result of a non-monotonic be-
havior of the main contributions, D+

l,‖ and D−l,⊥, to the total diffusivity, while the
minor contributions, D+

l,⊥ and D−l,‖, only decrease with increasing η . This be-
haviour, especially clear in the case of oblate particles, had been reported before
by de Miguel and co-workers for prolate particles with smaller anisotropy than
that studied here [61], and by Jabbari-Farouji for infinitely thin disks [62].

Between η = 0.15 and 0.2, a phase transformation of the isotropic to the pro-
late nematic (N+) or oblate nematic (N−) phase is observed. The isotropic to
nematic phase transition produces an interesting increase of the diffusion coef-
ficients, regardless of the particle anisotropy. In Fig. 2.8, one can see that the
diffusivity of prolate and oblate spherocylinders decreases in the isotropic phase
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with increasing packing fraction, but increases again when the phase transfor-
mation is produced. This abrupt change is most likely the consequence of the
structural characteristics of the nematic phase. More specifically, the isotropic to
N+ transition produces the formation of quasi unidimensional channels that act as
preferential paths for particle diffusion. The effect is similar for oblate particles,
although such preferential paths are found in planes perpendicular to n̂ and thus
are quasi two-dimensional. By contrast, in the directions perpendicular to these
channels, the probability of collisions between particles is significantly higher.
Although such preferential channels boost the diffusion of prolate and oblate par-
ticles in the parallel and perpendicular direction, respectively, to n̂, at increasing
packing fractions, they become narrower and narrower and end up hampering,
rather than promoting, particle diffusion. This produces the reduction of the dif-
fusion coefficients observed in Fig. 2.8. We notice that the maximum in D is
not observed in systems of infinitesimally thin disks [62], where the preferential
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channels of the N− phase would never get thinner, at increasing packing fraction,
than the particles themselves.

In the light of these results, we now explore the diffusion of prolate and oblate
spherocylinders whose infinite-dilution translational diffusion coefficients are the
same, namely D+

s = D−s or, equivalently, D+
s,‖+2D+

s,⊥ = D−s,‖+2D−s,⊥. This con-
dition is satisfied by the prolate and oblate particle aspect ratios ap = 27 and
ao = 0.1, respectively. Additionally, we have also investigated the case of oblate
and prolate particles with identical infinite-dilution rotational diffusion coeffi-
cient, that is D+

s,ϑ =D−s,ϑ (See equation 1.30). For the same oblate anisotropy, that
is ao = 0.1, this condition is met for ap = 15.6. The common tendency observed
in systems of oblate and prolate particles is that a more pronounced anisotropy
(smaller ao or larger ap, respectively) determines a slower dynamics along n̂ and
perpendicularly to it. This behaviour was expected. What we want to understand
here is whether or not the relative mobility of prolate and oblate particles changes
when an equivalence of diffusivities, rather than a geometric equivalence, is im-
posed. To this end, in Fig.2.9, we report the ratio between the total MSD of
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cal aspect ratios (black circles). The packing fraction is η = 0.35 in all systems.
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prolate and oblate spherocylinders calculated for the three cases explored here.
In particular, circles, triangles and squares show RMSD ≡ 〈∆r2〉p/〈∆r2〉o for the
cases C1, C2, and C3, respectively. The general trend unveils that RMSD decreases
at intermediate times, more or less significantly for the three cases studied, and
then increases again until a saturation plateau that is expected to be observed at
long time scales, beyond our simulation time. Of particular relevance is the case
scenario C2, where RMSD < 1 over almost three time decades, specifically be-
tween t/τ = 10−2 and 40. In this time window, the diffusion of oblate particles
is slightly faster than that of prolate particles, a behaviour that is not observed
in C1 and C3, where RMSD > 1 over the complete timeline explored. These two
cases would indicate that prolate spherocylinders are constantly faster than oblate
spherocylinders. However, this conclusion, as we show here, strongly depends on
the assumptions made and does not hold if the infinite-dilution translational dif-
fusivities of oblate and prolate spherocylinders are the same.

These considerations are confirmed by the analysis of the self-intermediate
scattering function, Fs(q, t), which quantifies the structural relaxation of the sys-
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tem over time. The s-ISFs of oblate and prolate spherocylinders for the cases
C1, C2, and C3 are displayed in Fig.2.10, being all calculated at |q| = 2π/σ ,
corresponding to the position of the nearest neighbouring particles. The com-
plete set of s-ISFs shows a typical fluid-like behaviour, with a single decay that is
well fitted by a slightly stretched exponential function of the form exp[−(t/τ)α ],
with α ≈ 0.80 and 0.88 for prolate and oblate spherocylinders, respectively. Left
and right frames, which refer to the cases C1 and C3, suggest a faster relaxation
dynamics of prolate particles as compared to oblate particles. This is especially
evident for C1 (left frame), while for C3 (right frame) the relaxation of both oblate
and prolate particles is very similar, although slightly faster for the latter. An op-
posite trend is detected for C2, where the Fs decay of oblate particles slightly
anticipates that of prolate particles.

The stretched exponential decay of the self-ISFs would suggest a heteroge-
nous signature of the long-time relaxation dynamics, with single particles trapped
in transient cages formed by their neighbours. Two possible scenarios might ex-
plain such a non-exponential relaxation behaviour: a heterogeneous scenario in
which the particles relax exponentially at different relaxation rates, and a ho-
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Figure 2.11: (Color online). χ4(q, t) at q = 2π/σ for prolate (black circles and
lines) and oblate (red squares and lines) particles for the cases C1 (left frame), C2
(middle), and C3 (right) in nematic liquid crystals with packing fraction η = 0.35.
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mogeneous scenario with the particles relaxing in a non-exponential manner at
nearly identical rates [87, 88]. In the latter case, a decreasing α would imply in-
creasing cooperativity, namely a collective motion of particles contributing to the
relaxation of the system.

Although the fitting coefficient α is not significantly lower than 1, we ad-
dressed the possible occurrence of a collective dynamical behaviour by calcu-
lating the four-point susceptibility function, χ4(q, t), which quantifies the mag-
nitude of spontaneous fluctuations of the system dynamics as specified in Eq.
1.38 [47–49]. The resulting four-point susceptibilities calculated for oblate and
prolate spherocylinders at |q| = 2π/σ , in each compared case are shown in
Fig.2.11. Since χ4(q, t) represents the average number of particles that are spa-
tially correlated over time, its very small magnitude over the six decades explored
clearly indicates that the dynamics are not cooperative, regardless the anisotropy
and diffusion coefficients of the particles. In other words, the relaxation dynam-
ics of nematic LCs relies entirely on the ability of individual particles to diffuse
through their neighbours, with no sign a cooperative behaviour as previously ob-
served in smectic LCs [64, 65].

2.4 Conclusions

In summary, we have investigated the dynamics in nematic liquid crystal phases
of anisotropic particles, here modelled as oblate and prolate spherocylinders that
confirm previous results [61,62] and enrich the global picture of transport of par-
ticles in the nematic phase. In particular, our comparative study unveils that the
generally accepted ability of prolate particles to diffuse faster than their oblate
counterparts strongly depends on how this comparison is practically operated.
The structural features of this phase have a strong impact on the diffusion of parti-
cles, which abruptly increases across the isotropic-to-nematic transition. Despite
the stretched exponential decay of the s-ISFs, which might imply the presence of
collective motion, the analysis of the four-point susceptibility function, χ4(q, t),
does not reveal any tangible signature of spatial correlations and thus excludes
the occurrence of cooperative dynamics.

To have further insight we compared prolate and oblate spherocylinders with
identical infinite-dilution translational diffusion coefficients, finding that the dy-
namics of oblate particles is faster in a significant time window as the MSD in-
dicates. Additionally, under these conditions, the decay of the corresponding
s-ISFs suggests a faster relaxation of systems of oblate particles. The diffusion
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in the nematic phase, regardless of the particle geometry, displays a strong direc-
tional character, with a fast and slow component. It is remarkable that the relative
relevance of the diffusion in the direction parallel and perpendicular to the ne-
matic director is interchanged between prolate and oblate particles, being faster
the diffusion parallel to the director in calamitic nematic fluids, while this role is
taken by the perpendicular diffusion in discotic particles.

This system also gave us a good opportunity to study the impact of space
anisotropy in fickean diffusion and its gaussianity. Concluding that FNG diffu-
sion is not ubiquitous in soft matter. More explicitly, we found that colloidal
particles in nematic LCs display a Fickian and Gaussian dynamics at short and
sufficiently long time scales, while at intermediate times when the particles expe-
rience a caging effect imposed by their neighbours, the diffusion is sub-diffusive
and non-Gaussian. We have shown that the Fickian and Gaussian dynamics of
colloidal nematic LCs cannot be appreciated by a distribution function of parti-
cle displacements that assumes space symmetry and calculated via the standard
self-van Hove correlation function. To overcome this limitation, we propose an
ellipsoidal Gaussian distribution that takes into account the diffusion coefficients
parallel and perpendicular to the nematic director. This new distribution func-
tion is able to reproduce our simulation results with remarkable precision and is
crucial to understand the nature of the diffusion in colloidal LCs, which does not
show evidence of an FNG signature. The new form of the self-van Hove functions
is applied to formulate a non-Gaussian parameter that incorporates the instanta-
neous value of the diffusion coefficients and is able to quantify deviations from
Gaussian behaviour more precisely.



3
The OGBK model.

Possibilities, limitations and new phases

Digging in the history of the study of intermolecular forces, we find one of the
first attempts to understand them in the capillarity forces studied by Clairault
(1743), then he found uncanny that forces between particles appeared only be-
tween water and glass and only in their interfacial annulus. His attempt to solve
this problem and the ones by other great scientists put a gravitational origin in the
interaction between the constituents of matter. And it wasn’t until the quantum
theory of long-range forces and the London formulas (1930) when the true nature
of intermolecular forces began to be understood [89].

But often, the problems we would like to solve are too big to be solved by
means of quantum mechanics. So we are forced to simplify electrons interactions
up to the level of the Born-Oppenheimer approximation, this means we can use
empirical force fields were atomic bonds are treated as springs which stretch,
bend or twist, keeping a surprisingly good performance and employing much
less computing time. In this same spirit, we can keep up this approximation and
omit bonded interactions of atoms and focus now on the non-bonded ones. All
these simplifications will lead us to the coarse grain force fields, where we can
address electrostatic or van der Waals forces separately.

On one side, the electronegativity of atoms present in a molecule can cause
an anisotropic distribution of charge. This is usually modelled with point charges
whose amount and position are controlled by parameters that fit the overall elec-
trostatic interaction as a sum of pairs of charges interacting by Coulomb’s law.
But in cases where we find a non-zero electric moment, a central multipole ex-
pansion can be more convenient, using dipoles, quadrupoles, octopoles, etc.
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Whereas on the other side, the van der Waals forces are often understood as
a balance between long-range attractive forces and short-range repulsive ones.
On one hand, the dispersive forces sometimes called London forces, are due to
the formation of instantaneous dipoles caused by fluctuations. For them, Drude
proposed a model predicting a dispersion interaction proportional to 1/r6 for the
dipole-dipole case, that can be extended to quadrupoles or higher orders with a
series expansion. On the other hand, the repulsive contributions can be attributed
to the Pauli principle, producing overlap forces in electrons with the same spin.
One of the most used functions to take care of both interactions is the Lennard-
Jones function, which in its more general form can be written as:

U(r) = kε [(σp/r)n− (σp/r)m] ; k =
n

n−m

( n
m

)m/(n−m)
(3.1)

Being m and n two natural numbers, σp the collision parameter and ε the
well depth. While choosing m=6 has the aforementioned theoretical motivation,
choosing n=12 has no particular one, but it gives nice results for rare gases, mean-
while it would be too steep for more complex systems where an exponential decay
as exp(−2r/a0) , being a0 the Bohr radius, is predicted by quantum mechan-
ics [90]. Many modifications of it end in good empirical force fields where the
term with the (1/r)12 dependence is substituted by something more suitable, like
the Buckingham Potential, but even a simple 12-10 Lennard-Jones can be used to
model hydrogen bonding, like the YETI force field [91]. Often the understanding
of the evolution and previous uses of a function can help us to foresee further ap-
plications of it. So in order to assess the applicability of the forcefield employed
in this study, the OGBK (Oblate-Gay-Berne-Kihara) model [27], we will focus
on the components exposing them chronologically.

We should start more than sixty years ago when Taro Kihara proposed a core
potential of intermolecular forces of non-polar polyatomic molecules [92]. There
he introduced a parameter modifying the usual Lennard-Jones potential to express
the minimum distance (dm) between impenetrable molecular cores, what is a fair
coarsed-grain approximation using convex cores.

UK(dm) = 4ε

[
(σp/dm)

12− (σp/dm)
6
]

(3.2)

Later on, Berne and Pechukas spoke of Kihara’s potential as a model with
a geometric interpretation and introduced a more analytical perspective formu-
lating a potential using the overlap of Gaussians associated to ellipsoids of rev-
olution representative of the space filled by molecules [93]. That model to the
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contrary of many to date was differentiable and used analytical (not numerical)
parameters for the pairwise interactions readily for varying degrees of anisotropy.
If we take the main axis of the objects ui, uj and their relative positions r, as the
vectors depicted in figure 3.1, it can be written like this:

UGO
(
ûi, û j,r

)
= ε0εGO

(
ûi, û j

)
exp
[
−R2/σ

2 (ûi, û j, r̂
)]

(3.3)

where ε0 is a constant and εGO
(
ûi, û j

)
is the strength parameter expressed as

follows:

ε
(
ûi, û j

)
=
[
1−χ

2 (ûi · û j
)2
]−1/2

(3.4)

and σ
(
ûi, û j, r̂

)
the range parameter is ε0:

σ
(
ûi, û j, r̂

)
= σ0

(
1− 1

2
χ{

(r̂ · ûi + r̂ · û j)
2[

1+χ
(
ûi · û j

)] + (r̂ · ûi− r̂ · û j)
2[

1−χ
(
ûi · û j

)]})−1/2

(3.5)

where χ is the anisotropy parameter defined trough the aspect ratio κ = L/σ +1
as:

χ = (κ2−1)/(κ2 +1) (3.6)

Figure 3.1: Molecules i and j with their respective unitary vectors ui and uj
pointing along their revolution axis, and vector r joining their centres.
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and σ0 usually
√

2 times the perpendicular semi-axis:
Taking this Gaussian overlap potential Gay and Berne offered a modification

of it to mimic a linear four site-site potential overcoming some unphysical fea-
tures [28], through two changes. First introducing the range parameter inside the
Lennard-Jones to displace the wells instead of dilate them. And second defin-
ing a new strength parameter εGB

(
ûi, û j, r̂

)
which is now a function of r̂ as well.

Respectively formulated as follows:

U (ûi, û j, r̂) = ε0εGB (ûi, û j, r̂)

[(
1

r−σ (ûi, û j, r̂)+1

)12

−
(

1
r−σ (ûi, û j, r̂)+1

)6
]

(3.7)

εGB
(
ûi, û j, r̂

)
= ε

ν
GO
(
ûi, û j

)
ε
′µ (ûi, û j, r̂

)
(3.8)

This new strength parameter is just the old one multiplied by ε ′
(
ûi, û j, r̂

)
,

what is in fact 1/σ2 where χ was substituted by χ ′:

ε
′ (ûi, û j, r̂

)
= 1− 1

2
χ
′

[
(r̂ · ûi + r̂ · û j)

2

1+χ ′
(
ûi · û j

) + (r̂ · ûi− r̂ · û j)
2

1−χ ′
(
ûi · û j

) ] (3.9)

Being χ ′ formulated from the strength proposed for the edge to edge config-
uration εe and the side to side configuration εs as follows :

χ
′ = (ε

1/µ
s − ε

1/µ
e )/(ε

1/µ
s + ε

1/µ
e ) (3.10)

Even though the Gay-Berne potential has been extensively used for both pro-
late and oblate geometries, we cite here just a few applications among the most
representative for this work. As could be the example of coronene [95] or other
to discotic molecules [96].

The described model uses ellipsoids of revolution, what still seems inaccu-
rate to describe de electronic clouds of molecules, this model was improved later
on by Martinez-Haya and Cuetos [27], applying Kihara’s perspective to it. The
Lennard-Jones like part of the potential is now a function of the minimum dis-
tance between two segments for the case of a prolate and can be extended for
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the case of oblates using the minimum distance between two disks. Representing
now these molecular shapes as spherocylinders. (see figure 3.2).

The final expression for the potential combining equations (3.2) and (3.8) is:

U
(
ûi, û j, r̂

)
= εGB

(
ûi, û j, r̂

)
UK(dm) (3.11)

Summarizing, this simple modification we can now represent the electronic
cloud of molecular discogens with very different aspect ratios or even a colloid of
discotic shape. So given κ (particle’s aspect ratio) if we define now the parameter
κ ′ = εs/εe we can characterize the interaction anisotropy with only three param-
eters (κ ′, ν , and µ). That would yield an attractive energy well of a parallel pair
of molecules in the edge to edge configuration being κ ′ times, (1−χ2)−ν/2 times
and (1−χ2)−ν/2(1−χ ′)−µ times deeper than for the face to face, crossed and T-
shaped configurations respectively(see figure3.3). The GBK has been previously
used for prolate [27] and oblate [55,97] particles, but only in a reduced number of
parameters’ sets. Here we focus on oblate ones and explore the different usable
sets in order to find further potentialities of the model.

Figure 3.2: From left ro right. Molecular model of coronene [94], isosurface [94]
of the molecule and spherocylinder of ao = 0.3
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3.1 Classification, Possibilities and Limitations
The D∞,h symmetry of oblate particles yields four canonical relative orientations
that can be understood as the building blocks of any ordered structure com-
posed with them. These orientations are depicted in figure 3.3 with the following
nomenclature according to the position of the principal axes of the particles, ref-
erencing from the one which coincides with the revolution axis (RA) that would
transform the two-dimensional curve in a three-dimensional oblate shape:

• “F”when they share RAs.

• “E”when their RAs are parallel and share another principal axis.

• “C”when their RAs are perpendicular and a different principal axis is shared.

• “T”when RAs are perpendicular, being one of them shared by another prin-
cipal axis of the other.

Picking carefully the parameters in the OGBK potential we can favour any of the
canonical orientations over the others, setting it as the more intense interaction.
Feature that was chosen to establish a first approach towards the classification of
parameters’ sets, therefore we will the nomenclature UF , UE , UT or UC if the con-
figurations F, E, T or C are favoured over the others respectively, or combination
of letters if two of them have the same depth and the others are shallower. This
ability to control the anisotropy of the potential turns it in a powerful tool since
it allows to model very different systems like cells, colloids or even polycyclic
aromatic hydrocarbons. And at the same time, it represents an opportunity for

Figure 3.3: The four canonical relative orientations possible for oblates particles.
F(face to face),E(edge to edge),T(”T” shape) and C(cross shape)
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theoretical studies, because it allows tuning the orientational dependence of par-
ticles within a wide range of anisotropies with only three parameters. Therefore,
it is easily applicable to many systems or even as a test environment to key-lock
models.

The proposed classification can be better understood looking at the plots of
energy as a function of the centre of mass separation in units of (r∗= r/(L+σ))
(see Fig. 1.1) keeping the relative angles formed by ui, uj and r. There are
presented each set of parameters separately with a curve for each of the four
canonical orientations (figs. 3.4, 3.5, 3.6 and 3.7). In that sense we are fixing the
angles due to their practical importance, but we should always bear in mind that
we are dealing with a continuous potential as a function of the minimum distance
between two disks and three angles (the RAs relative angle and the two angles
that those form between each of them and the straight line passing through both
centres), therefore two different sets of parameters may have wells with the same
minimal values, having a different angular dependence.

The complex equation used to compute potential energy has some limitations
regarding usable parameters because in some cases we might incur into unphysi-
cal situations or mathematical singularities, as it happens with k′ < 0 . Being also
problematic many cases between −1 < ν < 1, and −1 < µ < 1, where even if
we compute the necessary exponentiations as xy = ey ln(x), we could find complex
numbers as a result.

With the application of the ”Inverse function theorem” [98,99] we would find
the domains and images of the OGBK potential but any information obtained
would be difficult to visualize or understand due to the high number of variables
(the three parameters for the angular dependence, the aspect ratio, minimum dis-
tance and three angles). To overcome this in a more practical way, we focused on
the wells minima for the canonical orientations and performed an exploration of
the input parameters to filter the ranges of interest of them. The oblate anisotropy
ao (as defined in section 1.2.1) was evaluated from 0.1 to 1.0 at 0.1 steps. k′ was
evaluated from 0.1 to 1.0 at 0.1 steps. ν and µ were evaluated from -10 to 10

UE κ ′ < 1 ν > 0 -
UF κ ′ > 1 - -
UT κ ′ > 1 ν < 0 ao < 0.9
UC κ ′ < 1 ν < 0 -

Table 3.1: Necessary but no sufficient rules to obtain a dominant orientation
OGBK potential, according to aspect ratio and parameters k′ and ν



54 Chapter 3

at 0.1 steps. From that we omitted wells deeper than 50 ε since those would be
highly unlikely to appear in a real system.

The filtering of data from the exploration yielded some necessary but no suf-
ficient rules to obtain a desired interaction potential showed in Table 3.1, this
mostly implies that even following those rules sometimes the result is a potential
with all wells of the same depth within a difference of 0.01ε (examples in sets 11
and 12 of Table 3.2), any UT type (set 3) proves that rule for UF is not warranty
of it and sets 11, 12 and 13 proves the insufficiency of the rules for UC, UT and
UE respectively. It is also worth mentioning that this rules and the examples of
Table 3.2 arise from the described exploration, therefore a thorough investigation
of the parameters may unveil more detailed results, what is out of the scope of
this study.

From the exploration performed, some sets of parameters are showed in ta-
ble 3.2 as extreme examples of the possibilities found ranking the well minima
among the canonical orientations. From a pragmatical point of view, some ob-
tained potentials may result in very interesting systems to study theoretically but
unfeasible in practice. The first four rows of the table show examples where the
deepest well is at least 8 times deeper than any of the others, in the following
we can observe special cases where at least two wells are equally deep. This is
easy to understand observing the effect certain parameters have on the final ex-
pression of the potential. For example all sets where κ ′ = 1 will result in wells of
E and F configurations being equally deep (sets 7 and 9), ν = 0 will make wells
of E and C configurations equally deep (set 6),µ = 0 will make wells of T and
C configurations equally deep (sets 8,11-13). Sets 5 and 7 are examples of this
hybrid types UEC and UTC obtained without ν = 0 or µ = 0. Finally, sets 14 to
17 are the worked examples in this study. Is important to remark that this values
for the wells are rounded up to 0.1ε and also, to keep in mind that even if we
find different sets which result in wells of the same depth, these are canonical
configurations and the rest of values for other orientations might differ.

3.1.1 Structures and Self-Assembly

There is a vast amount of possible combinations of parameters so in order to
show the effects of the application of this potential we limited the simulations
to four characteristic sets running NPT-MC simulations along three isotherms
for four sets of parameters each favouring one of the canonical orientations in a
rather realistic way instead of being extreme examples. With the same spirit, all
simulations were performed at ao = 0.1. But is important to take into account that
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the width of the wells in the OGBK model is controlled by the aspect ratio used,
a parameter which also affects the excluded volume. These two features have a
mayor impact on the aggregation process, resulting in different structures formed
for the same potential along a range of the aspect ratio.

First, we ran several trials starting from the same isotropic configuration at
very low density for several parameters’ sets of each type (E, F, T and C). Start-
ing from a simulation box in length units of D = (L+σ), filled with N = 1260
particles at ρ∗= 0.002N/D3 and pressure P∗= 0.0001(PD3/ε) NPT-MC simula-
tions were performed along isotherms at temperatures of T ∗ = 0.1(−Umin) where
Umin is the deepest well in each case in κBT units. To observe the formation of

Set # κ ′ ν µ ao E F T C Type
1 0.1 1.5 -10.0 0.1 -11.3 -1.1 -0.3 -1.0 UE
2 10.0 0.1 0.2 0.1 -1.2 -11.7 -1.1 -1.0 UF
3 10.0 -4.2 -0.2 0.1 -0.001 -0.01 -8.7 -1.0 UT
4 0.1 -2.7 0.2 0.1 -0.01 -0.001 -0.1 -1.0 UC
5 0.1 -0.1 0.2 0.7 -1.0 -0.1 -0.1 -1.0 UEC
6 0.1 0.0 0.3 0.1 -1.0 -0.1 -0.1 -1.0 UEC
7 1.0 -1.6 -0.1 0.1 -0.1 -0.1 -1.0 -1.0 UTC
8 0.1 -1.6 0.0 0.1 -0.1 -0.1 -1.0 -1.0 UTC
9 1.0 1.5 -10.0 0.1 -11.3 -11.3 -1.0 -1.0 UEF
10 10.0 -0.6 -0.2 0.5 -0.9 -8.7 -8.7 -1.0 UFT
11 0.1 -0.1 0.0 0.7 -1.0 -1.0 -1.0 -1.0 UEFTC
12 1.1 -1.7 0.0 0.9 -1.0 -1.0 -1.0 -1.0 UEFTC
13 0.1 9.8 0.0 1.0 -1.0 -1.0 -1.0 -1.0 UEFTC
14 0.1 1.0 1.0 0.1 -5.0 -0.5 -0.2 -1.0 UE
15 2.0 0.2 2.0 0.1 -1.4 -2.7 -1.4 -1.0 UF
16 1.9 -0.4 -0.1 0.1 -0.5 -1.0 -1.8 -1.0 UT
17 0.1 -1.3 0.3 0.1 -0.1 -0.01 -0.1 -1.0 UC

Table 3.2: This table shows in columns; the set number (1), the potential pa-
rameters (2-4), the anisotropy (5), the minimum energy in each configuration in
reduced units (U/ε) (6-9) and the correspondent classification (10). And stores in
rows, some extreme (1-4), special example sets (5-10), sets evidencing the insuf-
ficiency of the provided rules (11-13) in table 3.1 from the ranges of parameters
studied and the worked examples of this study (14-17). A combination where all
well minima are -1.0 can be found for many sets of parameters
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aggregates in each set. The cluster move described in section 1.2.5 was useful
to equilibrate densities up to around 0.1 particles per volume unit (σ3), what for
ao = 0.1 usually means that all particles are in the same cluster. From that point
on, the equilibration process can become unreachable due to the loss of ergodic-
ity. This motivated a different approach to investigating phases of higher packing
fraction.

With this procedure, we always found that the aggregates formed clearly man-
ifest in their structure when the intensity of the attraction in one of the canonical
orientations overcomes the others. Here we only show one example cluster for
each potential type inserted in the representations of the energy for each canon-
ical orientation (F, T, E and C) as a function of the distance of particles’ centres
r∗ = (r/D). For the UF type (Fig. 3.4) we can observe particles attach to each
other forming columns, which in turn are stuck because the E configuration also
minimizes the energy of the system to a lesser extent. For the UE type (Fig. 3.5)
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Figure 3.4: Interaction Energy in each of the four canonical configurations for the
UF type potential with parameters, κ = 0.10, κ ′ = 2.00,ν = 0.20 and µ = 2.00
with typical aggregate inserted showing the effect of having the F configuration
as an energy minimum, with each curve marked with the letter of the orientation
that produces it.
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we can observe that particles form sheets in clusters of few layers.
In the UT type case (Fig.3.6) we can observe intricate patterns of the struc-

ture commonly named house of cards, to describe the networks formed in clays
[100, 101], in reference to this porous aggregates. In this case, is important to
remark that to the contrary from previous simulation studies, here the distribu-
tion of charges of opposite signs is not modelled yet, it just happens for the T
configuration to minimize the energy, as if it was a key-lock model.

Finally, for the UC type (Fig.3.7) we can observe structures where particles
tend to be surrounded by others in C configuration, resembling entangled accor-
dions, of which we could not find previous reference in the literature

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2

P
o
te

n
ti
a
l 
E

n
e
rg

y
 (

U
/ε

)

Separation of Centres (r/D)

F
T C

E

Figure 3.5: Interaction Energy in each of the four canonical configurations for the
UE type potential with parameters, κ = 0.10, κ ′ = 0.10, ν = 1.00 and µ = 1.00
with typical aggregate inserted showing the effect of having the E configuration
as an energy minimum, with each curve marked with the letter of the orientation
that produces it.
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Figure 3.6: Interaction Energy in each of the four canonical configurations for the
UT type potential with parameters, κ = 0.10, κ ′= 1.90,ν =−0.40 and µ =−0.10
with typical aggregate inserted showing the effect of having the T configuration
as an energy minimum, with each curve marked with the letter of the orientation
that produces it.
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Figure 3.7: Interaction Energy in each of the four canonical configurations for the
UC type potential with parameters, κ = 0.10, κ ′ = 0.10,ν =−1.30 and µ = 0.30
with typical aggregate inserted showing the effect of having the C configuration
as an energy minimum, with each curve marked with the letter of the orientation
that produces it.
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3.2 Phases and State Diagrams of characteristic po-
tentials

In a previous study of Marechal et al. the phase diagram of hard oblate sphero-
cylinders was determined for different aspect ratios and packing fractions [53].
In it we find four possible phases according to particles ordering, the isotropic
phase with particles randomly oriented as it happens in liquids and gases, the ne-
matic phase with particles roughly parallelly oriented as it is the case for liquid
crystal systems, and two types of solid phases, the columnar, where particles are
arranged in parallel columns, but to the contrary from the tilted phase or other
solid phase, particles are not necessarily parallel within the column. We can
observe an example of each one of these four phases in figure 3.9. Looking at
the bibliography we can find examples of these phases obtained also when the
Gay-Berne potential is applied [96] to discotic molecules. There have been also
studies of the tilted phase, trying to model crystals of coronene with it [102]. But
our approach tries to be less specific and give a broader perspective in terms of
orientations of the interactions and their repercussion.

T

η

Isotropic Nematic Columnar Tilted

Figure 3.8: Conceptual phase diagram predicted for oblate spherocylinders of
ao = 0.1 subjected to the GBK potential (for any set of parameters κ ′,ν and µ).
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For this study we foresaw a conceptual phase diagram (see figure 3.8) where
for a high temperature, defined as T ∗ >> −Umin being Umin the deepest well
of the chosen potential. The phases found should be qualitatively the same as
for the study of Marechal et al., since particles would be freed from their at-
tractions. Therefore, at these temperatures, we should only observe small dif-
ferences in the phase diagram, because our particles behave effectively as soft
oblate spherocylinders. But as the temperature decreases, a plethora of new
metastable phases can appear between the highly packed tilted phase at high pres-
sures (where the entropic term governs the free energy) and the isotropic phase at
very low pressures. Under already mentioned conditions of temperature and pres-
sure for metastable phases, particles are trapped into regions of the phase space
during an unpredictable amount time, resulting in a loss of ergodicity, provoking
a huge hysteresis in the simulations.
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Figure 3.9: Snapshots of phases obtained at high temperatures for oblate sphero-
cylinders under GBK interactions. These phases are also found for hard oblates
of the same anisotropy ao = 0.1 (colours depicting particles orientations)
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3.3 Simulations Details

According to the predicted phase diagram we decided to run MC simulations in
the NPT ensemble along three isotherms for every chosen set of parameters. One
at a temperature T ∗ = −2Umin, one at T ∗ = −1Umin and one at T ∗ = −0.5Umin,
where Umin is again the deepest well of each set (see table 3.2). To have a com-
mon framework all temperatures displayed are scaled with ε (see equation 3.1)
as T ∗ = κBT/ε After the observation of hysteresis in the system during previous
test, we chose to perform MC simulations in the Isotension-Isothermal ensemble
for every desired pressure with a constant number of particles N = 1260, pick-
ing a highly packed tilted phase as the starting point of every one and allowing
changes in shape and volume as described in section 1.2.3 until equilibration. As
a test, we checked that starting from a columnar configuration we can arrive to
the same phases under the same conditions of pressure and temperature, with the
caveat that the tilted phase takes much longer to be equilibrated under this initial
configuration.

3.4 Results

The results of our simulations are aligned with our prediction of the phase dia-
grams. For isotherms at high temperatures we could only find the same phases
hard oblate spherocylinders have in their phase diagram at an anisotropy of ao =
0.1 in the four cases (see figures 3.10, 3.11, 3.14 and 3.16). For the isotherms at
medium and low temperature every type of potential deserves a separate discus-
sion.

At medium or low temperatures we found structures that were stable for more
than 106 MC cycles at intermediate pressures. This means different types of or-
dering favoured by the minimization of energy, this entails the metastability of
the columnar phase at lower pressures than expected for it in the F type poten-
tials. Meanwhile, for the T, C and E types, it meant the appearing of the Uniax-
ial(Fig.3.15), Cubatic(Fig.3.17) and Discotic-Smectic (Fig.3.12) phases respec-
tively. This last two has been previously reported by several authors for different
particles like [103–105]. And the type of aggregation found in T type poten-
tials is present in many systems, from cells [106] to asphaltenes [107] or simpler
polycyclic aromatic hydrocarbons [108] but our model offers the possibility to
engineer their self-assembly simply by choosing the set of parameters wisely.

Though at intermediate pressures these systems are hard to equilibrate, the UF



64 Chapter 3

potential type does not offer any metastable phase at the temperatures investigated
after 106 cycles. The isotherms of this potential have a common feature with
the others, having a stable isotropic phase with increasing temperature at low
packing fractions, corroborating the assumption of our conceptual phase diagram.
The region of the isotherms occupied by metastable phases for other types of
potential is filled here with the columnar phase. This was to be expected since
this configuration minimizes the energy of the system, this fact also pushes the
tilted phase to higher pressures (see fig.3.10).

The low-temperature simulations of the UE potential allowed us to find the
Discotic-Smectic phase (see fig.3.12) for oblate particles at lower aspect ratios
than obtained in previous studies [105], because in our case this phase does not
arise from entropic reasons as it happens for hard particles of higher aspect ratios.
The Discotic-Smectic phase in fluids of discotic particles has been reported very
few times in both experimental [109–111], and simulation studies of parallel par-
ticles or oblate particles with non-discotic shape [112, 113]. This is proof of the
versatility of the OGBK potential to model different kind of fluids. At this tem-
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Figure 3.10: Isotherms of the UF type potential with parameters, κ = 0.10, κ ′ =
2.00,ν = 0.20 and µ = 2.00, showing pressure P∗ in reduced units as a function
of packing fraction η at temperatures T ∗ = 1.38, T ∗ = 2.75 and T ∗ = 5.50 in
solid (red), dashed (green) and dotted (blue) lines respectively. (Error bars within
the points size). Where symbols show different phases as, 2 for nematic, 5 for
isotropic,4 for columnar and 3 for tilted phase.
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perature, we can also observe the persistence of the nematic phase over a wider
range of pressure.

We were able to characterize this phase using parallel and perpendicular dis-
tribution functions, showing the layering of the system as can be observed in the
figure, with a periodicity similar to the thickness of the particles. Meanwhile,
there is no evidence of columns (see fig.3.13).

The effect of the UT type potential at medium temperatures was the absence
of the columnar phase. This shocking feature is shared with isotherm simulated
at medium temperature for the UC type potential. In both cases, it seems that
columns break in order to minimize the energy adopting the more convenient ori-
entation according to each type of potential. For the case of UT at lower tempera-
tures, this means the formation of the Uniaxial phase, where persistent chunks of
columns are stably trapped by the surrounding particles in a T orientation. This
yields a population of particles sharing a common orientation and another one
which takes any of the perpendicular ones(see fig.3.15).

In the case of the UC type potential, particles in the tilted phase are close to
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Figure 3.11: Isotherms of the UE type potential with parameters, κ = 0.10, κ ′ =
0.10, ν = 1.00 and µ = 1.00, showing pressure P∗ in reduced units as a function
of packing fraction η at temperatures T ∗=2.50, 5.00 and 10.00 in solid (red),
dashed (green) and dotted (blue) lines respectively. (error bars within the points
size). Where symbols show different phases as, 2 for nematic, 5 for isotropic,
4 for columnar, 3 for tilted and  for Discotic-Smectic phase.



66 Chapter 3

the C canonical orientation. This is responsible for the unexpected low packings
and high temperatures to which it remains stable and also for the aforementioned

Figure 3.12: Snapshot of a discotic Discotic-Smectic configuration obtained un-
der the chosen potential UE at T = 2.5 and P = 88, where we can observe the
layers disposition of oblate spherocylinders (colours depicting particles orienta-
tions).

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

g
||(

r |
|*
),

 g
⊥
(r

⊥
*)

r||*,r⊥*

Figure 3.13: Parallel and perpendicular distribution functions of the system for
the chosen potential UE at T ∗ = 2.5 and P∗ = 88. Displayed in red solid and
green dashed lines respectively.
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Figure 3.14: Isotherms of the UT type potential with parameters, κ = 0.10,
κ ′ = 1.90,ν =−0.40 and µ =−0.10, showing pressure P∗ in reduced units as a
function of packing fraction η at temperatures T ∗=0.875, 1.75 and 3.50 in solid
(red), dashed (green) and dotted (blue) lines respectively. (error bars within the
points size). Where symbols show different phases as, 2 for nematic, 5 for
isotropic,4 for columnar, 3 for tilted and  for Uniaxial phase.

Figure 3.15: Snapshot of a Uniaxial configuration obtained under the chosen po-
tential UT at T ∗ = 0.875 and P∗ = 43, where we can observe how some columnar
clusters are trapped oriented in the same direction while others lay in any possi-
ble disposition favouring T canonical orientation around them (colours depicting
particles orientations).
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lacking of columnar phase at medium temperatures. At low temperatures, this
drives to the formation of the Cubatic phase, where column chunks of almost cu-
bic proportions are reoriented to minimize the energy of the system (see fig.3.17).

We were able to characterize the Uniaxial and Cubatic phases through the
analysis of the orientational distribution function (g2(r)) between the centres of
particles. This is plotted in figure 3.18 where we can observe that distinctive fea-
tures of the parameter appear at a distance of 1 diameter in the Cubatic phase and
at a distance of 0.6 for the Uniaxial phase. For the sets of parameters studied, the
Cubatic phase has a density of around 6.9+- particles per volume unit, meanwhile
the Uniaxial has 6.0+-. This difference in density provides some clues about the
behaviour of g2(r∗) from r∗ = 0.5 to r∗ = r∗c (cut-off distance of the potential
r∗c = 1+3ao), because it means bigger columnar chunks and/or better packaged
for the Cubatic phase case. Causing the g2(r) to become negative at r∗ = 1 due
to the big population of particles perpendicularly oriented. One may wonder why
the nematic parameter behaves differently in the Uniaxial phase until we under-
stand that their columnar chunks are smaller and/or loosely packaged, causing the
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Figure 3.16: Isotherms of the UC type potential with parameters, κ = 0.10, κ ′ =
0.10,ν =−1.30 and µ = 0.30, showing pressure P∗ in reduced units as a function
of packing fraction η at temperatures T ∗=0.50 1.00 and 2.00 in solid (red), dashed
(green) and dotted (blue) lines respectively. (error bars within the points size).
Where symbols show different phases as, 2 for nematic, 5 for isotropic, 4 for
columnar, 3 for tilted and  for Cubatic phase.
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Figure 3.17: Snapshot of a Cubatic configuration obtained under the chosen po-
tential UC at T ∗ = 0.5 and P∗ = 17, where we can observe how columnar clusters
of roughly cubic proportions tend to be at positions which maximize the number
of particles in C canonical orientation (colours depicting particles orientations).

average population of particles from r∗= 0.6 and further to be randomly oriented.
Another reason that supports this is purely geometric since one oblate particle can
be interacting with more particles in C than in T configuration.
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Figure 3.18: Orientational distribution function g2(r∗), represented by a green
dashed line for the Cubatic phase and red solid line for the Uniaxial phase.In the
chosen potentials UC at T ∗ = 0.5 and P∗ = 17 and UT at T ∗ = 0.875 and P∗ = 43
respectively.
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3.5 Conclusions
After a thorough exploration of the space of parameters applicable to the OGBK
model, a classification of the main possible outcomes is proposed, regarding the
expected self-assembled structures that may arise from the UF , UE , UT and UC
potential types (obviating some intermediate situations). After that, some sim-
ulations were performed to test the hypothesized favoured ordering. Finding
that, at high temperatures, the phases of hard spherocylinders [53] for the shape
anisotropy simulated ao = 0.1 were found (in increasing packing fraction order;
isotropic, nematic, columnar and tilted phase). However, at low temperatures, as
soon as the pressure is low enough the minimization of energy takes over reori-
enting particles into the most stable configurations.

A Discotic-Smectic phase was stabilized for oblates under the UE type po-
tential at packing fractions between the columnar phase and the nematic phase.
A Cubatic phase was found to be stable under the UC type potential between the
isotropic and tilted phases, substituting the columnar and nematic ones. And fi-
nally, a Uniaxial phase was stabilized for the UT type potential substituting, in
this case, the columnar phase.

All in all, these results allow us to think that anisotropic interactions in oblate
particles can be used to tailor the appearance of new phases with interesting struc-
tural features under specific thermodynamic conditions. Likewise, supports the
usage of the OGBK potentials to be used as a model for many different types of
systems.



4
Clusters formation due to directional pair

interactions

When a colloidal suspension is cooled, particles can easily be attached to each
other by Coulombic or Van der Waals forces. As we will see, depending on how
this cooling is performed and some intrinsic characteristics of the system, the
attachment can happen on early collisions or delay some time, resulting in a dif-
ferent type of aggregates and subsequent structures. This often means a fall into

Figure 4.1: Two dimensional projection of an imaginary landscape of configura-
tions.
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a glass phase. The glassy behaviour in soft matter has been studied for many
decades through theory and experiments, but it is far to be completely under-
stood. Despite the effort of many researchers during this time some phenomena
are still elusive to our understanding. This is usually due to the time scales and
non-ergodicity of the systems [114, 115]. A lot of effort has been put to ponder
the influence of thermodynamic and kinetic factors into the gelation phenomena
analysing different scenarios such as, phase separation [116–118], dynamical ar-
rest [119] percolation [114, 117] or even jamming [120]. All this gets even more
complex if we try to analyse the interplay of shape, flexibility and interactions
of its constituents. These features are easily tunable by present colloidal science
opening new and interesting opportunities to research and technological develop-
ment, attracting more interest every day.

Glasses, even when made of purely passive elements, are in a non-equilibrium
state and the transition of a liquid into a glassy state is a fall into a non-ergodic
situation, this fact plays an important part in the evolution followed when a liquid
is quenched into a glassy state. Usually referred to as ”ageing”, this process may
have many causes and outcomes depending on the system under research [115].
This is mostly due to the different regions of the energy landscapes accessible
to every system according to its temperature and previous history. In figure 4.1
we can observe an intuitive representation of that idea, with two-dimensional
representations of the energy and packing fraction of an imaginary system as
functions of the configuration coordinates. Seeing this we can picture how a
system can be trapped into a metastable state depending on the thermodynamic
paths available to it, regarding its temperature and initial structure.

This study aims to shed some light on the phenomena of aggregation and
subsequent ageing. Therefore, to track the time evolution of some observables,
this project will be carried out making use of Brownian Dynamics, performing
explorations in density and temperature observing its influence on the different
paths and outcomes for several systems.

4.1 Methods and tools

This chapter tries to reveal how the directional anisotropy of the interaction po-
tential affects the aggregation dynamics using oblate spherocylinders with the
same anisotropy, ao = 0.2 as defined in section 1.2.1. With this purpose we em-
ploy the OGBK potential thoroughly described in chapter 3 with three different
sets of parameters. Following the same the notation , one would be F type (κ = 5,
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ν = 1, µ = 1), another E type (κ = 0.1, ν = 1, µ = 1) and the last of Kihara type
(κ = 1, ν = 0, µ = 0) where the Gay-Berne factor is reduced to 1, leaving the
potential homogeneous. We will refer to them as F, E and K during this chapter
for convenience. The dependences of this potential with the minimum distance
in the four canonical configurations used as a reference in chapter 2 are plotted
for the three potentials in figure 4.2. The reduced units in this study are the same
of chapter 2 (See section 2.1).

A tool of choice to simulate colloidal particles is usually Brownian Dynamics
(see section1.2.4). This technique allows applying very simple models and very
good characterization techniques, this work is particularly dedicated to investigat-
ing, low-density states for three model potentials (F, E and K). To this end, long
BD simulations in the NVT ensemble were performed in a density range from
0.01 to 0.5 ρ∗ for each potential, at specific temperatures quenching from tem-
peratures of last fluid state found, we refer to it as T ∗f . To speed up the search of
the last fluid point was made monitoring the energy of the systems in MC simula-
tions of a constant number of particles N = 1260 and volume, since in this way the
phase space is better sampled. After this first temperature where the system is not
exclusively composed of monomers and dimers (T ∗c ) is located checking the clus-
ter distribution. This distribution is constructed accounting for a connection when
two particles are closer than dm = 0.3σ what coincides with the potential cut-off.
Then, the study of dynamic observables was performed at 1.0, 0.95, 0.8 0.5 0.1
times T ∗c for each density under study. BD simulations were performed quench-
ing from T ∗f , starting from an equilibrated isotropic configuration of N = 1260
particles. At each temperature structural observables were computed using time
intervals in a rather logarithmic scale in t∗ = t/τ , where τ = σ3µs/kBT , where µs
is the solvent viscosity and σ is the system’s length unit. The time step has been
set in the range 10−4 < t/τ < 2 · 10−3. In the following, unless said differently,
when two features are showed together, they are compared at the least common
maximum time of t∗ = 815 in the case of dynamical observables, averaged over
100 independent time origins. Meanwhile, last configurations obtained in each
case are displayed the individual maximum t∗ achieved after 6 months of CPU
time.

4.1.1 Aggregation model

To understand the aggregation process a very simplified model was applied using
the above-defined connection criterion. In it every cluster, dimer or monomer
count as a single individual, for which the same average aggregation ki and dis-
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sociation k−i rate is associated. Therefore, the time evolution of the number of
individuals Ni can be expressed as:

dNi

dt
=−kiN2

i + k−iNi (4.1)

At low enough temperatures it is assumed that ki >> k−i, hence given an
initial number of particles N0, the evolution of the number of individuals over
time is approximately described by the following equation:

N0

Ni
= N0kit +1 (4.2)

During the simulations, the cluster formation was monitored with the observ-
able Θ, to analyse the aggregation dynamics of the studied states, it was needed an
easy to understand or easy to compute magnitude able to indicate the collapse of
the system. In their work of 2013 Mognetti et al. [121], find a correlation between
intrinsic magnitudes of the systems in his study and the following definition of
the degree of clusterization:

Θ = 1− 〈Nclusters〉
Nparticles

(4.3)

Where 〈Nclusters〉 is the average number of clusters and Nparticles the total num-
ber of particles in the system. Thus, when the system is in the dilute gas phase
where Θ = 0 and when all particles belong to the same cluster Θ = 1.

The value of Θ can be fitted over time with the previous equation taking k =
N0 ∗ ki as:

1
1−Θ

=
N0

Ni
= kt +1 (4.4)

As an example in figure 4.6 are the values of 1/1−Θ as a function of time,
and its fits for the temperatures studied at ρ = 2 for the K potential.This can in
turn be adjusted in an Arrhenius model like:

k = A · exp(
Ea

κBT
) (4.5)

where T is the temperature, Ea the activation energy in this model and A is a
constant related to the frequency of collisions in the correct orientation, what in
our case would mean for the cases of OGBK model, in E or F configurations for
E and F potentials respectively.
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Figure 4.2: Interaction Energy in each of the four canonical configurations for the
E, K and F potentials from top to bottom panels respectively. Where configura-
tions F, E, T, C in red solid, green long dashed, blue short dashed and pink doted
lines respectively.
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4.2 State diagrams

Applying the model described in section 4.1.1, checking the differences in Ea,
we have been able to discern two different regimes of aggregation with simi-
lar features for every potential studied. These regions are outlined in state di-
agrams displayed in figures 4.3, 4.4 and 4.5 for potentials E, F and K respec-
tively. From those, we have to stress that those are not phase diagrams, but rather
out-equilibrium maps. In them we can observe at the densities studied the last
temperature where the system remains fluid Tf and below it the first with persis-
tent clusters Tc. From this point and below, we find the slow aggregation region
(Rs) where the nucleation events are rather uncommon and the size of clusters
appears to be bigger. And finally, below it, the fast aggregation region (R f ) with
opposite features to Rs quickly forming small aggregates that depending on the
density of the system can either diffuse, bond or arrest forming a meta-structure.
The existence of these two regimes for attractive colloids is known from long

Figure 4.3: Non-equilibrium diagram of the E potential, where, different aggre-
gation regimes are shown with straight (Rs) or wavy (R f ) lines background. And
symbols show different states as,2 Fluid,  unique cluster, 4 multiple clusters,
5 monomers and clusters coexistence , � unique meta structure. More detail in
text.
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ago [122, 123] traditionally referred to as diffusion limited aggregation (DLA)
and reaction-limited aggregation (RLA) [118]. The details on the dynamics of
the particles and the structures formed under each potential depict an interesting
map of different non-equilibrium states, where we can find a unique or multiple
clusters either being the only phase present or in coexistence with monomers,
or the very interesting case of a unique meta-structure. In every case with dif-
ferential characteristics for each potential. When temperatures are close to the
fluid region (Rs) the collision rates are higher and the size of the clusters formed
increases with density. But at low temperatures (R f ) the collisions are less fre-
quent but the Ea increases abruptly, feeding the formation of a bigger number of
smaller clusters. The collision rates are also bigger if the system is denser, as the
evolution of the constant A at low temperatures suggests (See fig.4.6). This, in
turn, results in the formation of different long-range structures depending on the
potential applied as we will see in section 4.4.

The different states found are in concordance with the ones found in experi-

Figure 4.4: Non-equilibrium diagram of the F potential, where, different aggre-
gation regimes are shown with straight (Rs) or wavy(R f ) lines background. And
symbols show different states as,2 Fluid,  unique cluster, 4 multiple clusters,
5 monomers and clusters coexistence , � unique meta structure. More detail in
text.
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ments of attractive glasses and gels [115, 124], as will be later discussed, leaving
aside the peculiarities of the potential implemented. One small caveat worth to
mention is that these simulations have no gravity field applied, and this may ex-
plain why we do have coexistence instead of phase separation of colloids and
aggregates [117].

Figure 4.5: Non-equilibrium diagram of the E potential, where, different aggre-
gation regimes are shown with straight (Rs) or wavy (R f ) lines background. And
symbols show different states as,2 Fluid,  unique cluster, 4 multiple clusters,
5monomers and clusters coexistence ,Dtransient clusters, � unique meta struc-
ture. More detail in text.
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4.3 The aggregation model at work

The fitting of k at temperatures close to the fluid region can be misleading due to
its steepness in the early stages of the cluster formation, as can be seen in figure
4.6 where for each temperature the evolution of the number of clusters is fitted
to k as defined in section 4.1.1. This leads to big uncertainties displayed in some
points with big error bars in figure 4.7 where the k fitted for each point is plotted
using ln(k) as a function of 1/T ∗, to obtain the Ea in each range of temperatures.
However, in general, this simplified aggregation model seems good enough to
obtain very relevant information from the systems.

In figure 4.7 can be observed two different aggregation regimes for every
studied density of the K potential, characterized by an abrupt change in Ea. This
featured is observed in the same fashion for the cases of potentials E and F, but
given the small number of sampled temperatures in each case, neither the Ea nor
the exact temperature for the regime transition could be precisely determined.
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Figure 4.6: Fitting of the aggregation rate constant k at density ρ∗ = 0.2 for
the K potential at temperatures T ∗/T ∗c = 0.1, 0.5, 0.8, 0.95 and 1.0, in red solid,
green long dashed, blue short dashed, pink doted and cyan dashed doted lines
respectively. With the nearest black long dashed spaced line near to them being
their fitted line.
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Nevertheless, in figures 4.3, 4.4, 4.5, this two regions of the state diagrams are
marked using different backgrounds. In the case of the Ea, it is to be remarked a
difference of roughly two orders of magnitude between the value it takes in each
regime.

Meanwhile, at low temperature (figure 4.7) is enough to argue that collisions
in the correct orientation increases at higher densities since the constant A does
the same (See eq. (4.5)). The behaviour of the aggregation rates at different
densities can be clarified at temperatures close to the fluid region. With this
purpose, we track in time, the evolution of populations of monomers, dimers
and bigger clusters separately. In figure 4.8 we can observe precisely this for each
potential comparing ρ∗ = 0.1 and ρ∗ = 0.5 at the temperatures studied just below
the fluid region. If particles find each other at distances shorter than the cut-off
of the potential, their interaction may result in aggregation with high probability
if they find each other in a convenient orientation. Oblate particles they have
more probability to collide with a rather parallel revolution axis since these covers
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Figure 4.7: Plot of ln(k) vs (1/T ∗) for the K potential at densities ρ∗= 0.01, 0.1,
0.2, 0.4 and 0.5 in red solid, green long dashed, blue short dashed, pink doted and
cyan dashed doted lines respectively. Where symbol are simulated temperatures
and any plausible straight line drawn would have Ea as slope and A as cut with
the Y-axis.
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more solid angle. To these conditions we should add that depletion interactions
[125–127] would favour the F orientation even if the potential is homogeneous
in all orientations as the K is. This feature can be either promoted if we are
modelling particles with the F potential as we saw in chapter 3, or in the case of
the E potential weakened.

The described behaviour has profound repercussions from the early stages
of the quenching applied, even with this little change in temperature. As we
can see in figure 4.8, almost instantly nearly 20% of the system form dimers
at low densities and stays rather stable but at low densities rapidly decrease in
favour of bigger clusters, except in the case of the E potential where that seems to
take longer. At density, ρ∗ = 0.5 cluster fraction quickly overcomes dimers and
monomers for the three potentials. As we will see in section 4.4 the configuration
obtained at the maximum simulated time, both E and T potential arrive at a single
cluster with very defined short-range structure meanwhile the K potential keeps
a population of dimers and monomers. We can assume as a rule of thumb, that
the F potential will always accelerate the formation of clusters meanwhile the E
potential slows it down respect to the K potential. One may conclude that the K
potential form clusters which loose and gain particles at high rates, so it is rather
a fluid of transient clusters [115]

The dynamical information obtained at time t∗ = 815, would be incomplete
not knowing where do the states come from, to this end was computed the value
of Θ along the simulations to easily show the cluster proportion of the system.
Observing figure 4.10 we can see that at high density ρ∗ = 0.4 when Θ is first
computed at t = 1 it shows values over 0.5 in all cases indicating an abrupt ag-
gregation between the closest neighbours since the beginning. This behaviour
becomes less significant at lower densities where the closest neighbours are fur-
ther.

To compare the evolution of Θ in the different regimes, figure 4.10 shows it at
temperatures T ∗/T ∗c = 0.1 and 0.95 . If we focus on the low temperature (R f ) the
number of clusters is quickly reduced, a feature which is fuelled at high densities
by clusters closeness. In this sense, as we will see, the compactness of the clusters
depends on the potential under study (increasing in order E→K→F in our case).
What is coherent with the delayed aggregation of the formed clusters. If we now
pay attention the evolution of Θ which for the high temperature (Rs), displays
faster aggregation in the also in increasing order E → K → F as was supposed
during the application of the aggregation model. The behaviour of Θ under the K
potential in Rs is also coherent other results, that as we will see indicate a stable
state where particles easily go in and out of big clusters.
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4.3.1 Dynamics

The observables showed in this section were computed as averages over all par-
ticles, so we should take into account that the number and size of clusters and
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Figure 4.8: Fractions of the total number of particles (N) which are monomers
(red solid line), dimers (green long dashed line) and clusters of three or more
particles (blue short dashed line) in the early stages of aggregation. Showed at
ρ∗ = 0.1 and ρ∗ = 0.5 on left and right panels respectively for potentials E, K
and F from top to bottom panels respectively at temperatures just below the fluid
region (see figures 4.3, 4.5 and 4.4).
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the particles that do not belong to any cluster can influence these calculations.
Even if we are studying non-equilibrium systems, we expect to have a very stable
situation after this long simulations, indeed there is no sign of abrupt transition
in any case at t∗ = 815. The most relevant result from the observations of the dy-
namics is that at temperatures just below Tf , the K potential still resembles a fluid
when even the majority of the particles of the system form a cluster meanwhile
in the E and F potentials, particles show a subdiffusion typical of a gel [128], as
can be seen in figure 4.9. This distinctive state is marked on figure 4.5 with black
pentagons.

For the K potential at ρ∗ = 0.4, and in the same range of temperatures, the
information obtained from the mean squared displacements (fig. 4.12) and from
the self scattering function (ISF) in figure 4.11, are the two sides of the same
coin which corroborates the differences between the two regimes. This to figures
serve as an example of the common behaviour of the three potentials, featured
by the existence of two different relaxation times, and a transition from a fluid
to a very subdiffusive regime as the temperature is reduced. The χ4(t) was also
used to try to disentangle how the aggregates of each potential are reflected on the
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Figure 4.9: Mean squared displacement at ρ∗ = 0.4 at Tf and Tc, in red solid and
green long dashed lines respectively, for potentials E, K and F from left to right
panels respectively.
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collective behaviours of the system, but unluckily this task seems to need more
extensive simulations to decorrelate the effect of thermal history and the different
orientations of the potentials, and the χ4(t) is not shown here.

4.3.2 Structural Information
From chapter 3 we know that E and F potentials tend to form specific structures
at low enough temperatures. To investigate the possible manifestations of this in
the final states the radial distribution function is used inspect the clusters in the
search for this kind of internal ordering because this should leave a characteristic
signature in it. To show, this g(r) are plotted at different temperatures for an
intermediate density of ρ∗= 0.2 in figure 4.13, for the E, F and F potentials.

The E and the F potential both show many peaks at distances bigger than
r∗ = 0.1, in the case of the E potential the peaks are signaling a layered structure
meanwhile the peaks of the F seem to be signaling a columnar structure. In both
cases, the structures at distances bigger than r∗ = 0.1 obtain preponderance as
the temperature increases, which indicates bigger clusters. Is also remarkable
how the peak at r∗ = 0.1 for the F and the peak at r∗ = 0.1 for E potentials are
present with similar intensities at all temperatures indicating that even a heavy
quench is not able to trap particles in rather random orientations.

For the Kihara potential, we find a peak at low temperatures around 0.2 indi-
cating that particles are attached in an F configuration and another peak at r∗= 1.0
indicating an E configuration. As the temperature increases, these two peaks dis-
appear indicating more randomly oriented configurations in more open structures.

In general, if we observe the evolution of the structures with temperatures
they seem coherent with a transition from DLCA to RLCA due to the range of
the structures formed [129, 130].
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Figure 4.11: The self part of the intermediate scattering function (s-ISF) in the K
potential at ρ∗ = 0.4 and temperatures T ∗/T ∗c = 0.1, 0.5, 0.8, 0.95 and Tf in red
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4.4 Configurations
In figures 4.14, 4.15 and 4.16 we can observe snapshots of the last states achieved
at the points marked with symbols in the state diagrams of potentials E,F and K
(Figs, 4.3, 4.5, 4.4 respectively). In them, we can visually inspect the final struc-
tures after long aggregation processes and check that configurations observed are
coherent with the obtained results. Even if the shape and internal ordering of
the aggregates are different, the states with similar features are named the same.
However, we can observe that the F potential tends to form highly compact clus-
ters since, as we can see they are composed of columns. The E potential form
lenticular clusters due to its tendency to align particles facing edges. And in the
case of the K potential, the clusters lack any internal producing rather spheric
clusters.

It would be interesting to perform a more detailed study on the differences
between the transitions from DLCA to RLCA [131] for the different potentials
and densities since we observe that at very low densities ρ∗ = 0.01 there is a
transition between similar states (coexistence of monomers and clusters and an
apparent fluid of clusters) for the three potentials, but in denser systems the inter-
actions start to play their part shaping clusters and meta-structures.

Snapshots from the states at the two higher temperatures from density ρ∗ =
0.1 upwards, for the K potential, displayed a state that to our analysis is indis-
tinguishable from vapour-liquid coexistence [132, 133]. However, for equivalent
temperatures in the E and F potentials, it is showing a few clusters, without co-
existence with monomers. These snapshots can be compared with asymptotic
evolution of Θ for these temperatures in figure 4.10 and make us assume that any
monomer displayed in the pictures in the cases of E and F potentials will become
part of a cluster rather than coexist with them.

The multiple clusters regions showed in the snapshots for the three potentials
manifest different dynamic, structural and kinetic features, but even if they may
look like a fluid of clusters, further investigation would be necessary to label them
as it [134].

At temperatures T ∗/T ∗c = 0.80 and below in all systems clusters seem to ei-
ther aggregate or become arrested, therefore its size and shape play a decisive
role in the structures found. It seems that the compactness of the columnar clus-
ters formed in the F potential help to form more open structures, meanwhile flat
clusters of the F potential tend to align more reducing the space between them.
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Figure
4.15:

Snapshots
of

the
finalconfigurations

obtained
for

the
E

potentialatrelevantstates.
From

leftto
right,

densities
ρ∗

=
0.01,0.2,0.3,0.4

and
0.5

from
top

to
bottom

tem
peratures

T
∗/T

∗c
=

1,0.95,0.8,0.5,0.1
(directions

referenced
from

textorientation,and
colours

depicting
particle

orientations).
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4.5 Conclusions
In this work, we compare three different potentials E, F and K, in the context
of colloidal suspensions to gain some insight into the role played by anisotropic
interaction potentials. In this chapter are investigated a rather wide range of den-
sities, making in quenches at significant temperatures. On the one hand this num-
ber of variables broadly explored, there can be found many similar features, as
are the two regimes of aggregation, Rs where big clusters are slowly formed in
cases of high densities easily integrating all particles in the system and R f where
small clusters are quickly formed and at high enough densities depending on the
characteristic structure of the aggregates reaching percolation. Leaving aside the
shape of the clusters, the estates found at ρ∗ = 0.01 were qualitatively the same
due to the low rate of collisions. On the other hand, the Arrhenius type aggre-
gation model showed a direct correlation of the collision rate with the density,
which would yield in a more effective aggregation in the case of the F potential
than in the K, or less effective than the K for the E potential.

The radial distribution functions are indubitable proof that anisotropic inter-
actions control the internal structure and shape of the clusters, forming almost
lenticular aggregates in the case of the E potential, columnar aggregates in the
F potential and randomly oriented ones in the case of the K potential. However,
its size and possible meta-structures seem to rely on the thermodynamic history,
especially we could check that deeper quenches yield smaller clusters.

The K potential showed a different behaviour just below the fluid region, com-
pared to the E and F types, where the monomers tend to disappear. The K po-
tential seems to achieve coexistence of monomers and a unique cluster, to which
the reversibly attach and detach, further research is needed to conclude if it is a
vapour liquid coexistence [132, 133].



5
Coarse grain model of a clay

Clays are present in many common products as paper, synthetic plastics or ad-
hesives. Their applications are vast in number [135], from industrial drilling or
surface coatings to drug delivery [136, 137]. Among them, the most common
use is to control the rheological properties of consumer products, due to its rich
behaviour in water and other fluids suspensions. This study is focused on the
specific case of laponite [138], which is usually modelled as a thin disk of 1nm
of height and 25nm of diameter, with its rim positively charged and its faces
negatively charged (See figure 5.1). In laponite suspensions, the salt concentra-
tion is used to control the formation of different phases, modulating the effective
charge [139] as DLVO theory [140, 141] predicts. The variance of the effective

Figure 5.1: Laponite modelled as a cylinder of 1nm of height and 25nm of diam-
eter, with its rim positively charged and its faces negatively charged
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relative face to rim charge ratios is key to understand the formation of the differ-
ent phases this substance can show [142], such as gels, repulsive and attractive
glasses or Wigner glasses. The competition between short-range attraction and
long-range repulsion has motivated several studies investigating how the charges
in laponite surfaces affect its aggregation and phase behaviour [143–145], but it
is now clear that it is the patchy attractive interactions, what controls the phase
behaviour and the long-term stability of the system [142].

To perform full atomistic MD simulations large enough in time and number of
particles, to observe interesting results of multi-aggregate systems is out of reach
for presently available computational facilities, therefore a coarse grain approach
is needed. The attempt of Dijkstra et al. [100] to model laponite as an infinitely
thin disk with a quadrupole charge was enough to obtain the nanoporous struc-
ture known as ”house of cards”, and recently beads models [146, 147] have been
successful in this aspect, arranging different charged spheres forming a flat disk
shape. These models are easier to implement than effective pair interaction poten-
tials but more computationally expensive. Thus motivating the use of potentials
like the Gay-Berne, as in these works of Ebrahimi et al. [148,149] to fit it to atom-
istic simulations data. In this chapter the OGBK model explored in chapter 3 is
extended to a laponite model, fitting its parameters to mimic the interactions that
arise in this clay. With a functional form similar to others obtained with different
approaches [150].

5.1 OGBK adapted to a clay

After a shallow observation of the interaction of Laponites, the attraction in a T
configuration seems one of the most relevant features. This behaviour as we saw
in chapter 3 can be achieved through many combinations of parameters of the
OGBK model that satisfy the condition of having the global minimum in a ”T”
configuration.

In a first naive approach one can take the aspect ratio given by the manufac-
turer of this synthetic clays which is L/D = 0.0368 and look for a combination
of parameters that has the global minimum in a T resulting E, F and C configura-
tions much less attractive. This choice have a few caveats, the first one is that we
can not avoid having a C configuration to be attractive and the second is inherent
to the OGBK formulation since the set of parameters that allow for the T config-
uration to be the more attractive also implies the E to be less repulsive than the C
which is rather unphysical. Therefore, to avoid this, the model was reformulated
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into a soft repulsive potential plus an attractive patchy for the ”T” configuration.
All this is modulated by the Gay-Berne factor, keeping the Kihara approach to
oblate particles. To explain it in a simpler manner, the previous Kihara formula-
tion was separated into repulsive and attractive terms and the latter multiplied by
Gaussian function with angular dependence in a similar approach to the ones of
previous patchy models [151, 152]. If we take the revolution axis of two oblates
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Figure 5.2: Patched type potential with parameters, (κ = 9), (ν = 1.9), (µ =
0.2) with shape anisotropy ao = 0.0368 and ao = 0.15 in top and bottom panels
respectively. The configurations F, E, T, C in red solid, green long dashed, blue
short dashed and pink doted lines respectively.
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ui,uj and the normalized vector pointing from one centre to the other r due to
particle symmetry, allows us to calculate the angles they form without any loss of
information and operate with them in the following way:

ai j = arccos(uiui)−π/2
air, jr = arccos(|uir|)+ arccos(|ujr|)−π/2

(5.1)

Those angles are used as arguments for a Gaussian function, which takes values
of one for ”T” configurations and zero for any other:

P(ai j,air, jr) =
[exp(−ai j

2

σP
)−W ] · [exp(−air, jr

2

σP
)−W ]

[1−W ]2
(5.2)

Where W = exp(−[π/2]2/σP) plays the role of a normalization constant and
σP gives us a measure of the angular width of the patch. For our purpose, it
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Figure 5.3: Detail of potential energy (U∗ = 10.96331×U/ε) in the T con-
figuration for the P potential for oblates of ao = 0.0368 in green long dashed
line, of ao = 0.15 in blue short dashed line and this same curve displaced
−(0.15− 0.0368)/2) in pink doted line. Red solid line are simulation results
from [150].
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was related to the aspect ratio of the oblates particles (see section 1.2.1) in the
following way:

σP = 2
[
arctan

(
σ

L

)]2
(5.3)

Now the final expression for the potential is:

EOGBPK = εGB

[((
σ

dm

)12

−
(

σ

dc

)12
)
−

((
σ

dm

)6

−
(

σ

dc

)6
)
·P(ai j,air, jr)

]
(5.4)

This is modulated as before by the Gay-Berne factor resulting in an oblate
Gay-Berne Patched Kihara (OGBPK) potential. And finally, it is truncated and
shifted at dc (cut-off distance) to make it continuous.

Now we are ready to set the parameters needed to provide the desired rela-
tive anisotropic interactions. To do, so we pick now the set of parameters κ = 9,
ν = 1.9 and µ = 0.2, selected after filtering the data obtained from a similar ex-
ploration of parameters in the same ranges as the one performed in section 3.1,
to meet the needs of this study. This set of parameters produce what we will
call from now on P potential, which provides a ratio of −1.15 (negative sign
due to opposite sign of energy) between the energy in F configuration at distance
r∗ = 0.24 (positive) and the minimum energy in the T configuration at ao = 0.15
(negative). Which is as close as we can get to the given by Odriozola et al. [150]
−1.23 for an average superficial charge. After that, we only need to scale the
temperatures to have a ”T” configuration well of identical depth to anyone we
desire. Meanwhile, other angular configurations are now repulsive and there-
fore at least qualitatively similar to laponite. But even after temperature scaling
the potential shape are far from previous models accounting for interactions with
ionized media (See fig.5.3). In those models [150, 153] repulsions appear to be
softer and attractions, resulting in wider potential wells. In the OGBK model this
is controlled by the aspect ratio, therefore to obtain functional shapes similar to
previous models, we need to simply increase the anisotropy up to ao = 0.15. A
comparison of the same potential for the two anisotropies is displayed in figure
5.2, where we can see the potential energy as a function of the separation of the
particles in the four canonical orientations, in it we can observe that repulsions
also become softer. This motivates us to pick this anisotropy to run the simula-
tions of the study.
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To compare the data from Odriozola et al. [150] to the shape of the P po-
tential we plotted figure 5.3 where we can observe that the increase in aspect
ratio also displaces the location of the minimum. Nevertheless, if we displace the
curve back exactly half the difference of the aspect ratios ((0.15−0.0368)/2) we
observe a good overlap of simulation data and our functional form. Being this
just a graphical check, not implying that the potential used in our simulations is
corrected in that way.

5.2 Simulations details
Simulations at a constant number of particles N = 990, were performed in the
Isotension-Isothermal ensemble to check that particles under this potential behave
as expected. From results of chapter 3 we know that the phases to be found at
high enough temperatures would be similar to those found for hard oblates [53]
of the same ratio which in this case (ao = 0.15) yields isotropic, columnar and
tilted phase. To roughly map the location of these phases isotherms lowering
pressure at temperatures of T ∗ = 3.42, 3.0, 2.5, 2.0, 1.5, 1.0 ,0.8, 0.6, 0.38 and
0.2 , where T ∗= T/ε , starting from a tilted configuration (as a sanity check at the
same pressures in T ∗ = 3.42, simulations starting from a columnar phase were
run, arriving at the same phases). After a maximum of 8× 105cycles to reach
equilibrium in terms of energy and nematic order parameter, this states (from
points in figure 5.4) showed stability during 8×105 cycles more. Where a cycle
means N trials to move a particle (translate or rotate it) randomly chosen, with
probability (1/N) of this move to become instead a trial to change the shape of
the simulation box.

5.3 Results
The phases found at high temperatures meet our expectations displaying isotropic,
columnar and tilted phases (fig.5.4). But this results have a drawback when we
aim to reproduce the phase behaviour of laponites since a nematic phase [154]
should appear at intermediate packing fractions between the isotropic and the
columnar regions. Absent in this case due to the employed anisotropy ao.

Meanwhile at low temperatures in figure 5.4 can also be located new unex-
pected biaxial phase (See figure 5.5) with three main populations of particles
oriented perpendicularly to the other two as the angular distribution functions
show. As we saw in section 3.4, at low temperature when the minimum energy



5.3. RESULTS 99

in T configuration is a global minimum, we can find the uniaxial phase. But as
it appears when we add to this, the repulsion in the rest of configurations, the
system reaches higher ordering forming this new phase.

This is coherent with the information given by the radial distribution func-
tions g(r) and g2(r) when we compare them simultaneously (see Fig. 5.6). When
the later reaches values close to 1 it means that most particles at these values of
r are parallel, meanwhile values close to −0.5 would mean particles are oriented
perpendicularly. Therefore, observing figure 5.6 we can say that particles are or-
dered at short distances in four main orientations. At r∗ = 0.3 they are parallel to
each other, but this changes abruptly after r∗ = 0.6 where they are perpendicular.
The small peaks before r∗ = 0.8 and at r∗ = 1.2 also represent particles oriented
mostly perpendicular or parallel respectively to a particle set in the origin. This
information is perfectly concordant with what can be observed in the snapshot,
where we can observe three main populations of particles in three main orien-
tations. Staring from any particle we will find particles of its same population
oriented parallel closer than r∗ = 0.6. Then at bigger distances particles from a
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Figure 5.4: State diagram of the P potential obtained expanding a tilted configu-
ration lowering pressure with NPTMC simulations, symbols indicate2 Isotropic,
 Biaxial,4 Columnar phase,5 Tilted phase.
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Figure 5.5: Snapshot at P∗=10 and T ∗=0.38 for the P type potential (left), together
with an histogram of the angular distribution of the particle orientations in 3D
(colours depicting particles orientations).
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Figure 5.6: g2(r) and g(r) in green dashed and red solid lines respectively. At
P∗=10 and T ∗=0.38 in the P potential corresponding to a biaxial phase.
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second population would be oriented perpendicularly and at distances closer than
r∗ = 0.8 a third population perpendicular to both initial ones. Finally, at distances
around r∗ = 1.2 some particles from the first population still retain some degree
of orientational order. This distribution functions show similar qualitative fea-
tures as the ones provided in the literature for the particle arrangement known as
”house of cards” [100, 150, 155], this features seem to be strengthened in the bi-
axial state due to higher compactness and therefore ordering and could be related
to birefringence properties found in laponites [156] when they hold reminiscent
order from a nematic phase.

5.4 Conclusions
To overcome the difficulty of a coarse grain model potential, to recreate parti-
cles having parts of its surface holding an opposite charge at the same time it
is proposed a modification of the OGBK potential trough and angular function.
This modified coarse grain model shows similar functional shape to those ob-
tained with charged beads distributed in a disk shape. The simulation results
indicate that this potential easily produces the T shape conformation of particles
at low temperatures, and what is even more interesting, a biaxial state at low tem-
peratures, roughly between packing fractions η = 0.3 and η = 0.4, where we
can observe three main populations of particles standing in perpendicular orien-
tations to the rest. At high temperatures, the phases obtained confirms that even
after this modification of the model, the phase behaviour is similar to hard oblates
spherocylinders of the same shape anisotropy ao = 0.15. This makes the model
deviate from the expected phase behaviour of laponites where the nematic phase
is expected [154]. This fact motivates the implementation of different functional
forms in future studies, i.e. of Yukawa type.
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Final Conclusions

The main conclusion of this thesis is that the interplay between shape anisotropy
and interaction anisotropy of colloidal particles can lead to different scenarios
according to thermodynamic state of interest. Through fine-tuning of particles
shape and interactions, their self-assembly can be controlled to obtain a desired
outcome. This thesis investigates the reach of specific properties of individual
particles into the behaviour of the substance they compose. From all the results
obtained the most important findings are concisely exposed below:

1. The ability of prolate particles in nematic liquid crystal phases to diffuse
faster than their oblate counterparts can be relatively quantified in different
ways.

2. An ellipsoidal Gaussian distribution function can accurately model the ap-
parent non Gaussianity of the diffusion of spherocylinders at intermediate
times.

3. The same known phases of hard oblate spherocylinders appear at high
enough temperatures for the OGBK model at shape anisotropies of 0.1.

4. Smectic-discotic state can be achieved if the edge to edge interaction is an
absolute energy minimum of the possible relative orientations.

5. Cubatic state can be achieved if the cross configuration interaction is an
absolute energy minimum of the possible relative orientations.
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6. Uniaxial state can be achieved if the ”T” configuration interaction is an
absolute energy minimum of the possible relative orientations.

7. Oblate spherocylinders display different aggregation states in the same ther-
modynamic conditions if the intensity of their interactions is anisotropic.

8. Their aggregation rates increase if the more intense interaction is oriented
towards the revolution axis of the oblate spherocylinder and decrease if it
is oriented toward the edges of it. Provoking a subdiffusive regime in both
cases at high temperatures where aggregation still occurs.

9. Aggregates of columnar shapes can be obtained in oblate spherocylinders
where face to face interaction is an absolute energy minimum of the possi-
ble relative orientations.

10. Aggregates of flat shapes can be obtained in oblate spherocylinders where
edge to edge interaction is an absolute energy minimum of the possible
relative orientations.

11. The phases obtained at low density and temperature for oblate spherocylin-
ders is dominated by anisotropies in their pair interactions, due to the for-
mation of clusters with different shapes.

12. The proposed modification of the OGBK model is able to qualitatively re-
produce the behaviour of laponite at low density and temperature. Form-
ing a new phase (Biaxial) with similar ordering to the previously known
”House of cards” structure, but higher packing fraction.
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P. Levitz, “On Viscoelastic, Birefringent, and Swelling Properties of Laponite Clay Sus-
pensions: Revisited Phase Diagram,” Langmuir, vol. 14, pp. 4718–4723, aug 1998.



115

Contributions to the scientific
community

List of peer-reviewed publications

1. Morillo, N., Patti, A., & Cuetos, A. (2019) Brownian dynamics simulations
of oblate and prolate colloidal particles in nematic liquid crystals. J. Chem.
Phys. (Accepted 6 May 2019)

2. Cuetos, A., Morillo, N., & Patti, A. (2018). Fickian yet non-Gaussian dif-
fusion is not ubiquitous in soft matter. Physical Review E, 98(4), 042129.

3. Cuetos, A., Morillo, N. & Martı́nez-Haya, B. Coadsorption of charged col-
loids at air-solution interfaces: a bidimensional coarse-grained simulation
study (Manuscript in preparation)

4. Todinova, A., Contreras-Bernal, L., Salado, M., Ahmad, S., Morillo, N.,
Idı́goras, J., & Anta, J. A. (2017). Towards a universal approach for the
analysis of impedance spectra of perovskite solar cells: equivalent circuits
and empirical analysis. ChemElectroChem, 4(11), 2891−2901.

Oral and poster communications to:

1. II Workshop de Simulación Molecular

2. STATPHYS 26

3. IX J2IFAM

4. FisEs’17

5. Thermodynamics Conference 2017

6. J2IFAM 2018

7. IV Workshop de Simulación Molecular



116



117

Acknowledgements/Agradecimientos

This three years journey would not have been possible without the support of
many people, firstly from my supervisor. Cuando conocı́ a Alejandro Cuetos in-
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