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We study by computer simulations the interaction between two similarly charged colloidal particles con-
fined between parallel planes, in salt free conditions. Both the colloids and ions are simulated explicitly,
in a fine-mesh lattice, and the electrostatic interaction is calculated using Ewald summation in two
dimensions. The internal energy is measured by setting the colloidal particles at a given position and
equilibrating the ions, whereas the free energy is obtained introducing a bias (attractive) potential
between the colloids. Our results show that upon confining the system, the internal energy decreases,
resulting in an attractive contribution to the interaction potential for large charges and strong confine-
ment. However, the loss of entropy of the ions is the dominant mechanism in the interaction, irrespective
of the confinement of the system. The interaction potential is therefore repulsive in all cases, and is well
described by the DLVO functional form, but effective values have to be used for the interaction strength
and Debye length.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Experimental measurements by optical microscopy of the inter-
action between a pair of colloidal particles confined by two parallel
plates were first performed around 20 years ago, and revealed a
surprising attraction between like-charge particles in the low salt
regime [1–5]. The range of the attraction was too long to be attrib-
utable to van der Waals forces, and defied the understanding of the
interaction between charged colloids based on the mean field the-
ory of Derjaguin and Landau and Verwey and Overbeek [6], DLVO.
The experiments were questioned due to optical dispersions [7–9],
but it has been argued that this corrections are not important
enough to modify qualitatively the main results[10]. In bulk, how-
ever, these attractions were not found by similar experimental
techniques [11–14], except close to walls of the cell [15,16] – some
works, however, reported the presence of voids in bulk systems
[17,18], identified as liquid–vapor coexistence, which must be pro-
voked by an attractive interaction. Furthermore, it has been proved
that the attractions in confined systems are thermodynamically
self-consistent, as shown by the agreement of configurational
and hyperconfigurational temperatures with the bulk temperature
[14,19].
The unexpected observation of attractions between like-
charged particles motivated intense development of theories and
computer simulations. The DLVO theory which describes most of
the phenomenology of charged colloids correctly, predicts a purely
repulsive interaction between a pair of particles with the same
charge. However, it has been theoretically rationalized that attrac-
tions can be caused by ionic correlations in bulk colloids (neglected
within the DLVO theory), particularly in the strong coupling limit
and extremely low salt concentrations[20–23]. The ion-colloid
coupling is measured by the ratio ZkB=r, where Z and r are the
colloid charge and diameter, respectively and kB is the Bjerrum
length. The effective colloid-colloid attraction has an important
entropic contribution, similar to the ionic condensation described
by Manning [24,25], for large values of ZkB=r. Computer simula-
tions confirmed these findings reporting liquid–vapor coexistence
in bulk systems, but due to computational limitations relatively
small colloid with small charges were modeled (or ions with a
large valency) [26–29], or solvents with low dielectric constant,
resulting also in strong electrostatic coupling [30]. However, the
more relevant case of large colloid and big charges, has not been
tackled yet.

Specific theoretical models have been devised for the case of
interacting particles close to walls. Sader and Chan showed that
within the Poisson–Boltzmann (PB) theory, the interaction is repul-
sive in all circumstances [31,32], so that other effects must be
introduced to explain the experimental results. Experimentally, it
has been shown that attractive interactions are asymmetric with
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respect to the sign of the colloidal charge, indicating specific ionic
interactions, not accounted for in PB theory [33]. Lee and Ng [34]
proposed a model where fluctuations within the ionic clouds result
in high-order electric moments provoking a net attraction between
particles (plus ionic clouds), similar to the net dipolar attraction
observed in colloids in interfaces [35,36]. Their results, however,
indicate that this attraction would appear only for very low
charges, where fluctuations are more important [34]. The fluctua-
tions in the number of ions in the ionic clouds, on the other hand,
can induce an attractive contribution between the macroions, as
shown by Chen and Lee [37]. Using a cell model, it was shown that
the attraction arising from these fluctuations has a strength of the
order of 1kBT, thus much smaller than all other contributions to the
interaction energy [37]. Other effects of non-electrostatic origin
have also been studied, such as hydrodynamic interactions close
to walls [38] or the importance of dissolved gas [39]. Since many
of these effects, including electrostatics in the strong-coupling
limit, can induce attractive contributions to the total interaction
potential, the problem is still an open question, as to which is
the dominant contribution in every case, and the overall role
played by electrostatics.

In a previous work, using simulations with biassed sampling,
we showed that for a pair of unconfined colloidal particles with
large charges, as high as Z ¼ 600e, with e the elementary charge,
and monovalent salt in water, the interaction is purely repulsive,
due to the loss of entropy of the ions, which are electrostatically
confined between the colloids at short separations [40]. This is in
qualitative agreement with the DLVO theory, despite the neglect
of ionic correlations (ZkB=r was varied from �0.3 to �5). That
work, however, was focused in bulk colloids, while the attraction
between like charged colloids has been reported mainly in con-
fined situations. Thus, we extend our previous work to confined
systems, with the same range of ZkB=r, i.e. low and intermediate
electrostatic coupling, to check if the attractions can arise from
electrostatic interactions upon confining the system, in conditions
where these attractions would not appear in bulk. In our simula-
tions, the interactions are calculated with the Ewald summation
technique in two dimensions. The internal electrostatic energy is
calculated by fixing the colloids and equilibrating the ions,
whereas the free energy is determined by introducing a bias
attractive potential between them. Different colloidal charges, up
to Z ¼ 500e, are considered, without added salt in water at room
conditions, and different confinements, down to Lz ¼ 1:1r, with
r the colloidal particle diameter. We find that the interaction is
repulsive in all cases, dominated by the loss of ionic entropy when
the colloids approach each other, as in the bulk case. The effect of
the confinement is only quantitative, reducing the intensity of the
repulsion (namely, the effective charge), but leaving its range
unaffected.

2. Simulation details

Monte Carlo simulations in the canonical ensemble were run in
a system consisting of two positively charged macroions of charge
Ze, where e is the unit charge, and diameter r, and 2Z counterions
with charge �e, ensuring electroneutrality. Situations with
additional added salt have not been considered in this work. The
methods used here are very similar to the described in a previous
work[40]; we refer there for more detailed explanations, and pres-
ent here a review of the methodology. Technical aspects about the
computer simulation of confined charged fluids will be discussed
in detail.

The interaction between all the particles has been modeled
using the primitive model. The particles interact through the Cou-
lomb potential plus a repulsive core that prevents overlap between
the particles when they are closer than a contact distance,
rij ¼ 0:5ðri þ rjÞ with ri and rj the diameter of species i and j
(colloid particle or ion). Hence, for two particles of species i and j
the interaction is given by:

bUijðrijÞ ¼
1 rij 6 rij

ZiZj

rij
kB rij P rij;

(
ð1Þ

where rij ¼ 0:5ðri þ rjÞ is the contact distance between the centers,
and b ¼ 1=kBT , with kB and T the Boltzmann constant and tempera-
ture, respectively. The diameter of the ions is r=40. The Bjerrum
length is given by kB ¼ be2=�.

Besides this, to model the confinement, two infinite, parallel,
hard and non-conducting walls were located at coordinates
z ¼ �0:5Lz and z ¼ 0:5Lz (we take the z-axis as perpendicular to
the plates and La is the box-size in the x-axis). The interaction
between a particle i and the walls is infinity if zi > 0:5Lz � ri=2 or
zi < �0:5Lz þ ri=2 and zero otherwise (zi is the z-coordinate of par-
ticle i). Note that image charges are not considered, namely, the
dielectric constant of the planes is equal to that of the medium
between them. In doing so, we aim to isolate the effect of the
confinement of the double layers on the interaction (although in
the experimental case image charges might have a relevant
contribution).

Simulations were done in a simulation box with dimensions
Lx � Ly � Lz. Periodic boundary conditions are only applied in the
x and y directions, but not in the z direction. This geometry has
been described previously as slab geometry [41]. This situation is
completely different from the bulk case[40], where the periodic
boundary conditions are applied in the three directions and no
confinement is considered. In all the simulations of this work we
set Lx ¼ 25r and Ly ¼ 10r, while Lz has been changed from
Lz ¼ 7:5r, close to the bulk case, to Lz ¼ 1:1r, which is a stringent
confinement. Some bulk cases (Lz ¼ 10r and periodic boundary
conditions in the three directions) are also reported, for the sake
of comparison. The values of Lx and Ly have been taken large
enough to model an isolated pair of particles, i.e. the periodic
images have a small effect on the interaction between them. On
the other hand, if the system is made much larger, the counter-
ion concentration is so small that the double layers around the
colloids hardly form.

In order to make a direct comparison with experimental values
feasible, we discuss briefly the values of the relevant parameters in
typical experimental units. For reference, we take a typical particle
diameter of r ¼ 100 nm. The Bjerrum length is kB ¼ 0:7 nm ¼
0:007r, to mimic the conditions of water at room temperature,
and the ion size is 2.5 nm (although the this differs from the typical
size of monovalent ions, we expect that the essential characteris-
tics of the effective colloid-colloid interaction are captured by
our model, as further discussed below, keeping within the current
computer limitations). The colloid concentration goes from
8 � 10�4r�3 ¼ 8 � 1011 cm�3 in the bulk case to 7:27 � 10�3r�3

¼ 7:27 � 1012 cm�3 for Lz ¼ 1:1r. For Z ¼ 500, the surface charge
density is 159:16er�2 ¼ 0:255 lC=cm2, and the counter-ion con-
centration ranges from 0:4r�3 ¼ 0:664 lM in the bulk case to
3:63r�3 ¼ 6:04 lM for Lz ¼ 1:1. The colloid concentration is too
large, compared to the experimental values, but to reduce it larger
simulation boxes should be considered, which would also decrease
the ionic concentration to unrealistic values.

As the interaction between the particles is mainly electrostatic,
special techniques must be used to handle the long-range charac-
ter of this interaction. An efficient solution for this problem is the
Ewald summation method, that includes the contributions to the
energy from particles in all the periodic images of the simulation
box. The description of Ewald summation for a system with
periodic boundary conditions in the three directions (EWD3D)
can be found elsewhere [41,42]. However, when the system under
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consideration is periodic in two directions, x and y, but not in the
third one, z, (slab geometry) the standard three dimensional Ewald
summation cannot be used, and some alternatives have been pro-
posed [43,44]. One option is to replicate the simulation box period-
ically in the z-direction, and use the standard Ewald summation,
with an additional correction due to a spurious dipolar contribu-
tion [41,45,43,46]. This method (EWD3DC) is easy to implement,
and its computational efficiency is similar to the standard EWD3D
method, but it has been reported that it could introduce artefacts
in the results [44]. For this reason we have decided to implement
the exact, but more expensive from a computational point of view,
bi-dimensional Ewald summation (EWD2D). In this method, the
expression of the electrostatic energy of the pair of particles i
and j is given by [47–49]:

bUij

kB
¼1

2

XN

i;j¼1

X1
jmj¼0

0ZiZj
erfcðajrijþmjÞ
jrijþmj

þ p
2A

XN

i;j¼1

X
h–0

ZiZj
cosðrij �hÞ

h
expðhzijÞerfc azijþ

h
2a

� ��

þexpð�hzijÞerfc �azijþ
h

2a

� ��

�p
A

XN

i;j¼1

ZiZj zijerfðazijÞþ
1

a
ffiffiffiffi
p
p expð�a2z2

ijÞ
� �

� affiffiffiffi
p
p
� �XN

i¼1

Z2
i ð2Þ

where m ¼ ðmxLx;myLy;0Þ is the lattice vector with mx and my inte-
gers. We also introduced the reciprocal lattice vector given by
h ¼ ð2pm0x=Lx;2pm0y=Ly;0Þ with integers m0x and m0y, and the area
of the unit cell A ¼ LxLy. The primed sum in the first term indicates
the omission of the i ¼ j term when m ¼ 0. a and the number of
vectors m and h are adjustable parameters, chosen such that com-
putational efficiency is optimized. erfðxÞ and erfcðxÞ denote the
error function and the complementary error function, respectively.
After several checks to ensure the convergence of the calculations
we have used aLz ¼ 1 and the number of vectors in Fourier space
was fixed to 1256.

Due to the double sum over the particles in the Fourier part of
the expression, the use of Eq. (2) has a very high computational
cost. To overcome this problem, we have employed the technique
proposed by Kumar and Panagiotopoulos [50] to speed up the cal-
culations. There, the positions of the particles are constrained to a
discrete cubic lattice, with small lattice spacing, a, and the interac-
tion energy between all pairs of lattice sites is calculated only once
at the beginning of the simulation. The lattice parameter is defined
as v ¼ r=a (the continuum limit is reached for v!1). It has been
shown previously that the results obtained with this method are
independent on v if this parameter is big enough [51]. Thus, we
have used, as in our previous work [40], v ¼ 35. Now the electro-
static interaction of Eq. (2) is pre-calculated only once at the begin-
ning of the simulation and stored in an array. With this, it is
possible to carry out simulations within reasonable computational
time. Note that, because a lattice site can only be occupied by one
ion (or colloid), the effective ionic size is given by the lattice
parameter v. Because the electrostatic energy is independent of v
above v ¼ 35 [51], we expect that our results are independent of
the ionic size, though it is certainly unrealistic.

With the general details described above, two different types of
simulations have been carried out. In the first, the position of the
two colloidal particles was fixed at coordinates ð�R=2;0;0Þ and
ðR=2;0;0Þ, whereas ions were allowed to change their positions
in the lattice according to a standard Metropolis algorithm with
a maximum displacement of 5r. From random positions for all
the ions, 105 Monte Carlo cycles were run to equilibrate the system
– a cycle consists in 2Z trials to move a randomly chosen ion. From
the thermalized configuration, 105 additional Monte Carlo cycles
were run to obtain averages. Hence, with this method we calcu-
lated the internal energy of the system as a function of the distance
between the colloidal particles, R, as well as the ionic density pro-
file around them.

This method is useful to calculate the internal energy as a
function of the distance between the colloids, but this cannot be
considered equivalent to the effective interaction between the
colloids. To calculate the effective potential, it is necessary to inte-
grate all degrees of freedom of the ions in the Hamiltonian of the
system. In the integration of these degrees of freedom, besides
an energetic contribution, the entropic contribution must also be
considered, i.e. the effective interaction between the colloids is
equivalent to the increase (or decrease) of free energy of the fluid
as a function of the distance between the colloidal particles.

The free energy of the system with the colloids at distance
R; FðRÞ, via

FðRÞ � F0 ¼ �
1

kBT
lnðPðRÞÞ ð3Þ

where F0 is an undetermined constant, and PðRÞ is the probability to
find the two colloids at distance R. In principle, it could be possible
to calculate PðRÞ in a Monte Carlo simulation where the colloids
were free to move, allowing the system to explore all the phase
space. However, when the colloids repel each other, the region of
short distances is poorly explored statistically, requiring very long
simulations to achieve enough statistics for the calculation of
FðRÞ. To overcome this difficulty, we have proposed [40] a simula-
tion method based in the use of umbrella sampling Monte Carlo
simulations [52,41]. In this method, a bias external potential is
introduced in order to favor configurations that are rarely visited,
improving the statistics in the calculation of PðRÞ for these configu-
rations. At the end of the simulation the effect of this bias potential
is removed from PðRÞ [40]. In this way, we have run simulations
where the two colloidal particles are free to perform Monte Carlo
moves with the electrostatic interaction with all other charges
and an external bias potential between the colloids given by:

bUbias ¼ KðR� R0Þ2 ð4Þ

with R the distance between the colloidal particles, K gives the
strength of the bias potential and R0 a distance of reference. A given
selection of K and R0 allows the particles to explore a window of dis-
tances, and to sample PðRÞ.

With these details, the simulation technique was implemented
as follows. 104 Monte Carlo cycles have been run to equilibrate the
system, and 104 cycles to obtain averages. Now a Monte Carlo cycle
comprises a trial move for each colloid in any direction plus 2Z tri-
als to move an ion chosen at random. As a Monte Carlo move of one
colloid will have a high probability to be rejected due to overlaps
with ions, we have used the swap move technique: ions that over-
lap with the new colloid position are moved into the space left
empty by the displaced colloid [53,51]. The acceptance ratio of
moves per colloid was maintained at 40% while the maximum dis-
placement for microions was fixed at 5r. The Monte Carlo moves
described here are done with the inter–particle potential described
previously for the calculation of the internal energy, Eq. (2).
Besides this, the bias potential is applied at the end of each Monte
Carlo cycle, accepting or rejecting the whole cycle according to the
Metropolis rule. In this work, the value of K is in the range 1–50r�2

while R0 varies from 0 to 7r.
At the end of the simulation, the effect of the bias potential

must be removed, and FðRÞ is calculated from the PðRÞ obtained
in each window. The free energy in different windows must then
be connected, fitting the constant F0 in each window, to result in
a continuous function. One constant is still undetermined, which
we fit to set the origin of the free energy at R ¼ 10r, i.e.
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Fð10rÞ ¼ 0. We refer to our previous work[40] for more details on
this procedure.
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3. Results and discussion

We start by presenting the internal electrostatic energy of the
system, U, which is measured in simulations with the colloidal par-
ticles fixed; the confinement, in this case, affects only the ionic dis-
tribution around the colloids. Fig. 1 shows the internal energy as a
function of the separation distance between the particles, increas-
ing the confinement up to a separation between the planes of
Lz ¼ 1:1r, with a constant number of counter-ions n ¼ 2Z, i.e. with-
out added salt (the internal energy is set to zero at R ¼ 10r). Three
different colloid charges are considered: Z ¼ 100 < r=kB (upper
panel) where electrostatic coupling is weak, Z ¼ 200 � r=kB,
(intermediate panel) where electrostatic and thermal energies
are of the same order, and Z ¼ 500 > r=kB, (lower panel) where
the electrostatics are expected to dominate. In bulk, the internal
energy increases upon approaching the particles for the three
charges studied, but when the confining planes approach each
other, the energy decreases. This effect is weak at low colloidal
charge, but it is clearly observed as Z grows. The case Z ¼ 500 is
particularly interesting: when the confinement is strong enough,
the energy decreases as the colloids approach each other, implying
an attractive contribution to the interaction potential induced
solely by the modification of the ionic clouds. Note that this
appears only when the electrostatic coupling is strong enough to
form a condensed layer around the colloids.

A decrease of the internal energy upon approaching the colloid
particles can also be observed in a bulk system when the colloid
charge is increased well above the critical value � r=kB (upper
panel of Fig. 2), although the total interaction potential between
the colloids is always repulsive [40]. In the bulk case, the trend
of the internal energy is originated by the competition between
electrostatic coupling and ion entropy: upon increasing the charge,
the ions are confined in the region between the colloids, decreasing
the electrostatic energy. Similarly, when salt is added to the system
(as shown in the lower panel of Fig. 2 for Z ¼ 500), more ions are
available to decrease the energy. The upturn of the energy at very
small separation between the colloids, observed also in the con-
fined systems (Fig. 1) is caused by the finite size of the ions, and
has been described theoretically [22].

Thus, we study the ionic density distributions in bulk and in the
confined systems. Fig. 3 shows the distributions for different sepa-
rations between the colloidal particles and comparing the bulk and
the confined systems for the strong coupling case, Z ¼ 500 (the
same scale is used in all plots; zenital and lateral views are pre-
sented for the confined system). The angular symmetry observed
at large separations in the zenital view is lost when the colloids
approach each other; the ions concentrate in the region between
the two particles, thus reducing the electrostatic repulsion
between the colloids. It is observed in the figure that the ionic con-
centration is larger when the system is confined, since the avail-
able space for the ions has reduced significantly, what explains
the decrease of the internal energy in the confined case, as
observed in Fig. 1. However, the electrical confinement is reduced
to the region of maximum approach between the colloids, as
shown in the lateral view, and is not affected by the planes. We
also note in passing that ionic steric hindrance can be important
in this region, particularly for large colloid charges, and must be
considered in the models.

The ionic crowding can be quantified counting the ions around
both colloids up to the coupling distance ZkB (for Z ¼ 500;
ZkB ¼ 3:5r), NB. For Lz ¼ 1:1r;NB � 290 when the particles are far
apart and NB � 580 at closest distance, while in bulk the number
of ions is NB � 190 and NB � 440 far apart and at closest distance,



Fig. 3. Ionic density distributions for different colloid separations, as labeled, for a stringent confinement Lz ¼ 1:1r (top rows; upper row is a lateral view and lower one a
zenital view), and in bulk (bottom row), with Z ¼ 500. The density is measured in units of ions per volume unit (r3), and the scale is the same for all plots, in the right.
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respectively (at short separations, most of the counterions coupled
to one colloid are also coupled to the other one, and thus are
counted twice). Note that in all cases the total colloid charge
(2Z ¼ 1000) is not completely screened due to the balance
between ionic coupling with diffusion. The fluctuations of the
number of particles are relatively small, and thus not sufficient
to provoke attractions of electric multipolar origin, as discussed
by Lee and Ng [34]. We also note that our results concerning the
ionic distributions are clearly different from the assumptions of
Chen and Lee [37]; in their cell model, they assumed that the ionic
clouds are isotropic and that the radial distribution functions are
independent of the macroion separation, which is certainly not
correct at small separations.

The effect of the ionic distribution on the interaction potential is
accounted for by the ideal contribution to the entropy of the sys-
tem. This is calculated as follows:

Sid=kB ¼
Z

d3rqcðrÞðln½4pK3qcðrÞ� � 1Þ ð5Þ

where qcðrÞ is the ion density, and K is the thermal de Broglie wave-
length. The results for different charges and separations between
the planes are shown in Fig. 4 (the entropy is set to zero at
R ¼ 10r). Note that for large charges, where the colloid-ion electro-
static coupling is strong, the entropy decreases significantly upon
approaching the colloids due to the dramatic increase of the ion
concentration in the region between the colloids, resulting in a
repulsive contribution for the free energy. This is not observed
when the charge is lower, as the ions are almost free. (Note, how-
ever, that the internal energy yields a repulsive interaction in this
case). Little influence is observed from the confinement, within
the statistical uncertainty of the results, indicating again that the
region where ions are electrostatically trapped between the colloids
is not affected by the reduction of free space.

The total interaction potential between the colloids is given by
the difference of free energy of the system, which we measure
introducing an attractive bias potential, as explained above. The
results are shown in Fig. 5 for different charges and separations
between the planes. The interaction potential is repulsive in all
cases, as expected from DLVO for colloids with similar charges,
and more intense as the charge increases. It must be noted, never-
theless, that for low charges the dominant contribution is the
internal energy, whereas for large charges the loss of entropy of
the ions is much more important and drives the free energy. These
results, therefore, indicate that the electrostatic interactions do not
cause a net attraction between like-charge colloids with 1:1 salts in
water.

The confinement reduces the strength of the repulsion, as noted
in Fig. 5. However, this effect cannot be attributed to the increase
of the ionic strength due to the reduction of accessible volume
when the planes approach each other, as shown below. The
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repulsive interaction between bulk colloids can be quite accurately
described by the Yukawa functional form:

buðrÞ ¼ A0
e�A1R

R
� A0

e�10A1

10
ð6Þ

where the second term has been added to yield yðR ¼ 10rÞ ¼ 0, and
allow comparison with our results. According to the DLVO theory,

A0 ¼ ADLVO ¼ Z2 exp½jr=2�
1þ jr=2

� �2

kB; ð7Þ

is a measure of the effective charge of the colloids, and

A1 ¼ j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

�kBT

X
qiz

2
i

s
; ð8Þ

where qi is the bulk ion density of species i (in our case, the sum-
mation contains only one term, corresponding to the counterions).
Upon approaching the planes, the ionic strength increases and both
A0 and A1 should increase. The Yukawa potential can be perfectly
fitted to the results of both the bulk and confined systems, as shown
in Fig. 5 for Z ¼ 500 (dashed lines). It must be mentioned, however,
that the DLVO theory does not account for the confining walls, so it
is used here as an effective model, which describes correctly the
results of the confined systems, and allows comparison with the
bulk case. The parameters A0 and A1 used in the fittings are shown
in Fig. 6 as a function of the theoretical j, as calculated with the vol-
ume of the system, using Eq. (8). In the same figure, we present also
the results for the bulk system with added salt (n ¼ 500 and
n ¼ 1000 anion-cation pairs) [40].

For the bulk system, A1 increases following the expected trend
A1 ¼ j (marked by the dashed line), but A0 decreases, contrary to
the DLVO calculation. Upon confining the system, A1 is almost
unchanged from the bulk result, what cannot be explained simply
by the increase of the ionic strength, and A0 falls well below the
expected result. These results imply that the range of the potential
is similar for all cases, irrespective of the separation between the
planes, and the effective charge decreases, what can be rational-
ized considering that the loss of configurational entropy of the
ions, which is the dominant contribution for the free energy, is
almost the same for all confinements, and the internal energy
has the same decay length for all separations of the planes. To
reduce the effective charge, ions must be tightly bounded to the
colloid, what is favored by the confinement.

Finally, we would like to discuss some differences between our
system and the experimental ones where attractions have been
observed. The first difference concerns the particle charge; whereas
we have focused here in a system with Z ¼ 500, real colloids typi-
cally have larger charges, although our value is in the same order
of magnitude. The effect that we observe here will be probably
enhanced, but our present results do not allow us to conclude if
attractions can appear at significantly larger charges. In any case,
the trends observed in our study do not point in that direction.

Some experiments have reported attractions with modest salt
concentrations, but not in fully deionized systems [7,8,10]. As in
the case of bulk colloids, increasing the ionic concentration reduces
the internal energy, making this attractive contribution more
intense, but of shorter range. However, this is accounted for in
the classical PB formalism, and thus we have concentrated in the
region of low ionic concentrations, where PB is expected to fail
more strongly. Another important aspect in connection with the
experiments is the confining surfaces. Polin et al. [10] finds no
attraction when the walls are conducting (and presumably
uncharged). Wall charged with charges of the same sign of charge
as the colloidal particles induce a stronger confinement, enhancing
the effect found here. On the other hand, the combined modulation
of the ionic density by charged walls and colloidal particles, can
modify the effective interaction between the colloids observed
here [10].
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4. Conclusions

We have studied the problem of a pair of identical charged col-
loidal particles confined between two parallel plates by means of
Monte Carlo simulations, as an approach to the experimental setup
where attractions were reported. Besides a hard-core repulsion,
only electrostatic interactions are considered in our simulations,
calculated with the bi-dimensional Ewald summation technique.
Colloid charges are varied from low values to the strong coupling
regime, with monovalent counterions and without added salt,
and the separation between the planes is varied down to
Lz ¼ 1:1r. We have determined both the internal (electrostatic)
energy, by fixing the colloids and equilibrating the ions, and the
free energy, with the aid of a bias repulsive potential between
the colloidal particles. The simulations have been performed in
the canonical ensemble, but the experiments are performed in a
system in contact with a salt solution, namely with constant ionic
chemical potential. However, the fluctuations in the number of
ions are very low, and the two ensembles yield similar results.

The interaction between the colloids, as given by the increase of
the free energy from a reference distance, 10r in our case, is repul-
sive for all confinements and colloid charges studied. At large
charges, when the colloid-ion electrostatic coupling is important
enough, the dominant contribution comes from the loss of ionic
entropy, due to the electrostatic confinement of ions in the region
between the colloids, what reduces the electrostatic energy. The
confinement of the planes promotes this electrostatic effect, caus-
ing a reduction of the internal energy, but with minor effect on the
loss of entropy. As a result, the effective interaction potential
between the colloids is less repulsive upon confining the system,
but is repulsive in all cases.

These results, therefore, linked with those obtained in our pre-
vious work [40] rule out electrostatic interactions as the possible
origin of attractions between like charged colloids in water at room
temperature, with counterions of low valency, in salt-free condi-
tions and for the colloid charges here studied. However, it is shown
here that the repulsion is less intense under confinement than in
bulk. It is well known that multivalent ions with large colloid
charges can indeed provoke effective attractions because of the
strong ion-colloid coupling in bulk, and the confining planes can
enhance this effect, and make it observable for ions of lower valen-
cy. Further work is needed closer to the experimental conditions,
to attribute, or rule out, unambiguously if electrostatics can induce
attractions between like-charged colloids. Still, other effects dis-
cussed in the literature, such as specific ionic interactions or hydro-
dynamics can be also responsible for attractions between like
charged colloids.
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