
REVISTA DE MÉTODOS CUANTITATIVOS PARA
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ABSTRACT

We develop a new approach for decision making in educational management
based on the use of distance measures. We focus on the selection of a studies
plan from the perspective of an academic institution. We try to develop this
approach showing the benefits of establishing an ideal plan that we compare
with the available alternatives. We use the Minkowski distance, the ordered
weighted averaging (OWA) operator and the interval numbers. The use of
the Minkowski distance allows to make comparisons between the ideal plan
and the available ones in the market. The OWA operator is an aggregation
operator that provides a parameterized family of aggregation operators that
includes the maximum, the minimum and the average criteria, among oth-
ers. And the interval numbers is a very useful technique to represent the
information when the environment is very complex, because it gives all the
possible results from the minimum to the maximum. We introduce a new
aggregation operator called the uncertain generalized ordered weighted aver-
aging distance (UGOWAD) operator. It is a distance aggregation operator
that uses the main characteristics of the Minkowski distance, the OWA op-
erator and the interval numbers. We develop an illustrative example where
we can see the usefulness of the UGOWAD operator to select a studies plan
in education management. The main advantage of using the UGOWAD is
that we can consider a wide range of distance aggregation methods in the
decision problem. Then, the decision maker gets a more complete view of
the decision problem, being able to select the alternative that better fits the
interests.
Keywords: decision making; selection of studies plan; uncertainty; Min-
kowski distance; aggregation operators.
JEL classification: C44; C49; D81; D89.
2000MSC: 90B50.
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Toma de decisiones
en procesos de gestión de la educación
basados en las medidas de distancia

RESUMEN

Se desarrolla un nuevo modelo para la toma de decisiones en procesos de
gestión de la educación basados en las medidas de distancia. El análisis
se enfoca en analizar un proceso de selección de plan de estudios desde la
perspectiva de una institución académica. Se intenta mostrar la practicidad
de utilizar un plan de estudios imaginario que seŕıa el ideal a partir del cual
se comparaŕıan las diferentes alternativas disponibles. Para realizar esto, se
utilizarán diferentes técnicas disponibles en Teoŕıa de la Decisión, como son
la distancia de Minkowski, el operador de medias ponderadas (OWA) y los
intervalos de confianza. La utilización de la distancia de Minkowski nos per-
mite hacer comparaciones entre un plan de estudios ideal y los disponibles
en la realidad. El operador OWA es un operador de agregación que pro-
porciona una familia parametrizada de operadores de agregación entre los
cuales se destaca el máximo, el mı́nimo y la media aritmética. Los intervalos
de confianza son de gran utilidad para representar la información cuando el
entorno es muy complejo, porque proporciona todos los resultados que se
podŕıan producir desde un mı́nimo hasta un máximo. Por eso, incluye to-
dos los posibles resultados que se pueden producir. Para realizar esto, se
introduce un nuevo operador de agregación denominado como el operador
de distancia media ponderada ordenada generalizada incierta (UGOWAD
o UMOWAD). Es un operador de agregación de distancias que utiliza las
principales caracteŕısticas de la distancia de Minkowski, del operador OWA
y de los intervalos de confianza. Se desarrolla un ejemplo ilustrativo en
donde se puede ver la utilidad del operador UGOWAD para la selección de
un plan de estudios en la gestión de la educación. La principal ventaja de
utilizar el operador UGOWAD está en poder considerar una amplia gama
de operadores de agregación de distancias en el problema decisional. En-
tonces, el decisor obtiene un visión mucho más completa del problema y está
capacitado para seleccionar la alternativa que se acerca más a sus intereses.

Palabras clave: toma de decisiones; selección de plan de estudios; incer-
tidumbre; distancia de Minkowski; operadores de agregación.
Clasificación JEL: C44; C49; D81; D89.
2000MSC: 90B50.
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1. INTRODUCTION 
 

Decision making problems are very common in a lot of disciplines, including educational 

management. Most of the decisions carried out in an educational problem are taken from an 

intuitive point of view or only with some very basic information. However, in the real life the 

problems are often not so easy and it is necessary to analyze the information in more detail. 

Therefore, it is necessary to establish a decision making model for making the decision. In the 

literature, there are a lot of decision making methods (Bustince et al., 2008; Canós and Liern, 

2008; Figueira et al., 2005; Merigó, 2008; Xu, 2008b; 2008c; Yager, 1988; 1992; Yager and 

Kacprzyk, 1997). Some of them are based on the use of distance measures (Gil-Aluja, 1998; 

1999; 2001; Gil-Lafuente, 2005; Kaufmann and Gil-Aluja, 1986; 1987; Merigó, 2008; Merigó 

and Casanovas, 2008; Merigó and Gil-Lafuente, 2006; 2007; 2008a; 2008b; 2008c; 2009a). 

The distance measures (Hamming, 1950; Kaufmann, 1975; Kaufmann et al., 1994; Merigó, 

2008; Szmidt and Kacprzyk, 2000) are a very useful tool for a lot of problems. One of the 

most known distance measures is the Minkowski distance. It generalizes a wide range of other 

distances such as the Hamming and the Euclidean distances. 

Another useful tool for decision making is the ordered weighted averaging (OWA) 

operator (Yager, 1988). It is an aggregation operator that provides a method for representing 

the attitudinal character of the decision maker (the degree of optimism) in the aggregation 

process. Therefore, by using the OWA we are able to consider uncertain environments 

according to our attitudinal character. Since its appearance, the OWA operator has been 

studied by a lot of authors (Beliakov et al., 2007; Calvo et al., 2002; Fodor et al., 1995; 

Herrera et al., 2003; Merigó, 2008; Merigó and Casanovas, 2009; Merigó and Gil-Lafuente, 

2009b; Yager, 1993; 2002; 2008; Yager and Kacprzyk, 1997). 

An interesting extension of the OWA is the one that uses distance measures. In 

general, it is known as the ordered weighted averaging distance (OWAD) operator (Merigó, 

2008; Merigó and Gil-Lafuente, 2006; 2007). Further extensions of this approach include the 

one that uses the OWA operator in the Minkowski distance. It is known as the Minkowski 

OWAD (MOWAD) operator (Merigó and Gil-Lafuente, 2008b) and it uses generalized means 

(or the generalized OWA (Karayiannis, 2000; Yager, 2004)) in the OWAD operator. Other 

extensions are found in Merigó and Gil-Lafuente (2008a; 2008c; 2009a). 

Sometimes, the available information can not be represented with exact numbers 

because the environment is very uncertain. In these cases, it is necessary to use another 

approach for representing the uncertainty such as the use of interval numbers (Moore, 1966). 
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The use of interval numbers in the OWA operator is known as the uncertain OWA (UOWA) 

operator (Xu and Da, 2002). Further developments of the UOWA are found in Merigó (2008), 

Merigó and Casanovas (2007), Xu (2008a) and Xu and Da (2003). 

In this paper we suggest a generalization of the previous aggregation operators that we 

call the uncertain Minkowski ordered weighted averaging distance (UMOWAD) operator (or 

also the uncertain generalized OWAD (UGOWAD) operator). It is an aggregation operator 

that uses distance measures, generalized means, the OWA operator and uncertain information 

represented in the form of interval numbers. The main advantage of this operator is that it 

provides a robust formulation that includes a wide range of particular cases. Thus, the 

decision maker is able to consider a wide range of scenarios and select the one that is in 

accordance with his interests. Moreover, by using interval numbers we can represent the 

uncertain information in a more complete way because we can consider the best and worst 

result that may occur in the problem. 

We apply this approach in a decision making problem about the selection of studies 

plan. We focus on a PhD program where the decision maker wants to select new courses to be 

implemented in the program. He considers some key relevant factors such as the skills of the 

professors and the research perspectives of the courses. By using the UMOWAD operator we 

can consider a wide range of methods for aggregating the information and select the one that 

it is closest to our interests. 

This paper is organized as follows. In Section 2 we briefly describe the interval 

numbers and some basic distance measures and aggregation operators. Section 3 and Section 

4 present the new aggregation operators (the UMOWAD and the Quasi-UOWAD). In Section 

5 we briefly describe the decision making process in the selection of studies plan and in 

Section 6 we give a numerical example. Section 7 summarizes the main conclusions of the 

paper. 

 

2. PRELIMINARIES  
 

In this Section we briefly review the interval numbers, some basic distance measures and 

aggregation operators to be used in the selection process. Note that all this aggregation 

operators are particular cases of the general formulation that will be presented in Section 3. 

We consider the Minkowski distance, the OWA operator, the UOWA operator, the GOWA 

operator, the OWAD operator and the MOWAD operator. 
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2.1 Interval Numbers 
 

The interval numbers (Moore, 1966) are a very useful and simple technique for representing 

the uncertainty. It has been used in an astonishingly wide range of applications. 

The interval numbers can be expressed in different forms. For example, if we assume a 

4-tuple (a1, a2, a3, a4), that is to say, a quadruplet, we could consider that a1 and a4 represents 

the minimum and the maximum of the interval number, and a2 and a3, the interval with the 

highest probability or possibility, depending on the use we want to give to the interval 

numbers. Note that a1 ≤ a2 ≤ a3 ≤ a4. If a1 = a2 = a3 = a4, then, the interval number is an exact 

number; if a2 = a3, it is a 3-tuple known as triplet; and if a1 = a2 and a3 = a4, it is a simple 2-

tuple interval number. 

In the following, we are going to review some basic interval number operations as 

follows. Let A and B be two triplets, where A = (a1, a2, a3) and B = (b1, b2, b3). Then:  
 

1) A + B = (a1 + b1, a2 + b2, a3 + b3). 

2) A − B = (a1 − b1, a2 − b2, a3 − b3) – the Minkowski substraction. 

3) A ⋅ k = (k ⋅ a1, k ⋅ a2, k ⋅ a3); for k > 0. 

4) A ⋅ B = (a1 ⋅ b1, a2 ⋅ b2, a3 ⋅ b3); for R+. 
 

Note that R+ refers to all the positive real numbers. Note also that other operations 

could be studied (Moore, 1966) but in this paper we will focus on these ones. 

 

2.2 The Minkowski Distance 
 

The normalized Minkowski distance is a distance measure that generalizes a wide range of 

distances such as the normalized Hamming distance and the normalized Euclidean distance. 

In fuzzy set theory, it can be useful, for example, for the calculation of distances between 

fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, etc. It can be formulated for 

two sets A and B as follows. 
 

 

Definition 1. A normalized Minkowski distance of dimension n is a mapping dm: Rn × Rn → R 

such that: 

    dm(A,B) = 
λ

λ
/1

1
||1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ −
=

n

i
ii ba

n
,                                                             (1)                        

where ai and bi are the ith arguments of the sets A and B and λ is a parameter such that λ ∈ 

(−∞, ∞).  
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Note that λ ≠ 0 and if λ ≤ 0, we can only use positive numbers R+. If we give different 

values to the parameter λ, we can obtain a wide range of special cases. For example, if λ = 1, 

we obtain the normalized Hamming distance (NHD). If λ = 2, the normalized Euclidean 

distance (NED). 

Sometimes, when normalizing the Minkowski distance, we prefer to give different 

weights to each individual distance. Then, the distance is known as the weighted Minkowski 

distance. It can be defined as follows. 
 

Definition 2. A weighted Minkowski distance of dimension n is a mapping dwm: Rn × Rn → R 

that has an associated weighting vector W of dimension n such that the sum of the weights is 1 

and wj ∈ [0, 1]. Then: 

     dwm(A,B) = 
λ

λ
/1

1
|| ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ −
=

n

i
iii baw ,                                                         (2)                        

where ai and bi are the ith arguments of the sets A and B and λ is a parameter such that λ ∈ 

(−∞, ∞).  

Note that λ ≠ 0 and if λ ≤ 0, we can only use positive numbers R+. In this case, we can 

also obtain a wide range of special cases by using different values in the parameter λ. 
 

2.3 The OWA Operator 
 

The OWA operator was introduced by Yager (1988) and it provides a parameterized family of 

aggregation operators that include the arithmetic mean, the maximum and the minimum. It 

can be defined as follows. 
 

Definition 3. An OWA operator of dimension n is a mapping OWA: Rn → R that has an 

associated weighting vector W of dimension n such that the sum of the weights is 1 and wj ∈ 

[0, 1], then: 

    OWA(a1, a2,…, an) = ∑
=

n

j
jjbw

1
,                                                               (3) 

where bj is the jth largest of the ai.  

From a generalized perspective of the reordering step, we can distinguish between the 

descending OWA (DOWA) operator and the ascending OWA (AOWA) operator [24]. The 

OWA operator is commutative, monotonic, bounded and idempotent. For further information 

on the OWA and its applications, see for example Beliakov et al. (2007), Bustince et al. 

(2008), Calvo et al. (2002) and Merigó (2008). 
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2.4 The UOWA Operator 
 

The UOWA operator (Xu and Da, 2002) is an extension of the OWA operator. Essentially, its 

main difference is that it uses interval numbers in the arguments to be aggregated. The reason 

for using this aggregation operator is that sometimes the environment is very uncertain and 

the information is not clear. Thus, it can only be assessed by using interval numbers. The 

UOWA operator provides a parameterized family of aggregation operators that include the 

uncertain maximum, the uncertain minimum and the uncertain average (UA), among others. It 

can be defined as follows. 
 

Definition 4. Let Ω be the set of interval numbers. An UOWA operator of dimension n is a 

mapping UOWA: Ωn → Ω that has an associated weighting vector W of dimension n with the 

following properties: 

1) ∑ ==
n
j jw1 1,  

2) wj ∈ [0, 1], 

and such that: 

UOWA(ã1, ã2…, ãn) = ∑
=

n

j
jjbw

1
,                                                          (4) 

where bj is the jth largest of the ãi, and the ãi are interval numbers.  

From a generalized perspective of the reordering step, we can distinguish between the 

descending UOWA (DUOWA) operator and the ascending UOWA (AUOWA) operator. The 

weights of these operators are related by wj = w*n−j+1, where wj is the jth weight of the 

DUOWA and w*n−j+1 the jth weight of the AUOWA operator.  

The UOWA operator is commutative, monotonic, bounded and idempotent. Different 

families of UOWA operators can be found by choosing a different manifestation in the 

weighting vector such as the median-UOWA, the olympic-UOWA or the centered-UOWA 

operator. 
 

2.5 The GOWA Operator 
 

The GOWA operator (Karayiannis, 2000; Yager, 2004) represents a generalization of the 

OWA operator by using generalized means. Then, it is possible to include in the same 

formulation, different types of OWA operators such as the OWA operator or the ordered 

weighted geometric (OWG) operator. It can be defined as follows. 
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Definition 5. A GOWA operator of dimension n is a mapping GOWA: Rn → R that has an 

associated weighting vector W of dimension n such that wj ∈ [0, 1] and ∑ ==
n
j jw1 1, then:  

GOWA(a1,…,an) = 
λ

λ
/1

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

n

j
jjbw ,                                                        (5) 

where bj is the jth largest of the ai and λ is a parameter such that λ ∈ (−∞, ∞).  

Note that λ ≠ 0 and if λ ≤ 0, we can only use positive numbers R+. As we can see, if λ 

= 1 we get the OWA operator. If λ → 0 the OWG operator and if λ = 2 the ordered weighted 

quadratic averaging (OWQA) operator. Note that it is possible to further generalize the 

GOWA operator by using quasi-arithmetic means. The result is the Quasi-OWA operator 

(Fodor et al., 1995). 
 

2.6 The OWAD Operator 
 

The OWAD (or Hamming OWAD) operator (Merigó, 2008; Merigó and Gil-Lafuente, 2006; 

2007) is an extension of the traditional normalized Hamming distance by using OWA 

operators. The main difference is the reordering of the arguments of the individual distances 

according to their values. Then, it is possible to calculate the distance between two elements, 

two sets, two fuzzy sets, etc., modifying the results according to the interests of the decision 

maker. It can be defined as follows.  
 

Definition 6. An OWAD operator of dimension n is a mapping OWAD: [0, 1]n × [0, 1]n → [0, 

1] that has an associated weighting vector W, with ∑ =
n
j jw1  = 1 and wj ∈ [0, 1] such that:  

     OWAD(〈μ1, μ1
(k)〉, …, 〈μn, μn

(k)〉) = ∑
=

n

j
jjDw

1
,                                                 (6) 

where Dj represents the jth largest of the pairs 〈μi, μi
(k)〉 represented in the form of individual 

distances |μi – μi
(k)|, μi ∈ [0, 1] for the ith characteristic of the ideal P, μi

(k) ∈ [0, 1] for the ith 

characteristic of the kth alternative Pk, and k = 1, 2, …, m.  

Note that this definition can be generalized to all the real numbers R by using OWAD: 

Rn × Rn → R. Note also that it is possible to distinguish between ascending and descending 

orders. The weights of these operators are related by wj = w*n−j+1, where wj is the jth weight of 

the descending OWAD (DOWAD) operator and w*n−j+1 the jth weight of the ascending 

OWAD (AOWAD) operator. 
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2.7 The MOWAD Operator 
 

The Minkowski OWAD (MOWAD) operator (Merigó, 2008; Merigó and Gil-Lafuente, 

2008b) represents an extension of the traditional normalized Minkowski distance by using 

OWA operators. The difference is that we reorder the arguments of the individual distances 

according to their values. It can be defined as follows. 
 

Definition 7. A Minkowski OWAD operator of dimension n is a mapping MOWAD: Rn × Rn 

→ R that has an associated weighting vector W of dimension n such that the sum of the 

weights is 1 and wj ∈ [0, 1]. Then, the distance between two sets is: 

   MOWAD(〈μ1, μ1
(k)〉, …, 〈μn, μn

(k)〉) = 
λ

λ
/1

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

n

j
jjDw ,                                      (7)                        

where Dj represents the jth largest of the |μi – μi
(k)|, μi is the ith characteristic of the ideal P, μi

(k) 

is the ith characteristic of the kth alternative Pk, k = 1, 2, …, m, and λ is a parameter such that λ 

∈ (−∞, ∞).  

Note that λ ≠ 0 and if λ ≤ 0, we can only use positive numbers R+. Note that it is 

possible to distinguish between descending and ascending orders by using wj = w*n−j+1, where 

wj is the jth weight of the descending MOWAD (DMOWAD) operator and w*n−j+1 the jth 

weight of the ascending MOWAD (AMOWAD) operator. 
 

3. THE UNCERTAIN MINKOWSKI ORDERED WEIGHTED AVERAGING 

DISTANCE OPERATOR 
 

The uncertain Minkowski OWAD (UMOWAD) operator is an extension of the MOWAD 

operator for situations where the available information can not be assessed with exact 

numbers but it is possible to use interval numbers. The interval numbers are useful for 

representing uncertain information giving the best and worst possible result that may occur 

and some knowledge about the most possible results. It can be defined as follows. 
 

Definition 8. Let Ω be the set of interval numbers. An UMOWAD operator of dimension n is 

a mapping UMOWAD: Ωn × Ωn → Ω that has an associated weighting vector W of dimension 

n such that the sum of the weights is 1 and wj ∈ [0, 1]. Then, the distance between two sets is: 

   UMOWAD(〈μ1, μ1
(k)〉, …, 〈μn, μn

(k)〉) = 
λ

λ
/1

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

n

j
jjDw ,                                    (8)                        
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where Dj represents the jth largest of the |μi – μi
(k)|, μi and μi

(k) are interval numbers, μi is the ith 

characteristic of the ideal P, μi
(k) is the ith characteristic of the kth alternative Pk, k = 1, 2, …, m, 

and λ is a parameter such that λ ∈ (−∞, ∞).  

Note that λ ≠ 0 and if λ ≤ 0, we can only use positive numbers R+. Note also that the 

reordering of the individual distances (the arguments) has an additional difficulty because 

now we are using interval numbers. Then, in some cases, it is not clear which interval number 

is higher, so we need to establish an additional criteria for reordering the interval numbers. 

For simplicity, we recommend the following criteria. For 2-tuples, calculate the arithmetic 

mean of the interval: (a1 + a2) / 2. For 3-tuples and more, calculate a weighted average that 

gives more importance to the central values; that is, (a1 + 2a2 + a3) / 4. Then, for 4-tuples we 

could calculate: (a1 + 2a2 + 2a3 + a4) / 6. And so on. In the case of tie, we will select the 

interval with the lowest increment (a2 − a1). For 3-tuples and more we will select the interval 

with the highest central value. Note that for 4-tuples and more we need to calculate the 

average of the central values following the initial criteria. 

Moreover, in more complex analysis it is possible to consider that the weights wj and 

the parameter λ are interval numbers. Moreover, it is possible to consider other types of 

uncertain information such as the fuzzy numbers, the linguistic variables (linguistic 

representations of numerical problems), etc. 

Furthermore, it is also possible to distinguish between ascending and descending 

orders. The weights of these operators are related by wj = w*n−j+1, where wj is the jth weight of 

the descending UMOWAD (DUMOWAD) operator and w*n−j+1 the jth weight of the 

ascending UMOWAD (AUMOWAD) operator. 

Let B be a vector corresponding to the ordered arguments Dj, we call this the ordered 

argument vector, and WT is the transpose of the weighting vector. Then the UMOWAD 

operator can be expressed as: 

      UMOWAD(〈μ1, μ1
(k)〉, …, 〈μn, μn

(k)〉) = BW T .                                               (9) 

Note that if the weighting vector is not normalized, i.e., W* =∑ ≠=
n
j jw1 1 , then, the 

UMOWAD operator can be expressed as: 

    UMOWAD(〈μ1, μ1
(k)〉, …, 〈μn, μn

(k)〉) = ∑
=

n

j
jj Dw

W 1*
1 .                                       (10) 

The UMOWAD operator is commutative, monotonic, bounded and idempotent. It is 

commutative because any permutation of the arguments has the same evaluation. That is, 
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UMOWAD(〈μ1, μ1
(k)〉, …, 〈μn, μn

(k)〉) = UMOWAD(〈u1,d1〉, 〈u2,d2〉…, 〈un,dn〉), where (〈u1,d1〉, 

〈u2,d2〉…, 〈un,dn〉) is any permutation of the arguments (〈μ1, μ1
(k)〉, …, 〈μn, μn

(k)〉).  

It is monotonic because if 〈μi, μi
(k)〉 ≥ 〈ui,di〉, for all i, then, UMOWAD(〈μ1, μ1

(k)〉, …, 

〈μn, μn
(k)〉) ≥ UMOWAD(〈u1,d1〉, 〈u2,d2〉…, 〈un,dn〉).  

It is bounded because the UMOWAD aggregation is delimitated by the minimum and 

the maximum distance. That is, Min{|μi – μi
(k)|} ≤ UMOWAD(〈μ1, μ1

(k)〉, …, 〈μn, μn
(k)〉) ≤ 

Max{|μi – μi
(k)|}.  

It is idempotent because if |μi – μi
(k)| = d, for all i, then, UMOWAD(〈μ1, μ1

(k)〉, …, 〈μn, 

μn
(k)〉) = d.  

Note that the proofs of these theorems are straightforward. For similar proofs on other 

types of OWA, see for example, Merigó (2008), Merigó and Casanovas (2009) and Merigó 

and Gil-Lafuente (2009b). 

Another interesting issue to analyze are the measures for characterizing the weighting 

vector W. Following a similar methodology as it has been developed for the OWA (Yager, 

1988; 1996; 2002) and the GOWA operator (Yager, 2004), we can formulate the attitudinal 

character, the entropy of dispersion, the divergence of W and the balance operator. 

The first measure α(W), the attitudinal character, is defined as:  

α(W) = j
n

j
w

n
jn

∑ ⎟
⎠
⎞

⎜
⎝
⎛

−
−

=1 1
.                                                                (11) 

It can be shown that α ∈ [0, 1]. The more weight is located near the top of W, the 

closer α is to 1, while the more weight is located toward the bottom of W, the closer α is to 0.  

The entropy of dispersion measures the amount of information being used in the 

aggregation. 

    H(W) = ∑−
=

n

j
jj ww

1
)ln( .                                                               (12) 

For example, if wj = 1 for some j, known as step-UMOWAD, then H(W) = 0, and the 

least amount of information is used. 

The balance operator measures the balance of the weights against the orness or the 

andness, that is, the tendency to the maximum or to the minimum. 

Bal(W) = ∑ ⎟
⎠
⎞

⎜
⎝
⎛

−
−+

=

n

j
jw

n
jn

1 1
21 .                                                           (13) 
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It can be shown that Bal(W) ∈ [−1, 1]. Note that for the optimistic criteria, Bal(W) = 1, 

and for the pessimistic criteria, Bal(W) = −1. 

The divergence of W measures the divergence of the weights against the attitudinal 

character measure. It is useful in some exceptional situations when the attitudinal character 

and the entropy of dispersion are not enough to correctly analyze the weighting vector of an 

aggregation. 

Div(W) = 

2

1
)(

1
∑ ⎟

⎠
⎞

⎜
⎝
⎛ −

−
−

=

n

j
j W

n
jnw α .                                                        (14) 

Another interesting issue to consider is the different families of UMOWAD operators 

that are found in the weighting vector W and the parameter λ. If we analyze the parameter λ, 

we get the following particular cases. 
 

• The uncertain OWAD (UOWAD) operator if λ = 1 (arithmetic). 

• The uncertain ordered weighted geometric averaging distance (UOWGAD) operator if 

λ approaches to 0. 

• The uncertain ordered weighted quadratic averaging distance (UOWQAD) operator if 

λ = 2. 

• The uncertain ordered weighted harmonic averaging distance (UOWHAD) operator if 

λ = −1 (harmonic). 

• Etc. 
 

And if we analyze the weighting vector W, we get the following ones. 
 

• The uncertain maximum distance (w1 = 1 and wj = 0, for all j ≠ 1). 

• The uncertain minimum distance (wn = 1 and wj = 0, for all j ≠ n). 

• The uncertain Minkowski distance (wj = 1/n, for all ãi). 

• The uncertain weighted Minkowski distance (wj = 1/n, for all ãi). 

• The MOWAD operator (when the interval numbers are reduced to exact numbers). 

• The uncertain Hurwicz distance criteria (w1 = α, wn = 1 − α and wj = 0, for all j ≠ 1, n). 

• The step-UMOWAD (wk = 1 and wj = 0, for all j ≠ k). 

• The olympic-UMOWAD operator (w1 = wn = 0, and wj = 1/(n − 2) for all others). 

• The general olympic-UMOWAD operator (wj = 0 for j = 1, 2,…, k, n, n − 1,…, n−k+1; 

and for all others wj* = 1/(n − 2k), where k < n/2). 
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• The S-UMOWAD (w1 = (1/n)(1 − (α + β) + α, wn = (1/n)(1 − (α + β) + β, and wj = 

(1/n)(1 − (α + β) for j = 2 to n − 1 where α, β ∈ [0, 1] and α + β ≤ 1). 

• The centered-UMOWAD (if it is symmetric, strongly decaying from the center to the 

maximum and the minimum, and inclusive). 

• Etc. 
 

Note that these families are based on the methodology explained by Karayiannis 

(2000), Merigó (2008), Yager (1988; 1992; 1993; 1996; 2004; 2007) and Yager and Filev 

(1994). Other families of UMOWAD operators may be used following a similar methodology 

as it has been developed for the OWA operator and some of its extensions (Ahn and Park, 

2008; Beliakov et al., 2007; Emrouzejad, 2008; Liu, 2008; Xu, 2005; Yager, 2002). 

 

4. THE QUASI-UOWAD OPERATOR 
 

The UMOWAD operator can be generalized by using quasi-arithmetic means in a similar way 

as it was done in Beliakov et al. (2007), Calvo et al. (2002), Fodor et al. (1995), Karayiannis 

(2000), Merigó (2008), Merigó and Casanovas (2007; 2008b) and Merigó and Gil-Lafuente 

(2009a; 2009b). We will call it the Quasi-UOWAD operator. It is defined as follows.  
 

Definition 9. Let Ω be the set of interval numbers. A Quasi-UOWAD operator of dimension n 

is a mapping QUOWAD: Ωn × Ωn → Ω that has an associated weighting vector W of 

dimension n such that the sum of the weights is 1 and wj ∈ [0, 1]. Then, the distance between 

two sets is: 

   QUOWAD(〈μ1, μ1
(k)〉, …, 〈μn, μn

(k)〉) = ( )( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

− n

j
jj bgwg

1

1 ,                              (15)                        

where Dj represents the jth largest of the |μi – μi
(k)|, μi and μi

(k) are interval numbers, μi is the ith 

characteristic of the set μ = {μ1, …, μn}, μi
(k) is the ith characteristic of the kth alternative Pk, k 

= 1, 2, …, m, and g is a strictly continuous monotonic function.  

As we can see, when g(b) = bλ, then, the Quasi-UOWAD becomes the UMOWAD 

operator. Note that it is also possible to distinguish between descending (Quasi-DUOWAD) 

and ascending (Quasi-AUOWAD) orders. 

Note that if the weighting vector is not normalized, i.e., W* =∑ ≠=
n
j jw1 1 , then, the 

UMOWAD operator can be expressed as: 
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    QUOWAD(〈μ1, μ1
(k)〉, …, 〈μn, μn
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1 .                          (16) 

Note that all the properties and particular cases commented in the UMOWAD operator 

are also applicable in the Quasi-UOWAD operator. Thus, we can use a wide range of interval 

numbers such as triplets and quadruplets; we have to establish a criterion for ranking interval 

numbers, and so on. 
 

5. DECISION MAKING PROCESS IN THE SELECTION OF STUDIES PLAN 
 

Decision making problems are very common in the scientific literature. They can be 

implemented in a lot of environments such as in statistics, engineering, economics and 

politics. In this paper, we focus on a decision making problem about the selection of studies 

plan in a university. The process to follow in the selection of studies plan is similar to the 

process developed in Gil-Aluja (1998; 1999; 2001), Gil-Lafuente (2005), Gil-Lafuente and 

Merigó (2006), Merigó (2008), Merigó and Gil-Lafuente (2006; 2007; 2008a; 2008b; 2008c), 

with the difference that now we are considering an educational management problem. The 5 

steps to follow can be summarized in the following way: 
 

Step 1: Analysis and determination of the significant characteristics of the available 

alternatives. Theoretically, it will be represented as: C = {C1, C2,…, Ci,…, Cn}, where Ci is 

the ith characteristic to consider of the alternative and we suppose a limited number n of 

required characteristics. 
 

Step 2: Establishment of the ideal levels of each characteristic in order to form the ideal 

study plan. 
 

 

 

Table 1. Ideal study plan. 

 C1 C2 … Ci … Cn 

P = μ1 μ2 … μi … μn 
 

In Table 1, P is the ideal study plan expressed by a fuzzy subset, Ci is the ith characteristic to 

consider, and μi is the valuation for the ith characteristic. 
 

 

 

 

Step 3: Establishment of the real level of each characteristic for all the alternatives 

considered. 
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Table 2. Available alternatives. 

 C1 C2 … Ci … Cn 

Pk = μ1
(k) μ2

(k) … μi
(k) … μn

(k) 
 

In Table 2, k = 1, 2, …, m, Pk is the kth alternative expressed by a fuzzy subset, Ci is the ith 

characteristic to consider, and μi
(k)

 is the valuation for the ith characteristic of the kth 

alternative. 
 

 

 

 

Step 4: Comparison between the ideal study plan and the different alternatives considered, 

and determination of the level of removal using the UMOWAD operator. That is, changing 

the neutrality of the results to over estimate or under estimate them. In this step, the objective 

is to express numerically the removal between the ideal study plan and the different 

alternatives considered. Note that by using the UMOWAD operator, we can use all the 

particular cases mentioned in Section 3. 
 

Step 5: Adoption of decisions according to the results found in the previous steps. Finally, 

we should take the decision about which study plan select. Obviously, our decision will 

consist in choosing the study plan with the best results according to the method used that is in 

accordance with the interests of the decision maker.  
 

6. ILLUSTRATIVE EXAMPLE 
 

In this Section, we present an illustrative example of the new approach in a decision making 

problem. We will study a problem of selection of studies plan. We are going to consider a 

PhD program in business administration that is considering which courses to offer the next 

year. Note that it is possible to consider other applications in educational management or in 

other business decision making problems. 

 Assume that a PhD program that wants to increase its quality is planning the creation 

of some new courses in order to be more efficient for the PhD students. They consider five 

possible alternatives. 
 

• A1 = Increase the number of courses in mathematics. 

• A2 = Increase the number of courses in statistics. 

• A3 = Increase the number of courses in decision theory and operational research. 

• A4 = Increase the number of courses in management. 

• A5 = Increase the number of courses in research orientation. 
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In order to evaluate these alternatives, the board of directors of the PhD program 

considers five main characteristics that are relevant for the selection process.  
 

• C1 = Knowledge of the available professors. This characteristic analyzes the skills 

of the available professors and how they can help the students in this research area 

in order to develop a good research with relevant publications, etc. 

• C2 = Number of courses in this field. This characteristic analyzes the number of 

courses in similar topics and if it is necessary to add more courses based on the 

research specialization of the available professors, the potential research that can 

be expected from the students, etc. 

• C3 = Usefulness for future research of the students. This characteristic analyzes if 

these courses give very interesting topics that can help the research of the students 

in the future. This aspect depends on the present situation of the research in this 

area, if there are a lot of new topics appearing, etc. 

• C4 = General evaluation of the course. It considers if the course itself seems to be 

interesting to the PhD program in general. 

• C5 = Other variables. It includes other variables to be taken into account such as 

the motivation of the student for this course, competitive advantage against other 

PhD programs, research methods to be used, etc. 
 

The board of directors of the PhD program evaluates the courses given marks to each 

characteristic from 0 to 100, being 100 the best result. The results obtained depending on the 

characteristic Ci and the course Ak are shown in Table 3. 
 

 

 

Table 3. Evaluation of the results. 

 C1 C2 C3 C4 C5 

A1 (70, 80) (50,60) (80,90) (60,70) (50,60) 

A2 (60,70) (70,80) (50,60) (40,50) (80,90) 

A3 (70,80) (60,70) (60,70) (40,50) (80,90) 

A4 (50,60) (60,70) (40,50) (70,80) (80,90) 

A5 (70,80) (70,80) (50,60) (50,60) (60,70) 

  
 

The board of directors establishes the ideal results that the new courses should have in 

order to be included in the PhD program. 
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Table 4. Ideal alternative. 

 C1 C2 C3 C4 C5 

Ideal (80,100) (70,90) (80,100) (80,100) (80,100) 
 

 

In this problem, the experts of the selection process assume the following weighting 

vector: W = (0.1, 0.2, 0.2, 0.2, 0.3). With this information, we can aggregate the expected 

results for each student in order to take a decision. In Table 5, we present different results 

obtained by using different types of UMOWAD operators. We consider the maximum and the 

minimum distance, the uncertain averaging distance (UAD), the uncertain weighted averaging 

distance (UWAD) (or uncertain weighted Hamming distance) and the UOWAD operator. 
 

 

 

 

Table 5. Aggregated results. 

 Max Min UAD UWAD UOWAD 

A1 (30,40) (0,10) (16,26) (18,28) (13,23) 

A2 (40,50) (0,10) (18,28) (16,26) (14,24) 

A3 (40,50) (0,10) (16,26) (15,25) (12,22) 

A4 (40,50) (0,10) (18,28) (15,25) (14,24) 

A5 (30,40) (10,20) (20,30) (21,31) (18,28) 
 

 

If we establish an ordering of the alternatives, a typical situation if we want to consider 

more than one alternative, then, we get the following results shown in Table 6. 
 

 

 

 

Table 6. Ordering of the studies plan. 

 Ordering  Ordering 

Max A1=A5⎬A2=A3=A4 UWAD A3=A4⎬A2⎬A1⎬A5 

Min A1=A2=A3=A4⎬A5 UOWAD A3⎬A1⎬A2=A4⎬A5 

UAD A1=A3⎬A2=A4⎬A5   
 

 

As we can see, depending on the aggregator operator used, the ordering of the studies 

plan may be different. Note that the main advantage of using the UMOWAD operator is that 

we can consider a wide range of particular distance measures such as the UAD, the UWAD 

and the UOWAD operator. Due to the fact that each particular family of UMOWAD operator 
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may give different results, the decision maker will select for his decision the one that is 

closest to his interests. However, by using this analysis he will be able to see the results and 

optimal decisions in other potential situations that may occur in the future. 

Note that these types of methods are very useful for dealing with uncertainty, because 

under uncertainty we do not know the optimal choice because we do not know the future. 

Therefore, we can only give recommendations according to the particular interests of the 

decision maker such a being risk averse or not but our results can not predict the future. 
 

7. CONCLUSIONS 
 

We have presented the UMOWAD operator and we have analyzed its applicability in decision 

making problems about educational management. We focussed on the selection of studies 

plan in a PhD program that it is considering to add new courses in its program and they are 

looking for the optimal one. We have seen that by using the UMOWAD we are able to 

provide a general formulation in a decision process where we can compare the available 

alternatives with an ideal one. The main advantage of this approach is that we can consider a 

wide range of future scenarios according to our interests and select the one that it is closest to 

our real interests. We have studied the UMOWAD and have found a lot of particular cases 

such as the UOWAD operator, the UOWQAD operator, the uncertain Minkowski distance, 

the uncertain weighted Minkowski distance, the uncertain Hamming distance, the uncertain 

Euclidean distance, the S-UMOWAD operator, and a lot of other cases. We have further 

generalized the UMOWAD operator by using quasi-arithmetic-means in order to obtain a 

more general formulation that includes the UMOWAD as a particular case. We have called it 

the Quasi-UOWAD operator. The main advantage of this generalization is that it is more 

robust and general that the UMOWAD operator. 

In future research, we expect to present further extensions to this approach by using 

other factors that should be relevant in the decision problem such as the use of order inducing 

variables and other approaches such as the ones used in Merigó (2008). We will also analyze 

other potential problems in other educational management situations and in other business 

decision making applications.  
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