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Phase behaviour of hard board-like particles†

Alejandro Cuetos,a Matthew Dennison,b Andrew Masters,c and Alessandro Patti?c

We examine the phase behaviour of colloidal suspensions of hard board-like particles (HBPs)
as a function of their shape anisotropy, and observe a fascinating spectrum of nematic, smectic,
and columnar liquid-crystalline phases, whose formation is entirely driven by excluded volume
effects. We map out the phase diagram of short and long HBPs by gradually modifying their shape
from prolate to oblate and investigate the long-range order of the resulting morphologies along
the phase directors and perpendicularly to them. The intrinsic biaxial nature of these particles
promotes the formation of translationally ordered biaxial phases, but does not show solid evidence
that it would, per se, promote the formation of the biaxial nematic phase. Our simulations shed
light on the controversial existence of the discotic smectic phase, whose layers are as thick as
the minor particle dimension, which is stable in a relatively large portion of our phase diagrams.
Additionally, we modify the Onsager theory to describe the isotropic-nematic phase transition of
freely rotating biaxial particles as a function of the particle width, and find a relatively strong first-
order signature, in excellent agreement with our simulations. In an attempt to shed light on the
elusive formation of the biaxial nematic phase, we apply this theory to predict the uniaxial-biaxial
nematic phase transition and confirm, again in agreement with simulations, the prevailing stability
of the translationally ordered smectic phase over the orientationally ordered biaxial nematic phase.

1 Introduction
Colloids are two-phase systems consisting of a dispersed phase,
usually droplets or particles, suspended in a continuous medium.
They are ubiquitous in our everyday life and play a paramount
role in a rich variety of technological applications, especially re-
lated to food, paint and cosmetic formulations. According to the
IUPAC, at least one of the dimensions of the molecules or parti-
cles in the dispersed phase should be roughly between 1 nm and
1 µm1. Particles of this size experience stochastic collisions with
the molecules of the dispersing medium. The resulting random
drifting stems from a thermal energy contribution of the order of
few kBT per particle and is referred to as Brownian motion, af-
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ter the British botanist Robert Brown. In 1827, Brown observed
pollen grains suspended in water and performing persistent and
random jump-like moves2. Colloids can be classified according
to the physical state of both the continuous and dispersed phases.
For example, emulsions and foams are dispersions of, respectively,
small liquid and gas droplets in an other liquid. When the dis-
persed phase consists of very small solid particles suspended in a
liquid, the colloid is generally referred to as suspension. A cru-
cial requirement to effectively use colloids in many relevant ap-
plications is their thermodynamic and kinetic stability, which is to
large extent determined by the delicate balance between entropic
and enthalpic contributions to their mutual interactions. Control-
ling these interactions by, for example, adding an electrolyte or
a polymer that modifies the particle surface or shape, determines
a rich phase behaviour and is key to exploiting, e.g., optical, me-
chanical, and thermal properties of a colloid. As a consequence,
colloids can show a very intriguing phase and aggregation be-
haviour, surprisingly similar to that of molecular and atomic sys-
tems. This similarity has a striking relevance in materials science:
it is crucial to unveiling a number of dynamical processes, such as
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crystallisation, involving atoms or molecules that are too fast to
be detected via conventional microscopy, and provides the oppor-
tunity to design functional materials for advanced electro-optical
devices3.

Colloidal suspensions of anisotropic particles are particularly
attractive for a wide spectrum of applications, including, for in-
stance, photonic band gap materials to manipulate the propaga-
tion of light and control the emission of photons at visible wave-
lengths4. Although methods to synthesise anisotropic colloidal
particles have been known since the 1990s, most of them lacked
the features (high yield and shape selectivity) to efficiently ex-
ploit technological applications5–7. The recognition of the im-
pact of the particle shape anisotropy on engineering materials
with novel or improved properties sparked off the development of
chemical8, physical9, and biosynthetic10 techniques to fabricate
ad hoc building blocks, such as superballs11, lock-and-key par-
ticles12, fused spheres13, and cuboids14–17. Such novel shapes
enabled the further enrichment of the already complex phase be-
haviour of colloids, which includes liquid crystals (LCs)18, equi-
librium gels19, and porous liquids20. Side by side with experi-
ments, theory and simulation have greatly contributed to under-
standing the effects of shape on the phase behaviour of colloidal
suspensions, often offering preliminary screenings through the
huge number of experimental variables21–24. Very recently, Aven-
daño and coworkers reported the fascinating phase behaviour of
a less conventional family of anisotropic particles: interlocking
planar nanorings25. These nonconvex colloidal particles are able
to form smectic LCs of remarkably high porosity, which have a
very promising potential in gas adsorption and storage.

Biaxial colloidal particles, such as bent-core and board-like par-
ticles, displaying three orthogonal internal axes, have the po-
tential to form a particularly interesting LC phase, the biaxial
nematic phase, NB, which exhibits an orientational order along
three directors and thus two distinct optical axes. Nevertheless,
stable NB phases are rarely observed because competing struc-
tures, such as the smectic (Sm) phase, limit or preclude its exis-
tence. Theory indicates that some particle geometries might be
more successful than others in observing this phase. In particular,
the self-dual shape, a geometry almost exactly in between prolate
and oblate, was shown to promote the formation of the NB phase,
although into a relatively limited region of stability26. Variational
cluster expansion theory and Monte Carlo (MC) simulations ap-
plied to binary mixtures of hard lath-shaped particles, perfectly
aligned along their major axis, suggested that the stability of the
NB phase could be enhanced by size dispersity27. These prelim-
inary intuitions were later experimentally confirmed by Vroege
and coworkers, who observed a remarkably stable NB phase in
colloidal suspensions of board-like goethite particles with self-
dual shape28. Surprisingly, the range of stability found experi-
mentally significantly exceeded that predicted by previous theo-

ries and simulation studies26,27 and was later ascribed by Belli
et al to the remarkable size dispersity of the goethite particles29.
The mean-field theory applied by Belli and based on the Zwanzig
restricted orientation model30, pointed out the crucial role of
polydispersity in stabilising the NB phase, which was found to be
metastable with respect to the Sm phase for monodisperse HBPs.
Adding a non-adsorbing depletant to a pure system of HBPs was
shown to have a similar effect and enhance the stability of the NB

phase significantly31.

If we restrict our attention to monodisperse systems, many
hard biaxial particles investigated over the last twenty years were
shown to form stable NB phases. For instance, Camp and Allen
detected a stable NB phase in suspensions of hard biaxial ellip-
soids32, while Peroukidis and Vanakaras in fluids of hard sphero-
platelets33. This particular geometry, consisting of board-like par-
ticles with rounded corners, was also examined, in the context of
the scaled-particle theory (SPT) within the Zwanzig model, by
Taylor and Herzfeld26. By incorporating translational ordering
into the framework of SPT, these authors noticed a remarkable re-
duction in the stability region of the NB phase, which was almost
completely replaced by the uniaxial and biaxial Sm phase. As far
as HBPs are concerned, Vanakaras et al observed the existence of
the NB phase in monodisperse systems of perfectly aligned HBPs,
which were not allowed to rotate about their two shorter axes27.
Escobedo and coworkers calculated the phase diagram of freely
rotating oblate and prolate parallelepipeds with square cross sec-
tion and unveiled a rich variety of LC phases, such as the cubatic-
like parquet phase, but did not observe the NB phase34,35. The
more recent work by Belli et al, using the Zwanzig model, re-
vealed the existence of the NB phase of HBPs with self-dual shape
and length-to-diameter ratio L/W = 331. All these computational
and theoretical studies suggest that a biaxial geometry is most
likely a necessary, but not always sufficient, condition to stabilise
biaxial phases. Additional degrees of freedom, such as particle
alignment, size and shape dispersity, can dramatically alter the
phase behaviour of HBPs. Despite the widespread interest within
the LC community, the phase behaviour of monodisperse freely-
rotating HBPs is far from being fully understood and the question
whether these particles can actually form stable NB phases re-
mains open.

Additionally, our results confirm the existence of the long-
debated discotic Sm phase, consisting of layers as thick as the
particle minor axis. While the most common Sm phases are char-
acterised by layers as thick as the particle length, we observe the
formation of Sm phases whose layers’ thickness is given by the
minor particle dimension, T . This intriguing phase, referred to as
discotic or oblate smectic (Sm−) LC, was first predicted by Taylor
and Herzfeld, who applied scaled particle theory in conjunction
with a cell description of translational order to study the phase
behaviour of mutually orthogonal hard spheroplatelets26. As far
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as hard cuboids are concerned, the Sm− phase was detected in
systems of hard parallelepipeds (L =W = 5T ) by lattice MC sim-
ulations within the restricted-orientation Zwanzig model36 and
later predicted by the Fundamental Measure Theory (FMT) also
in the context of the Zwanzig approximation37,38. John and
Escobedo performed off-lattice MC simulations of hard tetrago-
nal parallelepipeds with unrestricted orientations and provided
a beautiful picture of their rich phase behaviour34,35. However,
these authors could not confirm the theoretical predictions on the
existence of the Sm− phase, suggesting that the stability of this
phase could be due to the reduced orientational freedom embed-
ded in the FMT. Our simulation and theoretical findings shed light
on the controversial existence of the Sm−, which, at least for the
geometries examined here, exhibits a relevant stability and fur-
ther enriches the already complex phase behaviour of HBPs.

In the present study, we perform extensive MC simulations of
freely rotating HBPs to unveil their intriguing phase behaviour,
which is characterised by a plethora of liquid crystal phases and
peculiar oblate-to-prolate-to-oblate phase transitions. We also
propose an expansion of the Onsager theory18 to investigate the
isotropic-to-nematic and uniaxial-to-biaxial transitions in suspen-
sions of HBPs. While the latter transition is analysed in the con-
text of HBPs perfectly aligned along their major axis, as previously
assumed also by other researchers27, the isotropic-to-nematic
transition does not involve any possible restriction on the ori-
entation of the particles, which are left free to rotate. This is
a paramount difference with respect to other theoretical treat-
ments that predicted the isotropic-to-nematic transition by em-
ploying the restricted-orientation Zwanzig model, which allows
for only six orthogonal orientations29,36–38. Unfreezing the par-
ticle’s degree of freedom is crucial to fully understand the na-
ture of the isotropic-nematic coexistence region, which is found
to be significantly larger than that predicted by previous studies
on identical29,31 or similar26,39 geometries, and reveals a signif-
icant first-order signature. Moreover, one novel feature of the
present theory, as compared to previous virial expansions on ax-
ially symmetric particles40, is that in the nematic phases, we do
not assume free rotation about the aligned molecular axis - i.e.
we take into account the molecular biaxiality order parameter.

2 Simulation

2.1 Model

We perform simulations of systems containing between N = 1100
and N = 3500 freely rotating HBPs with width W , thickness T ,
and length L. In particular, T is kept constant and is the unit
length of the systems studied. Two different particle lengths are
considered here: L∗1 ≡ L1/T = 9 and L∗2 ≡ L2/T = 12. Finally, the
particle width, W ∗ ≡W/T , varies in the range 1≤W ∗1 ≤ 9 and 1≤
W ∗2 ≤ 12, for particles with reduced length L∗1 and L∗2, respectively.
By tuning W ∗ in this range, the particle shape gradually changes

from a prolate (rod-like) to an oblate (plate-like) geometry, as
shown in Fig. 1.

Fig. 1 Model HBPs with thickness T , length L, and width W = T , 3T ,
and L, from left to right. T , the unit length, is kept constant in all the
systems studied in this paper. The particle length in this figure is L = 9T ,
but systems containing longer particles (L = 12T ) have also been
investigated. The particle width is a simulation parameter assuming a
spectrum of values between W = T (rod-like, prolate particles) and
W = L (plate-like, oblate particles). x̂, ŷ, and ẑ are the unit vectors along
W , T , and L, respectively.

2.2 Methodology

We performed MC simulations in the isobaric-isothermal ensem-
ble constraining a costant number of particles into a rectangular
box with periodic boundaries. Phase transitions were usually de-
termined by gradually expanding a solid crystalline (K) phase up
to an isotropic (I) phase, but some systems were also compressed
to enhance the accuracy of the phase boundaries. The range of
pressures explored is very broad and depends on the particle ge-
ometry (see ESI†). Each MC cycle consisted of N attempts of dis-
placing and/or rotating the randomly selected particles, plus an
attempt to modify the three box lengths independently. Trans-
lational and rotational moves as well as volume changes were
accepted if no overlap was detected. To test for particle overlaps,
we applied the separating axes method described by Gottschalk
et al.41 and adapted by John and Escobedo to study the phase be-
haviour of tetragonal parallelepiped particles with square cross
section34. We refer the interested reader to the Appendix of
Ref.34 for further details. During the equilibration run, we calcu-
lated the uniaxial (S2) and biaxial (B2) order parameters as well
as the packing fraction η = Nv0/V , with v0 = T ×W ×L and V the
volume of the simulation box. The systems were considered to
be equilibrated when η , S2 and B2 reached a steady value within
reasonable statistical fluctuations.

We have calculated the nematic order parameter and nematic
director associated to each molecular axis by applying the stan-
dard procedure of diagonalizing a traceless symmetric second-
rank tensor defined as

Qλλ =
1

2N

〈
N

∑
i=1

(3λ̂̂λ̂λ i · λ̂̂λ̂λ i − I)

〉
(1)
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where λ̂̂λ̂λ=x̂, ŷ, ẑ is the unit orientation vector of particle i, I the
second-rank unit tensor, and the angular brackets indicate ensem-
ble average. Diagonalization of Qλλ provides three eigenvalues
and three associated eigenvectors. The nematic order parameter
S2 is the largest positive eigenvalue of Qλλ and the corresponding
eigenvector determines the uniaxial nematic director42. In par-
ticular, the nematic order parameter S2,L is the largest eigenvalue
of the tensor Qzz, while the corresponding eigenvector n̂ is the
nematic director associated to the preferential orientation of the
particle axis ẑ. Similarly, diagonalizing Qxx and Qyy, the nematic
order parameters S2,W and S2,T and the nematic directors m̂ and
l̂ can be determined. By employing these same symmetric ten-
sors, three biaxial order parameters can also be calculated32. For
instance, the biaxial order parameter associated to the nematic
director along L, n̂, reads

B2,L =
1
3
(
m̂ ·Qxx · m̂+ l̂ ·Qyy · l̂− m̂ ·Qyy · m̂− l̂ ·Qxx · l̂

)
(2)

B2,W and B2,T can be calculated by similar expressions. Following
previous works43–45, it is sufficient to monitor a single biaxial or-
der parameter to assess phase biaxiality. In other words, we only
need to examine the fluctuations of the two particle unit vectors
perpendicular to the main nematic director. If, for instance, the
particles are on average aligned along their ẑ axis and thus the
main nematic director is n̂, then the fluctuations of the other two
particle axes, x̂ and ŷ, in the plane defined by m̂ and l̂, should be
considered. In this case, S2,L = 1 and B2,L = 0 would give a per-
fect uniaxial phase, while S2,L = 1 and B2,L = 1 a perfectly aligned
biaxial phase. Similar considerations hold if the main nematic
director is m̂ or l̂. In what follows, we refer to the biaxial order
parameter associated to the main nematic director as B2.

Order parameters, alone, are not sufficient to distinguish be-
tween two uniaxial or biaxial phases, such as a nematic (N) from a
smectic (Sm) phase. To this end, after equilibration, we addressed
the existence and nature of long-range structural correlations by
calculating the pair distribution functions along the nematic di-
rectors, g‖,L(r∗‖,L), g‖,W (r∗‖,W ) and g‖,T (r∗‖,T ), and perpendicularly
to them, g⊥,L(r∗⊥,L), g⊥,W (r∗⊥,W ) and g⊥,T (r∗⊥,T ), with r∗‖ = r‖/T
and r∗⊥ = r⊥/T the longitudinal and transverse distances, respec-
tively, between pairs of particles. Finally, to investigate the local
structure of columnar (Col) and K phases, we have also calculated
an order parameter that can distinguish between the relative posi-
tions between the particles in planes perpendicular to the nematic
director:

ψn =
1

N j

N j

∑
k

exp(inθ jk) (3)

where N j is the number of nearest neighbours around particle k,
θ jk is the angle formed by the vectors connecting j and k and

a reference axis, and n = 4 or 6 to determine the occurrence of,
respectively, quadratic or hexatic symmetry.

3 Theory

3.1 Isotropic-nematic phase transition

3.1.1 Uniaxial particles

The Onsager theory of nematic LCs18 is based on an expression
for the Helmholtz energy A which contains two competing terms.
One arises from the mixing of particles of different orientations,
similar to an entropy of mixing, while the other arises from ex-
cluded volume interactions and is expressed via a virial expan-
sion. Onsager showed that the Helmholtz energy of a system con-
taining N particles at volume V (and hence with a number density
ρ = N/V ), can be given as

a =
βA
N

= lnΛ
3
ρ−1+σ [ f (ΩΩΩ)]+

∞

∑
n=2

1
n−1

Bnρ
n−1. (4)

Here, β is the inverse temperature, lnΛ3ρ − 1 is the ideal gas
contribution with Λ the de Broglie wavelength, and σ [ f (ΩΩΩ)] is
the entropy of mixing-like term with f (ΩΩΩ) giving the one-particle
orientational distribution function and ΩΩΩ the particle orientation.
The final term is the virial expansion which corrects for many-
body interactions, with Bn denoting the nth virial coefficient. The
key component in this expression is the one-particle orientational
distribution f (ΩΩΩ). For uniaxial particles, Onsager used a trial
function of the form

f (ΩΩΩ) =
α cosh(α cosθ)

4π sinhα
, (5)

where θ is the angle between the nematic director and the direc-
tor through the particle symmetry axis and α is a free parameter
which describes the degree of nematic ordering, with α = 0 for
isotropic orientational ordering and α = ∞ for perfect nematic
alignment. α can be related to the nematic order parameter as

S =
∫

f (ΩΩΩ)P2(cosθ)dΩΩΩ,

= 1+
3

α2 −
3

α tanhα
, (6)

where P2(cosθ) = (3cos2 θ −1)/2 is the second Legendre polyno-
mial. This trial function can be used to calculate the entropy of
mixing-like term as

σ [ f (ΩΩΩ)] =
∫

f (ΩΩΩ) ln[4π f (ΩΩΩ)]dΩΩΩ,

= ln
(

α

tanh(α)

)
+

tan−1(sinhα)

sinhα
−1, (7)
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where dΩΩΩ = sinθdθdφ , with φ the azimuthal angle. The virial
coefficients can be calculated from

Bn =
1−n
n!V

∫
· · ·
∫

f (ΩΩΩ1) . . . f (ΩΩΩn)VndΩΩΩ1 . . .dΩΩΩndr1 . . .drn, (8)

with V the volume, and ri and ΩΩΩi the position and orientation of
particle i. Vn is given as

Vn = ∑
Sn

n

∏
i< j

fi j. (9)

The sum over Sn denotes the sum over all star integrals with n
points (see e.g. Refs.46–48), and fi j is the Mayer f-bond between
particles i and j, which for hard particles is −1 when the particles
overlap, and 0 when they do not. The virial coefficients can be
calculated using MC integration for a range of α values, which
gives the Helmholtz free energy entirely as a function of density
ρ and α. By minimizing Eq. (4) with respect to α for a given
density, we obtain the free energy and degree of nematic ordering
as a function of ρ, from which we can also calculate the pressure
as

P = ρ +
∞

∑
n=2

Bnρ
n, (10)

and the chemical potential as

µ = lnΛ
3
ρ +σ [ f (ΩΩΩ)]+

∞

∑
n=2

n
n−1

Bnρ
n−1. (11)

Coexistence between the I and N phases can be located by
equating these two properties in the I and N phases; that is

P(ρI) = P(ρN),

µ(ρI) = µ(ρN), (12)

where ρI,N are the isotropic and nematic coexistence densities.

3.1.2 Biaxial particles

The above calculations are relatively straighforward for uniaxial
particles, and the Onsager trial function given in Eq. (5) allows
for Eq. (7) to be solved analytically. Furthermore, when calcu-
lating the virial coefficients, it is very computationally efficient to
weight the particle orientations generated for the MC integration
procedure by f (ΩΩΩ), and we can obtain an analytical expression
from Eq. (5) to pick random numbers from the distribution for a
given α value.

For biaxial particles, the particle orientation is no longer de-
scribed simply by the polar and azimuthal angles, but by the
three Euler angles θ , φ and γ, the third of which denotes ro-
tation around the long axis of the particle. A uniaxial N phase

of biaxial particles must take into account ordering of θ and γ

(with additional ordering of φ denoting biaxial nematic order-
ing). Since the Onsager trial function only accounts for ordering
of θ , we therefore require an additional term in the distribution
which also takes γ into account. We choose the following trial
function

f (ΩΩΩ) =
cosh(α cosθ)cosh(β sinθ cosγ)

C
, (13)

where α and β are free parameters describing the degree of order-
ing and C is a normalization parameter defined by

∫
f (ΩΩΩ)dΩΩΩ = 1.

This can then be inserted into Eqs. (7) and (8) to obtain σ and
the virial coefficients as a function of α and β , from which the
Helmholtz free energy can be obtained from Eq. (4). By then
minimizing a with respect to α and β at a fixed density ρ, and cal-
culating the pressure and chemical potential from Eqs. (10) and
(11), we can obtain the I-N coexistence densities from Eq. (12).
The integrals involving Eq. (13) cannot, to our knowledge, be
solved analytically, so instead we must use numerical integration
and interpolation to calculate σ and Bn as continuous functions
of α and β .

3.2 Uniaxial-biaxial nematic phase transition

In order to describe the transition from a uniaxial to a biaxial ne-
matic phase (NU-NB transition), we must describe the alignment
of the minor axis of the biaxial particle, which is defined by the az-
imuthal angle φ . A full description of the phase transition would
require a form of the one particle distribution function which de-
pends on all three of the Euler angles. In practice we find that,
for the type of particles considered here, the N phase is highly or-
dered, and hence we examine NU-NB transitions from a perfectly
aligned nematic phase to a NB phase. That is, from a translation-
ally disordered phase where the particle long axes are perfectly
aligned but where the short axes are disordered, to a translation-
ally disordered phase where the particle long axes are perfectly
aligned and the short axes show a degree of alignment. Thus
we can describe the phase via a one particle distribution function
which depends only on φ and a single free parameter α, which
we choose to be the following

f (ΩΩΩ) =

α exp
(

α|2φ −π|
π

)
4π(eα −1)

. (14)

This can be inserted into Eqs. (7) and (8) to obtain σ and the
virial coefficients as a function of α, and we follow the above
procedure to obtain the uniaxial and biaxial nematic coexistence
densities.
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3.3 Nematic-smectic and nematic-columnar phase transi-
tion

NB phases are often unstable with respect to smectic or columnar
phases, and hence we also examine the N-Sm and N-Col phase
transitions. We use a bifurcation analysis to calculate the density
at which a perfectly aligned nematic phase first becomes unstable
with respect to smectic or columnar ordering. We may calculate
σ for positionally ordered phases by

σ =
∫

ρ(r) ln[ρ(r)]dr, (15)

where r is the particle position. The virial coefficients can be
calculated from

Bn =
1−n
n!V

∫
· · ·
∫

ρ(r1) . . .ρ(rn)Vndr1 . . .drn, (16)

where Vn is given by Eq. (9). Following Ref.49, we define the
following expression for the density ρ of a smectic phase

ρ = ρ0 (1+ εξ (r)) , (17)

where ρ0 is the average density of the system, ε is a small constant
and ξ (r) for the smectic phase is given by

ξ (r) = cos(kz+δ ), (18)

where k = 2π/d, with d the spacing between smectic layers, and
δ is a phase shift. For the columnar phase ξ (r) is

ξ (r) =
cos(kx+δ )+ cos(ky+δ )

2
, (19)

where the symbols have the same meaning as before and d is now
the spacing between the columns. We make the assumption that
the columns form a square 2d-lattice which has an even spacing of
columns in both directions of the columnar plane, which is valid
based on our simulation results.

These are then inserted into Eqs. (15) and (16), which are in
turn inserted into Eq. (4) to obtain the Helmholtz free energy.
This gives us an expansion in powers of ε, with

a = a0 + εa1 + ε
2a2. (20)

Here, the zeroth order term in ε, a0, corresponds to the free en-
ergy of the nematic phase and the first order term a1 can be shown
to be equal to 0. The second order term a2 is given by

a2 =
ρ

2

∫
ξ (r)2dr+

∞

∑
n=2

1
n

B′nρ
n, (21)

where B′n is related to the virial coefficients and is given by

B′n =
1−n
n!V

∫
· · ·
∫

ζVndr1 . . .drn, (22)

where Vn is given by Eq. (9) and ζ is

ζ =
1

n(n−1)

n−1

∑
i=1

n

∑
j=i+1

ξ (ri)ξ (r j). (23)

The term a2 will be positive at low densities and negative at high
densities. The density at which a2 = 0 corresponds to the point
at which the positionally ordered phases will first become stable
with respect to the positionally disordered nematic phase. We
therefore calulate a2 and locate the density at which it is equal
to zero, giving us the nematic-smectic instability density ρSm and
the nematic-columnar instability density ρCol .

4 Results
In this section, we analyse and discuss the rich phase behaviour
observed in colloidal suspensions of HBPs of length L∗1 = 9 and
L∗2 = 12. In particular, we first present the order parameters and
radial distribution functions to accurately distinguish the phases
found at equilibrium, and then the phase diagrams and equations
of state as obtained by simulation and theory.

4.1 Phase Characterisation
The initial configurations for the simulations consisted of parti-
cles arranged in a cubic-like lattice with a highly degree of orien-
tational and translational order. These systems were first relaxed
at high pressure to determine the stability region of the K phase
and then gradually expanded to liquid-crystalline and isotropic
phases. In some cases, such a sequence of isobaric paths was
inverted to improve our calculations and thus better locate the
phase boundaries. We characterised the phases at equilibrium
by calculating the order parameters and radial distribution func-
tions. The evolution of the uniaxial order parameters S2,L, S2,T

and S2,W , and the biaxial order parameter B2, in systems contain-
ing HBPs with length L∗1 and L∗2 is presented, respectively, in Figs.
2 and 3 as a function of the packing fraction η . Each frame in
both figures refers to a different particle width, decreasing from
frame (a) to (d) and producing a transition from oblate (plate-
like) to prolate (rod-like) anisotropies. In particular, uniaxial and
biaxial order parameters are extremely low and basically indis-
tinguishable in the I phase. At larger packing fractions, whose
precise value depends on the particle architecture, but generally
in the range η = (0.2,0.35), one of the uniaxial order parame-
ters S2 increases significantly, indicating the occurrence of a N
phase. Oblate (N−) and prolate (N+) nematic phases show a sur-
prisingly large uniaxial order parameter along their main nematic
director (n̂ or l̂) in the range S2 = (0.6,0.9), but usually S2 > 0.8.
This sound difference clearly distinguishes the N phase from the
I phase.

At substantially larger packing fractions, the behaviour of both
uniaxial and biaxial order parameters becomes strongly depen-
dent on the particle shape anisotropy and therefore on the phases
at equilibrium. For instance, in Fig. 2a (oblate HBPs), B2 in-
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Fig. 2 Uniaxial order parameters as a function of the packing fraction for
colloidal suspensions of HBPs with length L∗1 and width W ∗1 = 9 (a), 7 (b),
4.5 (c), and 1 (d). Black, red, and blue symbols refer to S2,L, S2,T , and
S2,W , respectively, while the green symbols refer to the dominant biaxial
order parameter. The vertical dashed lines indicate phase transitions.

Fig. 3 Uniaxial order parameters as a function of the packing fraction for
colloidal suspensions of HBPs with length L∗2 and width W ∗2 = 12 (a), 8
(b), 5 (c), and 1 (d). Black, red, and blue symbols refer to S2,L, S2,T , and
S2,W , respectively, while the green symbols refer to the dominant biaxial
order parameter. The vertical dashed lines indicate phase transitions.

creases abruptly from 0.01 to approximately 0.54 at η = 0.515,
marking the transition from an oblate nematic (N−) to an oblate
columnar (Col−) phase. By contrast, in Fig. 2d (prolate HBPs),
the same biaxial order parameter does not show any noticeable
change across the I-N+ and N+-Sm+ phase transitions and only
increases at η > 0.7, where a prolate columnar (Col+) phase is
formed. Interestingly enough, the largest and smallest uniaxial
order parameters can also undergo a mutual inversion as a result
of an oblate-prolate transition and consequent rearrangement of
the nematic directors (see Fig. 2c). At very large packing frac-

tions, all the order parameters assume values above 0.9 and a K
phase is formed.

To unambiguously determine the degree of positional order
within a given LC and thus distinguish between N, Sm, Col and
K phases, we calculated the pair distribution functions in the di-
rections parallel and perpendicular to the nematic directors. In
particular, the g‖,L(r) in the top frame of Fig. 4 reveals the typical
layered structure of a prolate smectic (Sm+) phase and clearly
distinguishes it from a N+ phase, whose g‖,L(r), by contrast, is es-
sentially flat (dashed line in the same frame). In Sm+ phases, it is
possible to find transverse (interlayer) particles that are trapped
in between neighbouring layers (see top-right snapshot in Fig.
4), a scenario also detected in colloidal suspensions of uniaxial
prolate particles50–52. Nevertheless, the probability of observing
such transverse particles is so low that the corresponding radial
distribution function cannot actually reveal their presence.

Fig. 4 Parallel pair distribution functions along the main nematic director
of prolate (top) and oblate (bottom) smectic liquid crystals of HBPs with
L∗1 and W ∗1 = 1 (top), and L∗1 and W ∗1 = 5.5 (bottom). Dashed and solid
lines refer to the g‖(r) calculated in the nematic and smectic phase,
respectively. Packing fractions: 0.37 (N+), 0.525 (Sm+), 0.400 (N−), and
0.493 (Sm−). The insets show typical equilibrium configurations of each
phase, with the colour gradient indicating the orientation of the particle
major axis.

The radial distribution function displayed in the bottom frame
of Fig. 4 (solid line) reveals a different pattern, where periodic
peaks are indentified at multiples of the particle thickness. Al-
though the layer thickness of the most recurrent Sm phases is de-
termined by the particle length, here we find a Sm phase whose
layers are as thick as the minor particle dimension, T , referred
to as discotic or oblate smectic phase (Sm−). The existence of
this phase has been rather controversial over the last decade as
evidenced by the lack of full agreement between FMT predic-
tions37,38 and MC simulations34,35. The results shown here indi-
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cate that the Sm− phase is remarkably stable across a wide range
of particle’s geometries.

Oblate and prolate Sm phases can also be distinguished from
each other by analysing the relevant uniaxial order parameters,
which are S2,T for the former and S2,L for the latter. In particular,
for Sm− phases S2,T > S2,L, whereas for Sm+ phases S2,L > S2,T ,
as observed, respectively, in frames (b) and (d) of Fig. 2 or Fig.
3. The existence of Sm− and Sm+ phases suggests that, for inter-
mediate geometries between the rod-like and plate-like shape, a
biaxial smectic (SmB) phase, similar to what previously detected
in systems of hard perfect tetragonal parallelepipeds35, might
also exist. This is indeed the case for the two particle lengths,
L∗1 and L∗2, investigated here. As a matter of fact, the uniaxial or-
der parameters in Fig. 2c and Fig. 3c, which refer, respectively, to
the particle geometries (L∗1,W

∗
1 ) = (9,4.5) and (L∗2,W

∗
2 ) = (12,5),

unveil a strong orientational correlation between each of the
three particle axes and confirm the formation of a SmB phase
at 0.55 < η < 0.57 for the shortest and 0.42 < η < 0.45 for the
longest HBPs. The existence of the SmB phase is further con-
firmed by the analysis of the biaxial order parameters, B2, pro-
vided in the same figures along with those of Sm− and Sm+

phases for comparison. The SmB is a very peculiar phase with
long-ranged translational order in the direction of the particle ma-
jor axis, as the Sm+ phase, and long-ranged orientational order
along three directions. Within each layer, there is not significant
positional order and the in-layer pair distribution function decays
to 1 at relatively short distances (not shown here). This lack of
in-layer positional order distinguishes the SmB phase from a crys-
tal phase. Typical configurations of Sm− and SmB phases of HBPs
are shown in Fig. 5. A visual inspection of the top view of the
SmB phase seems to indicate the occurrence of a quasi-long-range
orientational order along two perpendicular axes, resembling the
tetratic arrangement of hard-rectangle53 and hard-square54 sys-
tems. Our preliminary calculations would confirm this scenario,
but further investigation is needed to provide a more complete
insight into this interesting behaviour.

At increasing packing fractions, our HBPs start to self-assemble
into Col− or Col+ phases. While in the Col− phase the particles
are arranged in stacks oriented along their minor axis, the Col+

phase is made of columns incorporating prolate particles oriented
along their major axis. The pair distribution functions of repre-
sentative Col− and Col+ phases are shown in Fig. 6. Frame (a)
refers to particles of length L∗1 and width W ∗1 = 8, and frame (b)
to particles of length L∗1 and width W ∗1 = 2. Both frames display
the g‖(r) calculated in the direction of the three nematic direc-
tors n̂ (solid lines), m̂ (dot-dashed lines), and l̂ (dashed lines).
The intra-column structural correlations are very weak, typical of
a liquid-like system, while the inter-column correlations are rela-
tively strong and indicate a long-range ordered arrangement with
the particles roughly located at multiple distances of W ∗1 = 8 and

Fig. 5 Front and top views of biaxial (a) and oblate (b) Sm liquid crystals
containing 2000 HBPs of length L∗1 and width W ∗1 = 4, and L∗1 and width
W ∗1 = 5, respectively. Packing fractions: 0.570 (a) and 0.467 (b). The
colour gradient follows the orientation of the particle major axis.

L∗1 = 9 (top frame) or W ∗1 = 2 and T ∗1 = 1 (bottom frame) from
each other. In the top frame, the slight shift of the peak between
g‖,n̂(r) and g‖,m̂(r) might indicate a preferential particle orienta-
tion in the planes perpendicular to the columns, a sort of align-
ment between identical faces of the particles. To better address
this point, we quantified the angular correlation between the par-
ticle unit vectors perpendicular to l̂ by calculating the orientation
distribution function χ (x̂, ẑ) =

〈(
3x̂i · ẑ j−1

)
/2
〉
, where 〈...〉 indi-

cates ensemble average over all measured orientations of parti-
cle pairs (i, j). In particular, χ(x̂, ẑ) ' 0.1, indicating a negligible
particle alignment across the columns and two equally probable
preferential orientations. This picture is not general though. A
significant inter-column particle alignment, with a unique prefer-
ential orientation, is detected in Col+ phases and in Col− phases
consisting of HBPs with larger L/W aspect ratios, for instance
(L∗1,W

∗
1 ) = (9,7.5), and, upon crowding, in the K phase. In these

cases, the larger aspect ratio imposes a more efficient packing
at similar packing fractions (η ≈ 0.6) and provides a crystal-like
distribution across the columns while maintaining a liquid-like
translational order along them. In Fig. 7, we compare the front
and top views of two Col− and one Col+ phases where the ori-
entation distribution function assumes the values χ(x̂, ẑ) ' −0.5
(Fig. 7a and 7c) and χ(x̂, ẑ)' 0.1 (Fig. 7b).

Interestingly, the top views of the three snapshots in Fig. 7 un-
veil an inter-columnar quadratic arrangement that has been con-
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Fig. 6 Frame (a): parallel pair distribution functions of an oblate
columnar liquid crystal phase containing 2000 HBPs of length L∗1 and
width W ∗1 = 8 at η = 0.597. Frame (b): parallel pair distribution functions
of a prolate columnar liquid crystal phase containing 2000 HBPs of
length L∗1 and width W ∗1 = 2 at η = 0.809. Solid, dot-dashed and dashed
lines refer to the directions parallel to the nematic directors n̂, m̂ and l̂,
respectively.

Fig. 7 Front and top views of oblate (a,b) and prolate (c) columnar liquid
crystals of HBPs with length L∗1 and width W ∗1 = 7.5 (a), W ∗1 = 8 (b), and
W ∗1 = 2 (c). Packing fractions: η = 0.590 (a), η = 0.597 (b), and η = 0.809
(c). The colour gradient follows the orientation of the particle major axis.

sistently observed in all the Col phases found in this study. To
characterise this four-fold symmetry and unambiguously distin-
guish it from an hexagonally-packed arrangement, we calculated
the quadratic, ψ4, and hexatic, ψ6, order parameters. In Fig. 8,
these two order parameters are presented as a function of the

packing fraction η for a number of systems at L∗1 and W ∗1 = 7.5
and 8, including the Col− phases shown in Fig. 7a and 7b. While
both parameters are almost negligible and indistinguishable in
the I phase, at increasing packing fractions it becomes evident
that the quadratic order has a dominant character and fully pre-
vails in both Col and K phases. The fluctuations observed in the
quadratic and hexatic order parameters of the system with W1 = 8
(solid symbols in Fig. 8) are most probably due to a number of un-
resolved structural defects that persist in the Col− phase beyond
our simulation time.

Fig. 8 Quadratic and hexatic order parameters of colloidal suspensions
containing 2000 HBPs of length L∗1 and width W ∗1 = 7.5 (empty circles)
and W ∗1 = 8 (solid circles) at different packing fractions.

Finally, in Fig. 9, we show the parallel (left frame) and perpen-
dicular (right frame) radial distribution functions of a K phase
containing short HBPs with width W ∗1 = 5.5 and packing frac-
tion η = 0.725. The g‖(r) functions display well-defined periodic
peaks with relatively large amplitude approximately at multiple
distances of 9T , 5.5T and T along the directors n̂, m̂ and l̂, re-
spectively. The g⊥(r) functions, less intuitive than the g‖(r), are
the result of the combined periodicity of two peaks existing in the
planes perpendicular to each director.

4.2 Phase diagrams

As predicted by Onsager theory18, compressing a suspension
of hard-body particles promotes the transition to phases with a
higher degree of orientational ordering, from isotropic to LC to
crystal phases. These phase transformations are driven by an in-
crease in excluded-volume entropy, which is sufficiently large to
compensate the reduction in orientational entropy. In line with
these arguments, colloidal suspensions of HBPs undergo entropy-
driven phase transformations that substantially depend on their
geometry and, as such, can produce oblate, prolate, and biaxial
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Fig. 9 Parallel (left frame) and perpendicular (right frame) pair
distribution functions of a crystal phase containing 1800 HBPs of length
L∗1 and width W ∗1 = 5.5 at η = 0.725. Solid, dot-dashed and dashed lines
refer to the directions parallel (left frame) or perpendicular (right frame)
to the nematic directors n̂, m̂ and l̂, respectively. The insets show the
front and top views of an equilibrium configuration, with different colours
indicating the orientation of the particle major axis.

morphologies. The phase diagrams calculated by MC simulations
are presented in Figs. 10 and 11 for HBPs of length L∗1 and L∗2,
respectively. In addition, in the top frames of Figs. 12 and 13, we
also show the phase diagrams for the same particle geometries as
calculated from theory. The bottom frames of these figures com-
pare the predicted boundaries of the I-N phase transition when
the HBPs are assumed to be uniaxial (empty symbols) or biaxial
(solid symbols).

Fig. 10 Phase diagram of HBPs with length L∗1, and width 1≤W ∗1 ≤ 9.

As far as short HBPs (L∗ = 9) are concerned, the simulation
results in Fig. 10 indicate that the I-N phase transition occurs
at packing fractions that gradually increase in the prolate region

from approximately 0.28 to 0.38, and then decrease in the oblate
region down to 0.27. Above the I-N coexistence region, which is
relatively small, but significant enough to suggest a strong first-
order character, we find the N− and N+ phases, respectively at
W ∗1 ≤ 3 and W ∗1 > 3. The prolate N phase has a relatively small
stability region and transforms into a Sm+ phase at approximately
η = 0.40. The stability of the oblate N phase appears to increase
with the particle width and at η > 0.40 can transform into a
Sm+, Sm− or Col− phase, depending on the degree of particle
anisotropy. All these features are perfectly predicted by the the-
oretical phase diagram in Fig. 12, whose quantitative agreement
with the simulation results is excellent. The only tangible dis-
crepancy between theory and simulation arises from the location
of upper phase boundary of the N region, which is slightly over-
estimated by the theory. However, we stress that in this case, we
are only calculating the spinodal instability densities at which a
uniaxial N phase consisting of aligned particles becomes unstable
with respect to a layered structure. Similar considerations are still
valid for the phase diagrams of long HBPs (L∗ = 12), reported in
Figs. 11 (simulation) and 13 (theory).

The phase diagrams of short (L∗ = 9) and long (L∗ = 12) HBPs
exhibit a number of common features, but also some key dif-
ferences mostly related to the region of stability of the nematic
and columnar phases and the location of the I-N phase transi-
tion. More specifically, the I-N phase transition appears to shift
to lower packing fractions at increasing particle length and, be-
cause the lower boundaries of the positionally ordered phases are
not particularly influenced, the region of stability of the nemat-
ics increases too. Previous theoretical predictions based on the
Zwanzig approximation locate the I-N transition of HBPs with
(L∗,W ∗) = (9,3) at η ≈ 0.2831, while the results of more recent
MC simulations of hard spheroplatelets, similar, but not identical,
to our HBPs, are much closer to our estimations of η ≈ 0.35−0.40,
depending on the L/W aspect ratio39. In both these works, the
I-N transition was observed to be of a weak first-order, with an in-
significant density difference between I and N phases. Although
our theory confirms the first-order character of the I-N transition
over the whole range of geometries examined, it reveals an I-
N coexistence region that is not negligible and thus suggests a
rather strong first-order signature. This is also confirmed by the
analysis of the equations of state (see ESI†), which unveil the ex-
istence of slight discontinuities or sudden changes in the slope
of η vs P∗. The strong first-order character of the I-N transi-
tion can dramatically determine the kinetics of formation of the
N phase, most probably characterised by the occurrence of tem-
porary metastable domains persisting over relatively long time
scales. Further investigation is however necessary to address this
qualitative intuition. The extension of the I-N coexistence region
can be more easily appreciated in the bottom frame of Figs. 12
and 13, where we compare the effect of assuming a uniaxial or
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biaxial particle geometry on the location of the I and N phase
boundaries. We notice that relatively strong first-order I-N transi-
tions were also reported in the simulation work by John and Es-
cobedo on systems of hard tetragonal parallelepipeds with square
cross section and L/W = 6.5 and 834. We also notice that, ac-
cording to both theory and simulation, the exact location of the
I-N transition depends on the particle width across the complete
range of prolate and oblate shapes, again in qualitative agreement
with former simulation results on cuboids34.

Fig. 11 Phase diagram of HBPs with thickness T , length L = 12T , and
width 1≤W ∗2 ≤ 12.

It is also interesting to highlight that assuming a uniaxial rather
than biaxial geometry, when investigating the I-N transition of
freely-rotating HBPs, determine a shifting of the coexistence re-
gion towards larger packing fractions. In Fig. 12b, this assump-
tion especially influences the I-N phase boundaries of rod-like par-
ticles with square cross section, but does not have any significant
effect at or close to the self-dual shape. Restricting the orienta-
tions of HBPs to six seems to have a much more relevant impact
on the description of their phase behaviour than assuming them
to be uniaxial.

Furthermore, our simulation and theoretical results do not pro-
vide any sound evidence of the existence of an I-NB transition.
The boundary between the N− and N+ phases is basically located
at the particle width W =

√
LT , corresponding to the self-dual

shape at which, according to theory26,31,55 and simulation32,39

on a spectrum of hard-core biaxial particles, including HBPs, a
second-order I-NB phase transition should be observed. Although
our extensive simulations could not confirm the existence of the
NB phase, at least for the particular board-like geometries investi-
gated here, they revealed the formation of a SmB phase, being ap-
proximately constrained between the Sm− and Sm+ phases and
consisting of HBPs with W ≈ 1.4

√
LT . The eventual occurrence of

Fig. 12 (a) Phase diagrams for HBPs with L∗1 calculated from theory.
Red squares and green triangles denote the I-N phase transition, blue
and orange inverted triangles denote, respectively, the N-Sm and N-Col
instability densities, and blue open squares and pink open triangles
denote the NU-NB transition. (b) Comparison of the predicted I-N phase
transition found when considering the board particles as biaxial (solid
symbols) and as uniaxial (empty symbols). For the uniaxial predictions,
we ignore ordering of the angle γ (rotations about the particle long-axis).

the N−-NB and N+-NB phase transitions were examined theoret-
ically, by keeping one of the particle axes perfectly aligned with
the nematic director and allowing the other two particle axes to
reorient. In particular, we observed that the NB is pre-empted
by the Sm phase over all its range and cannot form unless the
Sm phase is somehow destabilised (see Figs. 12a and 13a). We
did not examine the range of stability of the Sm phase, but only
the spinodal instability boundaries at which a perfectly aligned
NU phase first becomes unstable with respect to a layered struc-
ture. Our predictions locate the N-Sm instability of short HBPs
at 0.42 < η < 0.48, depending on the particle width (blue in-
verted triangles in Fig. 12a), in very good agreement with the
N+-Sm+ and N−-Sm− phase boundaries reported in Fig. 10. As
far as long HBPs are concerned, our theory predicts the occur-
rence of these density instabilities at similar packing fractions,
that is 0.42 < η < 0.49, depending on W ∗2 (blue inverted triangles
in Fig. 13a), again in excellent agreement with the simulation
results. It should be noticed that the N-Sm instability densities
at W ∗1 = 3.5 and 4 ≤W ∗2 ≤ 5 are missing in Figs. 12a and 13a,
respectively. Our theory cannot account for the N−-Sm+ (oblate-
to-prolate) phase transition, which is observed in simulations, but
would only provide the instability density of a hypothetical tran-
sition to an oblate smectic phase. Aware of the limitations of our
theory, we have therefore decided to omit these points.

At sufficiently large packing fractions, both oblate and prolate

Journal Name, [year], [vol.],1–14 | 11

Page 11 of 15 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
8 

Ju
ne

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
n 

D
ie

go
 o

n 
08

/0
6/

20
17

 1
6:

16
:3

1.
 

View Article Online
DOI: 10.1039/C7SM00726D

http://dx.doi.org/10.1039/c7sm00726d


Fig. 13 (a) Phase diagrams for HBPs with L∗2 calculated from theory.
Red squares and green triangles denote the I-N phase transition, blue
and orange inverted triangles denote, respectively, the N-Sm and N-Col
instability densities, and blue open squares and pink open triangles
denote the NU-NB transition. (b) Comparison of the predicted I-N phase
transition found when considering the board particles as biaxial (solid
symbols) and as uniaxial (empty symbols). For the uniaxial predictions,
we ignore ordering of the angle γ (rotations about the particle long-axis).

HBPs can form Col phases. The region of existence of the Col
phase and its stability with respect to the Sm phases is very similar
for short and long HBPs. The most remarkable difference to men-
tion is the ability of short HBPs to self-assemble into Col− phases
in a region of the phase diagram where long HBPs can only form
Col+ phases, that is for W <

√
LT . More generally, the intrigu-

ing result of oblate (prolate) HBPs to self-assemble into prolate
(oblate) phases is also detected at lower packing fractions, where
oblate HBPs (W >

√
LT ) can aggregate into Sm+ phases. As a

consequence of this peculiar behaviour, some particle geometries
undergo oblate-prolate-oblate transitions at increasing pressure.
This is for instance the case of systems with particle of size (L∗1,
W ∗1 )=(9, 4) and (L∗2, W ∗2 )=(12, 4.5), where an N−-Sm+ followed
by a Sm+-Col− phase transition is observed. Even more intriguing
is the sequence of phase transitions observed for HBPs of size (L∗2,
W ∗2 )=(12, 3.8), which undergo a remarkable N−-Sm+-Col−-Col+

transformation across the range 0.35 < η < 0.66.
The relative Col/Sm phase stability in suspensions of polydis-

perse colloidal platelets has recently been investigated by density
functional theory within the FMT formalism56. In monodisperse
systems, the particle geometry play a dominant role across the
range of anisotropies studied here. Both short and long HBPs
are able to self-assemble into Col phases regardless of their pro-
late or oblate geometry. In addition, for particularly pronounced
oblate anisotropies, at which L/W < 1.3, the range of stability

of the Col− phase increases significantly and a direct N−-Col−

transformation, without the occurrence of the Sm− phase, is ob-
served. Our theoretical predictions in Figs. 12a and 13a show
that the N−-Col− transition is indeed favoured for plate-like par-
ticles, whose nematic-columnar instability density is found to be
lower than the nematic-smectic instability density at W ∗1 > 7.5 and
W ∗2 > 10. Depending on the particle width, the columnar phase
can be obtained by compressing N−, Sm−, SmB or Sm+ phases.
The occurrence of all these phase transitions is determined over
all the particle width analysed here, from prolate (W <

√
LT ) to

oblate (W >
√

LT ) geometries. HBPs with a quasi self-dual shape,
for instance (L∗2,W

∗
2 ) = (12,3.6), are very peculiar because at in-

creasing packing, they can orient along either their shortest or
longest axis or both and thus can switch from prolate to oblate to
biaxial phases. In the range

√
LT <W < 4.5T , these particles un-

dergo a N− to Sm+ transition first and then, at larger pressures,
a transition from the Sm+ to the Col− phase, which has a signifi-
cant degree of biaxiality. Since we did not study the details of the
kinetics of Sm+ to Col− phase transformation, we can only spec-
ulate that an in-layer reorganisation of the particles takes place at
increasing densities and promotes a gradual micro-segregation of
the smectic layers in separate stacks. Also prolate HBPs are able
to form columnar phases, as was previosly observed in systems
of hard tetragonal parallelepipeds34. The Col+ phase is stable at
relatively high density, especially in systems of short HBPs, where
the transition to the K phase is only found at η > 0.9. By con-
trast, to the best of our knowledge, uniaxial particles are not able
to form Col phases38,57, unless a degree of size dispersity58,59 or
flexibility60 is incorporated.

5 Conclusions

In summary, we have investigated the phase behaviour and
mapped out the phase diagram of colloidal suspensions of short
and long HBPs, which, depending on their length-to-width ratio,
are able to self-assemble into oblate, prolate, and biaxial phases
with a large degree of positional and/or orientational order. We
have characterised these phases by calculating uniaxial and bi-
axial order parameters as well as the structural correlation be-
tween the particles along the phase directors and perpendicularly
to them. Short and long HBPs exhibit similar phase diagrams,
with an I-N phase transformation at approximately 0.2 < η < 0.3,
depending on the particle width, and a transition from prolate
to oblate nematic LCs at the so-called self-dual shape, where
W =

√
LT . Our theory, a generalisation of Onsager theory to in-

corporate particle biaxiality, is able to capture both these features
very well. In addition, it reveals an I-N coexistence region that
is significantly larger than that predicted by previous studies on
identical29,31 or similar26,39 particle geometries, but in agree-
ment with the simulations by John and Escobedo on hard tetrag-
onal parallelepipeds34. This coexistence region, which reveals a
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relatively strong first-order character, is virtually independent on
the particle width across the complete range of prolate and oblate
shapes investigated here.

More surprisingly, we did not observe, neither by simulations
nor theory, the formation of a stable biaxial nematic phase. While
at the self-dual shape and sufficiently large densities a second-
order I-NB transition is generally predicted by theory26,31,55, our
HBPs undergo transitions from I to NU to Sm phase and no ev-
idence of biaxiality is observed. We notice that, by limiting the
particle orientations to six, these theories locate the I-N transition
at packing fractions η < 0.3 at which we still observe I phases.
At such moderate densities, the formation of a Sm phase, which
we only detect at η ≥ 0.4, is very unlikely and consequently the
NB phase would be indirectly favoured. We conclude that a bi-
axial geometry, per se, might not be enough to observe biaxial
phases and a degree of size dispersity, as reported experimen-
tally28 and suggested by theory27,29, is crucial to weaken the
stability of the Sm phase and thus create the best conditions to
form the NB phase. Contrary to the NB, the SmB phase has been
detected for the two particle lengths L1 and L2, although within a
very small range of stability.

Finally, we have also shed light on the existence of the discotic
(or oblate) smectic phase. The Sm− phase, which consists of par-
ticles with their long axes randomly oriented within the smectic
layers, has been found in the phase diagram of both short and
long HBPs. Although the Sm− phase had been predicted by the
FMT and lattice MC simulations, in both cases within the Zwanzig
approximation36,37, it was not observed in off-lattice MC simula-
tions of freely rotating hard parallelepipeds with square cross sec-
tion34,35. The latter geometry promotes instead the formation of
a cubatic-like mesophase, the so-called parquet phase, where the
particles are arranged in stacks oriented roughly perpendicular to
one another and without formation of layers34,35. The board-like
geometry of our particles, very different from that of a cuboid,
does not promote the formation of this phase, but can definitively
confirm the existence of the Sm− phase.
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