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Parsons–Lee approach is formulated for the isotropic–nematic transition in a binary mixture of oblate hard spherocylinders
and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different
relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations
in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these
binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar
fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to
very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible
in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules
are added to a system of discotic colloids is also studied.
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1. Introduction

The term self-assembly has been defined by Grzybowski
and co-workers as ‘the spontaneous formation of organ-
ised structures from many discrete components that inter-
act with one another directly’ [1]. This definition implies
that the phenomenon consists of a spontaneous process in
which individual molecules are collectively arranged in par-
tially ordered structures through non-covalent interactions.
An improved knowledge of the self-organisation features of
discotic particles has given rise as a field that has attracted a
huge interest due to its promising technological applications
with special attention to the nanoscale [2,3]. These appli-
cations came mainly from the self-assembly in columnar
structures. In the so-formed columns or nanowires the elec-
tric conductivity is almost unidirectional along the colum-
nar axis due to the overlap between π orbitals typical in
aromatic rings in real discotic molecules. This electronic
behaviour is of key importance in photovoltaic and semi-
conductor devices or OLEDs [1,4,5]. In contrast, although
interesting properties have been established [6–8], the ap-
plicability of discotic nematic phases in optoelectronics is
restricted because these phases have a longer switching time
in discotic particles than in their prolate counterparts [9].
Moreover, contrary to the phase diagram of rod-like parti-
cles, where the nematic phase can also appear for not very
elongated particles [10,11], columnar phases are dominant
in the phase diagram of oblate particles and a high shape
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anisotropy becomes necessary for nematic phases to be
stable [12–14]. Hence, the advent of novel applications of
discotic nematogens will be benefited from computational
predictions about the fundamental molecular properties re-
garding the stability of the discotic nematic phase over a
broad range of thermodynamic parameters.

Shedding light on the mesophases stability caused by
the excluded volume or molecular crowding effects induced
by depleting agents has been the goal of many recent in-
vestigations [15–23]. The reason that underlies these size
and shape-dependent effects was described in the pioneer-
ing work of Asakura and Oosawa [24]. In this work con-
cerning mixtures of spheres of very dissimilar sizes, an
attractive depletion potential among the bigger species is
demonstrated to be induced by the presence of the smaller
components in the mixture. For fluids with non-spherical
particles, the situation is much more complex because, be-
sides the depletion effect typical of size asymmetry, the
orientational degrees of freedom also play an important
role. In these shape-dissimilar binary mixtures, the appear-
ance of novel phases and properties that complicate and
make richer the one component phase diagram and inter-
nal structure of the fluid, is widely documented [22,25–29].
In any of the above-mentioned cases, thermodynamical in-
stability leads to the existence of demixing phenomena,
where the corresponding presence of ordered phases at rel-
atively low global density becomes possible. These effects
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are also present in the theoretical frame provided by hard
or athermal systems and present a fundamental interest in
their own right. Besides their simplicity, hard models quali-
tatively account for relevant features in the behaviour of real
substances [30]. From a theoretical viewpoint, hard models
have been traditionally described using the ideas outlined
in Onsager’s pioneering work [31] – exact in the limit of
infinitely thin rods – about the isotropic-to-nematic (I–N)
transition.

Keeping this in mind, in this work we focus on the effect
of the addition of hard spherical particles (HS) on the phase
diagram of the fluid of oblate hard spherocylinder (OHSC)
[12–14,32,33]. Historically, the binary mixture of spherical
and disk-like particles has been studied in the small disk-
like/big spherical particles limit [34–37]. In this limit the
oblate particles act as depleting agent, favouring the ag-
gregation and crystallisation of the spherical particles. The
opposite limit, where the anisotropy of discotic particles
is high enough to present liquid-crystalline phases and the
spherical particles are smaller than the disk-like ones, has
been scarcely explored [38,39] and this limit will constitute
the main objective of this paper. This task has been tackled
by adapting the extension of Onsager’s approach proposed
by Parsons–Lee (PL theory) [40,41] to the binary mixture
of hard spheres and oblate hard spherocylinders (OHSC–
HS fluid). This approximation has been recently applied to
the study of the isotropic–nematic transition in monocom-
ponent fluid of both discotic [42–44] and prolate particles
[10] and also to the binary mixture of spherical and rod-
like particles (HSC–HS fluid) [22], with good agreement
between theory and simulation.

Alternatives studies based on fundamental measure the-
ory proposed in the seminal work of Rosenfeld [45] are
widely extended in the literature (see for example Refs.
[46–48]). These approaches take into account spatial corre-
lations accurately, providing a correct description of phases
with positional and orientational order. The main draw-
backs of these procedures is that additional assumptions
should be considered to obtain tractable expressions for
the free energy functionals (such as the parallel alignment
restriction), and the difficult to advance in this theoreti-
cal frame keeping manageable expressions for free energy
and equation of state. In contrast, the density functional-
like theory of Parsons–Lee lacks of this complexity, being
more intuitive and showing a great potentiality to provide
an accurate and manageable description of the thermo-
dynamic behaviour in fluids with orientational degrees of
freedom.

Hence, the aim of the present work is to extend the PL
approach to determine the isotropic–nematic transition and
the thermodynamic behaviour in both phases. Besides, we
also used this theoretical approximation to determine the
conditions where the isotropic fluid is not stable against
demixing. To complete this study, extensive computer sim-
ulations were carried out in order to check the theoretical

predictions and to obtain further insight into the character-
istics of this fluid.

Thus, the paper is arranged as follows. In Section 2, a
detailed description of the implementation of the Parsons–
Lee approach for the binary mixture of the OHSC–HS fluid
is provided. Computer simulation details will also be de-
scribed in this section. The comparison of theoretical and
simulation results for the stability of the mixture against
demixing in the isotropic phase as well as nematic stability
and equations of state for a broad range of parameters is
given in Section 3. Finally, in Section 4 we summarise and
present the main conclusions of our work.

2. Methodology

2.1. Coarse grained model and Parsons–Lee
theory

This work is based on the OHSC geometrical model [32].
An OHSC is the revolution body obtained by the rotation
of a cylinder of length σ and width L capped with hemi-
spheres of diameter L around a perpendicular axis centred
on σ /2. As commented in the Introduction, Onsager’s sem-
inal work shows that virial expansion up to second order
gives exact results in the limit of hard infinitely thin pro-
late spherocylinders [31]. The extension of the theory to
higher densities was made by Parsons and Lee taking into
account subsequent terms in the virial expansion in a non-
explicit way using the hard sphere (HS) reference structure
[40,41]. In both the Onsager and Parsons–Lee theories, the
excluded volume effects are the parameters driving the tran-
sition. This allows us to extend Parsons–Lee approach to
convex bodies whose excluded volume is known [27]. By
reviewing this approach, it is understood how it is based
on a decoupling of the distribution function in a radial and
an orientational part f (#), where # is the solid angle that
defines the orientation of the particle, assuming the radial
distribution function at contact distance at a given density is
independent of orientation. This radial distribution at con-
tact is assumed to be the HS radial distribution function at
contact, which is simply given by (ZHS − 1)/(4vm), where
ZHS is given by the well-known Carnahan–Starling equa-
tion of state [49]. Here vm = xsvs + xcvc is the average
volume of the mixture, where vs and vc are the molecular
volume of spherical and discotic particles. ZHS depends on
the packing fraction defined as η = ρvm. With these ap-
proximations, the Helmholtz free energy F of N particles
(Nc spherocylindrical particles and NS spheres) within a
volume V at particle density ρ = N/V obtained by the virial
route is [10]:

F

NκBT
= '0

κBT
+ ln ρ + xs ln xs + xc ln xc

+ xc

∫
d#f(#) ln(4π f (#))
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3138 F. Gámez et al.

+ Fexc
HS

8vm

∑

i,j

xixj

∫

#′

∫

#

d#d#′f (#)

× f (#′)ωi,j
exc

(
#,#′) , (1)

where κB is the Boltzmann constant, xc = Nc/(Nc + Ns) the
molar fraction of spherocylinders and xs = 1 − xc is the mo-
lar fraction of hard spheres of diameter Ds. Fexc

HS is the excess
free energy of HS as obtained from the Carnahan–Starling
approximation [10,22]. '0 contains the contributions of the
rotational and translational de Broglie wavelengths. The ex-
cluded volume terms ω

i,j
exc between particles of species i and

j are given by:

ωs,s
exc = 4

3
πD3

s (2)

for the sphere–sphere term,

ωs,c
exc = π

6

{
L3 + 3

4
πL2(Ds − L) + 3

2
L(Ds − L)2

}
(3)

for the spherocylinder–sphere term, and

ωc,c
exc = π

2
σ 3 sin γ + πσ 2L + π2σL2 + 4

3
πL3

+ 2σ 2L

∞∑

n=0

−π3

8
· 4n + 1

(2n − 1)(2n + 2)

×P2n(0)4P2n(cos γ ) (4)

for the spherocylinder–spherocylinder term with normal
vectors forming an angle γ (#, #′)[50], where Pn(x) de-
notes the nth order Legendre polynomial of argument x.
The functional derivation of the free energy and subsequent
minimisation with the Lagrange multiplier method allows
us to obtain a compact integral equation for the orientational
distribution function f (#),

ln [4πf (#)] = λ − 1 − xcF
exc
HS

4vm

∫

#′
d#′f

(
#′)

[
π

2
σ 3 sin γ

+ 2σ 2L

∞∑

n=0

−π3

8
· 4n + 1

(2n − 1)(2n + 2)
P2n(0)4P2n(cos γ )

]

.

(5)

This equation has always the trivial solution f (#) =
1/4π , corresponding to the isotropic phase. To obtain a
nematic solution, given the centrosymmetrical geometry of
the problem, the angular terms can be expanded in Fourier–
Legendre series and, with the help of the addition theorem
and orthogonality properties of Legendre polynomials, a

handier expression can be obtain for f (#) = 2π f (θ ) [22]:

f (θ ) = K exp

[

− xcπFexc
HS

2vm

( ∞∑

n=0

π

2
σ 3a2nd2n

2
4n + 1

×P2n(cos θ ) + 2σ 2L

∞∑

n=0

−π3

8

· 2a2n

(2n − 1)(2n + 2)
P2n(0)4P2n(cos θ )

)]

, (6)

where K is a normalisation factor and a2n and d2n are the
coefficients of the Fourier–Legendre expansion for sinγ and
f (θ ), respectively.

In order to determine the orientational distribution func-
tion that minimises the free energy for a given composition
and packing fraction, Equation 6 is iteratively solved un-
til an expansion coefficients converge. Once a converged
solution of f (θ ) is obtained, the free energy can be cal-
culated with Equation 1. From F, the different thermody-
namic quantities are calculated from the partial derivatives
of the free energy. Particularly, pressure and chemical po-
tentials are obtained by analytical derivation of F respect
V, Nc and Ns at each packing fraction and composition.
The coexistence between the isotropic and nematic phases
is determined by equalling pressure and chemical poten-
tials of spheres and discotic particles in both phases. This
is a system of three equations with three unknown quan-
tities: the packing fractions in both phases and the molar
fraction of oblate particles in the nematic phase, while the
composition of the isotropic phase is fixed as parameter. In
order to ensure the consistency of the results, several nu-
merical methods have been employed to solve this system
of equations [22].

We have extended the above described methodology in
order to evaluate the stability of the isotropic OHSC–HS
fluid against demixing. For this purpose, the spinodal and
binodal curves for the isotropic–isotropic (I–I) coexistence
have been calculated. Spinodal curves delimit the region of
absolute instability of a mixture. In other words, within this
region, the mixture is unstable against demixing and the sys-
tem suffers a phase separation. In the frame of Parsons–Lee
theory, the spinodal curves can be calculated analytically
with the help of the formalism proposed by van Roij and
Mulder [51]. It establishes that the stability conditions for
a thermodynamics state are

(
∂2(βF/N )
∂(1/ρ)2

)

x

> 0, (7)

(
∂2(βF/N )

∂x2

)

ρ

> 0, (8)

(
∂2(βF/N )
∂(1/ρ)2)

)

x

·
(

∂2(βF/N )
∂x2

)

ρ

−
(

∂2(βF/N )
∂x∂(1/ρ)

)
> 0,

(9)
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where x is the molar fraction of one of the components
and β = 1/κBT. If any one of these inequalities becomes
negative, the homogeneous mixing of the binary system
becomes unstable and, consequently, a demixing transition
is produced. Hence, the spinodal curve in a given binary
mixture separates the phase diagram region where these
inequalities are fulfilled from the region where any of the
three inequalities is not satisfied.

Coexistences between two different isotropic phases are
described by means of the calculation of the binodal curves.
This condition requires the existence of two isotropic states
with different packing fraction and composition in thermo-
dynamical equilibrium. The determination of the binodal
coexistence can be performed by equalling pressures and
chemical potentials of the components within the same pro-
cedure followed for the calculation of the I–N coexistence,
but avoiding the calculation of f (θ ). Again, it is necessary
to solve a system of three equations where the unknown
quantities are the packing fraction in both phases and the
composition of one of them.

2.2. Computer simulation details

In order to check the predictions obtained with the Parsons–
Lee theory described above, a series of Monte Carlo sim-
ulations at constant number of particles, temperature and
pressure has been carried out (MC–NPT computer simu-
lation). These simulations were carried out for different
particle sizes and compositions. To determine the Nematic-
to-isotropic transition, for a given sizes/composition set, a
configuration with randomly distributed particles with all
the discotic particles following the same director vector
was created. This artificial configuration was thermalised
at a high enough pressure to obtain a equilibrated nematic
state. From this state, a series of MC–NPT simulations with
decreasing pressure were carried out. In general, long sim-
ulations have been necessary to thermalise the system at
each pressure. Typically, along 5 × 105 Monte Carlo cy-
cles for equilibration and 1 × 106 MC cycles to obtain
averages were necessary at each thermodynamical state. A
MC cycle consists on N attempts to displace and/or rotate
(if it is an OHSC particle) a particle chosen at random
plus an attempt to change the volume. The simulation was
done in a system with 3000 particles. The volume changes
were attempted by the independent and random change in
the length of either side of the simulation box. To dis-
criminate the nematic from the isotropic phase, the nematic
order parameter was calculated with the standard procedure
of diagonalisation of a symmetric tensor built with the ori-
entation vectors of the discotic particles [52]. In the context
of this study, it was also relevant to check if the system
presents any kind of spatial structures typical of the colum-
nar phases. For this reason, several distribution function
described in Ref. [32] were monitored. Throughout this pa-
per, dimensionless units were used. Hence, the diameter of

the discotic particles D has been taken as length unit, and we
will hereinafter refer to L∗ = L/D and D∗

s = Ds/D as width
of discotic and diameter of spherical particles, respectively.
The pressure has been reduced as P∗ = βPD3. The compo-
sition of the system will be expressed with both the molar
fraction of spheres xs and the volume fraction of spheres
xv , defined as xv = xsvs/vm, with vm = xsvs + xcvc where
vs is the spheres’ volume and vc the volume of the discotic
particles.

3. Results and discussion

3.1. Demixing in the isotropic phase: spinodal
curves

We start the discussion by exploring the stability of the
OHSC–HS fluid in the isotropic phase against demixing
as obtained with the calculation of the spinodal curves.
The spinodal is defined as the ensemble of points that sep-
arate the region where the isotropic mixture is stable or
metastable from where it is unstable as already mentioned.
As it was commented in the Methodology, this is deter-
mined by the fulfilment of conditions 7 to 9. In the top
panel of Figure 1, the stability of the isotropic mixture in
a broad range of particle sizes for the OHSC–HS fluids is
sketched. In this figure, the minimum packing fraction in
the spinodal curve for a given size of the particles, regard-
less of its composition, ηL is shown. It is easily observed
from this graph that the OHSC–HS mixture is stable against
demixing up to very high packing fraction. According to
PL theory, only for very thin discotic and very big spherical
particles the isotropic mixture becomes unstable at a mod-
erate packing. It is relevant to point out that a region exists
for Ds ≈ D where the isotropic OHSC–HS is not unstable
for any packing fraction or composition. For more details,
some typical OHSC geometries (L∗ = 0.08, 0.1 and 0.3) are
considered in bottom panel of Figure 1. In this graph, the
minimum packing fraction at which Parsons–Lee formal-
ism predicts the instability of the OHSC–HS isotropic fluid
is plotted against the diameter of spherical particles. We
can observe that the minimum value of the packing frac-
tion in the spinodal curve presents three different regions
for a given value of L∗. At very small spheres’ diameter,
there is a minimum in the packing fraction at which the
instability could appear. Roughly, in this case the diameter
of the spheres is close to the width of the discotic parti-
cles. This value of ηL grows very fast up to a maximum
η value reached at a moderate values of D∗

s (in the range
of D∗

s ≈ 0.5 − 0.7). This maximum is displaced to larger
values of D∗

s when L∗ increases. This could be interpreted
as the stability against demixing under any thermodynamic
condition for Ds close to D in the OHSC–HS fluid. For
values of D∗

s above 4, the packing fraction of the spinodal
reaches a plateau roughly independent on the diameter of
the spherical particles. In general, the limiting value of the
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3140 F. Gámez et al.

Figure 1. Top panel: Map of the stability against I–I demixing.
In each region for given values of L∗ and D∗

s , the value of the
packing fraction at the minimum of the I–I spinodal curve is (a)
ηL > 0.8; (b) ηL > 0.7; (c) ηL > 0.6; (d) ηL > 0.5; (e) ηL > 0.4;
and (f) ηL > 0.3. In the rest of the graphic, ηL < 0.3. Bottom
panel: Dependence of η at the minimum of the I–I spinodal curve
with D∗

s at L∗ = 0.05 (lowest curve at large D∗
s ), 0.1 (intermediate

curve) and 0.3 (highest curve). The region of small D∗
s is shown

in the inset with more detail.

packing fraction described has a positive correlation with
L∗, and thus it gets higher the higher L∗ does. The only ex-
ception to this general behaviour is between the minimum
and the maximum described before. In this region, the op-
posite trend is found, and the value of ηL is higher the lower
is L∗. Hence, the OHSC–HS will be stable (or metastable)
up to relatively high packing fractions. In general, the val-
ues of ηL reported in both panels of Figure 1 are above
the transition from the isotropic to a more ordered phase –
nematic or columnar – in the monocomponent OHSC fluid
[12,14,32].

In order to obtain further insight into the demixing phe-
nomenon of the OHSC–HS fluid, we have calculated the
binodal curves for the I–I coexistence in these three regions.
In Figure 2, the binodals for OHSC particles with L∗ = 0.05
(top panel) and 0.3 (bottom panel) and HS with diameters

Figure 2. I–I binodals predicted by Parsons–Lee theory for the
OHSC–HS fluid for L∗ = 0.05 (top panel) and L∗ = 0.3 (bottom
panel) and D∗

s = 0.1 (intermediate curve at low xv), 0.5 (upper
curve at low xv) and 8 (lower curve at low xv). The packing frac-
tions are represented versus xv in the coexisting isotropic states.
Tie lines joining some coexisting states are included for illustra-
tion.

D∗
s = 0.1, 0.5 and 8 are shown. A few tie lines linking co-

existing points have been added in order to facilitate the in-
terpretation. Briefly, in a given I–I coexistence curve, states
with low volume fraction of spheres are in coexistence with
states with higher values of xv and states with intermediate
values of xv coexisting between them. Depending on the rel-
ative size between OHSC and HS, three different behaviours
can be observed as emerge from both panels of Figure 2.
At low sphere diameters (D∗

s = 0.1), the coexistence is
between high-packed states with low volume fraction of
spheres and low-packed states with high volume fraction of
spheres. In contrast, in fluids containing bigger spheres, the
coexistence occurs between states with low packing fraction
and volume fraction of spheres and dense states with high
fraction of spheres. For fluids with D∗

s = 0.5, all the states
in the binodal curve have a very high packing fraction, con-
firming the existence of a region where the OHSC–HS mix-
ture is fully miscible. These different behaviours are coinci-
dent with the three regions identified in the study of spinodal
curves.

Focusing in the two first cases, it can be observed that
the Parsons–Lee theory developed in this work results in
a well-known scenario where the smaller particles act as
depleting agents, favouring the aggregation of the bigger
ones. Hence, in OHSC–HS mixtures in which spheres are
bigger than the OHSC, the oblate particles stand mostly in
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Molecular Physics 3141

Figure 3. Snapshot of a typical configuration of a demixed state for L∗ = 0.05 and D∗
s = 0.1 obtained by MC–NPT simulation. To

facilitate the visualisation, the spheres have been removed in the main picture. In the inset all the particles are shown.

a phase at lower packing fractions. This packing fraction is,
for all the values of L∗, below the transition value from the
isotropic phase to a more ordered phase for a pure OHSC
fluid [12,14,32]. In contrast, the spherical particles aggre-
gate in a dense phase that is above the fluid-crystalline phase
transition in the monocomponent HS fluid [53]. Because of
the lack of spatial order considerations in the PL theory,
these numerical results should be considered with caution.
In any case, the crystallisation of spherical particles induced
by the discotic depleting agent has been reported in the past
[34,37].

In the small spheres limit, the spherical particles act
now as depleting agent favouring the aggregation of the
discotic particles. In this case, the PL theory presents the
same limitation because the predicted packing fraction of
the discotic-rich phase is above the transition value to a
more ordered phase such as the nematic or columnar. Con-
sequently, the numerical result should be again considered
with caution. In order to check if at least the qualitative
predictions are valid, we have carried out MC–NPT com-
puter simulations in the conditions where the PL approach
predicts the demixing. In these simulations, initial config-
urations with low particle density and with all the particles
at random positions and orientations were chosen. Then,
a pressure which according to the PL theory produces a
coexistence between nearly monocomponent phases was
applied in a very long MC–NPT simulation. In Figure 3, an
example of the states obtained by applying this procedure
is shown. Results from the OHSC–HS fluid with L∗ = 0.05
and D∗

s = 0.1 at pressure P∗ = 2000 is presented. Under
these conditions, PL theory predicts a coexistence between

two states with (xv , η) = (0.89 × 10−2, 0.595) and (0.9999,
0.28). In the snapshot shown in Figure 3, the trend of the
discotic particles to stack in simples columns surrounded by
a diluted fluid of spherical particles, is observed. This is co-
herent with the prediction of the PL theory, the coexistence
between a diluted sphere-rich state with a very packed and
almost monocomponent fluid of discotic particles. As the
PL theory does not consider spatial correlations, the forma-
tion of the columns is not predicted. In any case, the packing
fraction predicted for the discotic rich state corresponds to
columnar phases in the discotic monocomponent fluid [14].
It should be stressed that in this simulation, we are not using
unphysical moves such as cluster moves or similar. For this
reason, the coalescence of different columns would need
of very long simulations. But it could be imagined that, in
coherence with the results here discussed, the presence of
small spherical particles could promote the formation of
long columns or, in other words, nanowires. To the best of
our knowledge, this is the first time that this prediction has
been done. In any case, the confirmation of the details of
this exciting phenomenon needs further research.

3.2. Isotropic–nematic transition and equation of
state

In this section, the predictions obtained for the isotropic-
to-nematic coexistence and the equations of state for both
phases will be discussed. Hence, the dependence of the
packing fraction η with molar fraction of spheres xs at IN
coexistence is shown in both panels of Figure 4. The par-
ticular cases of L∗ = 0.1 (top panel) and L∗ = 0.05 (bottom
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3142 F. Gámez et al.

Figure 4. Dependence of the packing fraction with the molar
fraction of spheres at the I–N coexistence as calculated by theory
(solid lines) and limits of the stability of the isotropic and nematic
phase found by simulations (symbols), for OHSC–HS fluids with
L∗ = 0.05 (top panel) and L∗ = 0.1 (bottom panel). D∗

s = 0.1
(lower lines and circles) and 0.3 (upper lines and squares). Solid
lines (theory) and solid symbols (simulation) correspond to the
isotropic branch of the coexistence, while dashed lines and open
symbols are the results for the nematic branch. In both panels,
the upper curves of each type correspond to D∗

s = 0.3. Tie lines
joining some coexisting states calculated by theory are included
for illustration.

panel) with D∗
s = 0.1 and 0.3 are chosen to illustrate the

general behaviour of the different molecular geometries and
to compare them with simulation results. A general inspec-
tion of Figure 4, in combination with the dependence of
the pressure at coexistence with xs (not shown), reveals the
existence of two different coexistence regimes, depending
on the composition of the mixture. Few tie lines joining
coexisting states calculated by theory have been added to
facilitate the interpretation of the figure. At low values of
xs, the compositions in the isotropic and nematic phases are
very similar, with packing fractions at coexistence close
to the pure OHSC fluid. When xs in the isotropic phase is
increased, the difference in composition between the I and
N phases also grows. This leads to a turning point, from
where further increases on the fraction of spheres in the
isotropic phase lead to a decrease on the amount of spheres
in the nematic phase. Hence, beyond this turning point
the mixture enters in a demixed regime, where a sphere-
rich isotropic phase is in coexistence with a discotic-rich
nematic phase. This global behaviour is similar to the de-
scribed in the HSC–HS fluid [22]. For a given geometry of
the discotic particles, the value of xs where the turning point

appears in the nematic branch is highly dependent on the
diameter of the spherical particles. For both cases shown in
Figure 4, it is possible to check that for D∗

s = 0.1, the phase
separation is only found when the isotropic phase is very
rich in spherical particles (xs ≈ 0.8). In contrast, for mix-
tures with bigger spherical particles, the turning point in
the nematic branch of the coexistence appears for not very
high values of xs in this phase. There are also differences
in the qualitative evolution of the packing fraction in the
isotropic phase. For small spheres, in the isotropic branch
of the coexistence, there is a decrease of the packing frac-
tion there where xs is high enough. In contrast, for bigger
spheres, the packing fraction in the isotropic phase is always
growing.

In order to check the validity of the Parsons–Lee the-
ory described in this paper, computer simulation results are
also presented in Figure 4. For all the cases shown in this
figure, the computer results have the same qualitative be-
haviour than the theoretical values. In any case, the theory
predicts that, at a given composition, the coexistence occurs
at higher packing fractions that those found by computer
simulation. It is also remarkable that for computer simu-
lation results, the difference between the packing fraction
in the isotropic and nematic phase is much lower than the
theoretical predictions. This disagreement between PL and
computer simulation results is bigger than the obtained in
the equivalent comparison for the HSC–HS fluid. Two pos-
sible reasons could explain these differences away. First,
the computer simulation results correspond to the limits of
stability of the nematic phase. Hence, these points represent
– at a given xs – the last stable nematic and the first isotropic
states found. This methodology leads to the possibility that
the transitions from the nematic to the isotropic found by
computer simulation were from a metastable state, and the
packing fraction in the nematic phase was underestimated.
In other words, the simulation points could be closer to
the I–N spinodal than to the binodal curve. Moreover, it
should be considered an intrinsic limitation of the Parsons–
Lee theories for discotic particles. These theories are a
refinement of the Onsager theory as we mentioned above.
Onsager pointed out in his seminal paper that, in contrast
with rod-like particles, the virial coefficients higher than
the second can no longer be neglected for platelet particles
[31]. So, the Parsons–Lee formalism is more inaccurate for
the description of quantitative properties of the OHSC–HS
fluid than in the HSC–HS case. With these considerations,
the comparison between theory and simulations showed in
Figure 4 presents an acceptable level of agreement from a
qualitative point of view.

To extend the discussion of the PL theory predictions
about the I–N transition in the HS-OHSC fluid, we show
in Figures 5 and 6 the results for several particles sizes.
Figure 5 summarises the results for OHSC–HS fluid with
L∗ = 0.1 and D∗

s = 0.1, 0.15, 0.2 and 0.3. In Figure 6, the
results for discotic particles with L∗ = 0.05 and spherical
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Figure 5. Dependence of the pressure P∗ = βP/D3 (top panel)
and the packing fraction (bottom panel) with the volume fraction
of spheres xv at the isotropic-to-nematic coexistence predicted by
PL theory for OHSC–HS fluids with (a) L∗ = 0.1 and Ds = 0.1;
(b) L∗ = 0.1 and Ds = 0.15; (c) L∗ = 0.1 and Ds = 0.2 and
(d) L∗ = 0.1 and Ds = 0.3.

particles with the same diameters than in Figure 5 are
shown. In both figures, the dependence of the pressure in
reduced units (top panel) and the packing fraction (lower
panel) with the volumetric fraction of spheres xv are pre-
sented. By means of the combined inspection of both pan-
els, the pressure, packing fraction and composition of co-
existing states can be determined. In both figures, we can
observe the general characteristics described previously:
in fluids with low concentration of spheres, there is co-
existence between isotropic and nematic phase with little
anisotropy in the composition. When the volume fraction
of spheres in the isotropic phases is incremented, a turn-
ing point is reached and xv in the nematic phase starts to
decrease. For L∗ = 0.1 and spheres with D∗

s = 0.1, an in-
crement of xv in the isotropic phase has as consequence a
fast pressure growth at coexistence (top panel). On the other
hand, the packing fraction (lower panel) clearly decreases
in the isotropic phase when xv is increased in this branch of
the coexistence. In the nematic branch of the coexistence,
the packing fraction grows monotonously with the value of
xv in the isotropic branch. This leads to a very asymmet-
ric coexistence, between a diluted isotropic phase rich in
spheres, and a concentrated nematic phase rich in discotic
particles. This general qualitative behaviour is found for all
the spherical diameters studied in this work. In any case, de-
pending on the diameter of the spheres, there are important

Figure 6. Same as Figure 5 but for L∗ = 0.05.

quantitative differences. Hence, an increase on the diameter
of spheres has as consequence an important decrease of the
pressure at coexistence for a given composition. It should be
stressed that there is a strong relation between the decrease
of the pressure at coexistence and the chosen reduced units.
If the reduction P ∗ = βPD3

s were used, an increase of the
pressure when the diameter of the spheres grows would be
found. In any case, when the spheres’ diameter grows the
relation P ∗/P ∗

OHSC decreases; where P ∗
OHSC is the pressure

at coexistence for the OHSC monocomponent fluid. The
change of the diameter of the spheres has two relevant con-
sequences for the η value of the I–N phase diagram. First, in
the isotropic branch η has a positive correlation with D∗

s at
a given value of xv . Besides, the dependence of the packing
fraction in the isotropic branch with xv also depends on D∗

s .
Hence, when D∗

s grows, η changes in the isotropic phase
from decreasing along with xv for D∗

s = 0.1, to an almost
constant value for D∗

s = 0.15 and growth for D∗
s = 0.2 and

0.3. In the nematic phase of the coexistence, the most rele-
vant effect of the increment of D∗

s is the displacement of the
turning point to higher values of xv . The I–N phase diagram
at L∗ = 0.05 (Figure 6) shows the same characteristics. The
main difference is the displacement of the I–N transitions
up to higher pressures and lower packing fractions. To close
the discussion about the effect of the addition of spheres
in the liquid-crystal phase diagram of OHSC, it is interest-
ing to note that, for situations where the nematic phase is
stable in the monocomponent fluid of OHSC particles, the
addition of spheres tends to destabilise the nematic phase.
In all the cases studied in this work, the theory predicts
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Figure 7. Equations of state at constant composition (isopleths)
predicted by the Parsons–Lee theory (solid lines for isotropic and
dashed lines for nematic branches, respectively) and obtained by
computer simulation (solid symbols for isotropic and open sym-
bols for nematic states) for OHSC–HS fluids with (L∗,D∗

s , xs) =
(0.05,0.1,0.1) (a, lines and circles); (0.1,0.1,0.1) (b, lines and
squares); (0.05,0.3,0.1) (c, lines and diamonds) and (0.05,0.1,0.5)
(d, lines and triangles). The pressure is reduced as in Figure 5.

that, when the volume fraction of spheres is incremented,
the nematic phase is stable at higher values of the pressure
and the packing fraction. This effect is the same that the
found in the HSC–HS fluid. Most of the effects reported up
to now, such as I-I demixing or broadening of the I-N bin-
odals, have been also reported in another kind of mixtures,
such mixtures of rod-like and spherical particles [22,54], or
mixtures of platelets with non-adsorbing polymers [38,55].
As commented in the Introduction, to the best of our knowl-
edge this is the first time that this rich phenomenology has
been reported for the OHSC–HS fluid employing theory
and simulation.

Finally, the prediction of the equation of states from PL
theory and the comparison of this results with the obtained
from Monte Carlo simulations is discussed and summarised
in Figure 7. Hence, in Figure 7 the effect of the character-
istics of the particles and the composition on the equation
of state is shown. The Parsons–Lee equations of state at
constant mixture composition (isopleths) for OHSC–HS
mixtures are calculated for the L∗ and HS diameters ranges
where I–N transition occurs (mainly L∗ = 0.01 and 0.05,
D∗

s covering 0.1 and 0.3). The range of volume (or mo-
lar) fractions of HS considered in each case corresponds
to the region of relatively small composition asymmetry in
the coexisting I–N spinodals diagram calculated previously.
This region lies before the entrance of the system into the
demixed regime and is sufficiently anticipated with respect
to the region where columnar phases may become relevant.
The different isopleths show the expected positive correla-
tion between pressure and packing fraction. For L∗ = 0.05
and D∗

s = 0.1, an increment of xs from 0.1 to 0.5 leads to
an increment of the pressure at a given packing fraction in

both I and N phases. This effect is related with the decrease
of the average volume of the mixture vm. The opposite ef-
fect is observed as the diameter of the spheres is increased
at constant value of L∗ and xs. Figure 7 shows as the PL
theory predicts, for L∗ = 0.05 and xs = 0.1 and a given
value of η, that the fluid with D∗

s = 0.3 has lower pres-
sure than for D∗

s = 0.1. This trend becomes smoother than
the observed when xs is changed. This smoothing for size
ranges where the HS and HSC molecular volumes become
comparable is a consequence of the effective compensation
of the excluded volume contributions that drives the sys-
tem pressure. However, such steric effects vary significantly
from the isotropic to the nematic phase. Hence, for L∗ =
0.01, D∗

s = 0.3, in the nematic phase, the trend observed in
the isotropic phase is inverted. Similar conclusions could
be extracted from the important reduction of the pressure
at a given packing fraction when L∗ changes from 0.05 to
0.1, fixing xs = 0.1 and D∗

s = 0.1. Again, this could be
related with the change in the relative volume occupied by
the particles. Another effect is the displacement of the I–
N transition towards greater packing values with growing
molar fraction of HS due to the destabilisation of the ne-
matic phase provoked by the depletion effects induced by
the spherical component.

Isopleths for the isotropic and nematic phases have been
reported here from MC–NPT simulations. The calculated
points are included in Figure 7 as illustration of the qual-
itative agreement observed between the Parsons–Lee iso-
pleths in the isotropic and nematic phases and the results
from MC–NPT simulations for some particular cases. Here
it is observed that, at a given packing fraction, the wider
is the diameter of the spherical particles the higher is the
pressure and the lower when the system is richer in spheres
or for discotic particles with larger value for L∗. In any case,
the numerical agreement between theory and simulation in
all the cases shown in Figure 7 is not quantitatively accu-
rate. It can be observed that, at given packing fraction, the
values of P∗ obtained by computer simulation are slightly
larger than those predicted by the PL theory. This small
but clear disagreement between theoretical and simulation
results appears in both isotropic and nematic phases. This
is in contrast with the very good agreement between the PL
theory and computer simulation found in the fluid of hard
prolate spherocylinders and hard spheres [22]. A similar
level of inaccuracy for theories derived from Onsager’s the-
ories in systems with discotic particles has been reported
by other authors in the past [42,43]. In contrast to fluids
with prolate particles, where theoretical approaches give a
good description of the model in both the immediacy of the
isotropic-nematic transition and in the nematic phase itself,
it gives a worse agreement between theory and simulation
for discotic particles. This is a consequence of the intrin-
sic limitations of the theories based on Onsager’s ideas to
manage orientational order in discotic particles as it was
commented above.
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4. Conclusions and final remarks

The extension of the Parsons–Lee theory to the isotropic
and nematic phase and the transition between them in binary
mixtures of oblate hard spherocylinders and hard spheres
have been discussed in detail. The results obtained within
this approach have been checked with computer simula-
tion results obtained in the NPT ensemble. In general, the
qualitative concordance between theory and simulation is
good for all the cases studied in this work. However, there
are some numerical discrepancies and, hence, some of the
results presented should be considered cautiously. The first
disparity found in some of the results discussed is the ap-
pearance of IN transition packing fractions above the tran-
sition to columnar phases in the monocomponent OHSC
fluid. The spatially structured phases are out of the scope of
the PL theory. This could be more relevant in the study of
the isotropic–isotropic demixing, where in some cases a co-
existence of a very high packed and discotic-rich phase with
another sphere-rich phase has been predicted. In any case,
the computer simulation results confirm this coexistence,
although between a isotropic fluid and cluster in colum-
nar arrangement. These results could open the possibility
of the stabilisation of nanowires by a spherical depleting
agent. This exciting topic needs further research and will
be the subject of a comprehensive report in the future.

On the other hand, this work confirms the limitations
of the theories derived from Onsager’s ideas for an accu-
rate numerical description of systems containing discotic
particles. A possible improvement route of the PL theory
proposed here is a virial rescaling of the nematic phase
with an appropriate reference system such as that proposed
by Vega and Lago [56]. In relation to this improvement,
a recent a theoretical study about the equation of state of
monocomponent discotic particles including negative con-
tributions to the virial expansion has been reported [44]. In
this study, a generic equation of state for monocomponent
discotic fluids with a higher agreement with simulation
results that could be easily extended to multicomponent
fluids, is proposed. This constitutes a promising approach
towards the refinement of the results reported in this work.
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