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ABSTRACT

Using daily observations of the index and stock market returns for the Pe-
ruvian case from January 3, 1990 to May 31, 2013, this paper models the
distribution of daily loss probability, estimates maximum quantiles and tail
probabilities of this distribution, and models the extremes through a max-
imum threshold. This is used to obtain the better measurements of the
Value at Risk (VaR) and the Expected Short-Fall (ES) at 95% and 99%.
One of the results on calculating the maximum annual block of the nega-
tive stock market returns is the observation that the largest negative stock
market return (daily) is 12.44% in 2011. The shape parameter is equal to
-0.020 and 0.268 for the annual and quarterly block, respectively. Then, in
the first case we have that the non-degenerate distribution function is Gum-
bel-type. In the other case, we have a thick-tailed distribution (Fréchet).
Estimated values of the VaR and the ES are higher using the Generalized
Pareto Distribution (GPD) in comparison with the Normal distribution and
the differences at 99.0% are notable. Finally, the non-parametric estima-
tion of the Hill tail-index and the quantile for negative stock market returns
shows quite instability.
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Teoŕıa de valores extremos: una aplicación a los
retornos bursátiles peruanos

RESUMEN

Usando observaciones diarias del ı́ndice y los retornos bursátiles para el caso
Peruano desde el 3 de enero de 1990 hasta el 31 de mayo de 2013, este
documento modela la distribución de las probabilidades de pérdidas diarias,
estima los cuantiles máximos y las colas de la distribución y finalmente,
modela los valores extremos usando un umbral máximo. Todo esto es usado
para obtener una mejor medida del valor en riesgo (VaR) y de la pérdida
esperada (ES) al 95% y 99% de confianza. Uno de los resultados de calcular
el bloque máximo anual de los retornos bursátiles negativos es la obser-
vación que el retorno bursátil más negativo (diario) es 12.44% en el 2011.
El parámetro de forma es igual a -0.020 y 0.268 para los bloques anuales y
trimestrales, respectivamente. En consecuencia en el primer caso tenemos
una distribución de tipo Gumbel. En el otro caso se tiene una distribución
de cola pesada (Fréchet). Los valores estimados para el VaR y el ES son más
elevados utilizando una distribución de tipo Pareto Generalizada (GPD) en
comparación con la distribución normal y las diferencias al 99% son remar-
cables. Finalmente, la estimación no paramétrica del indice de cola de Hill
y del cuantil para retornos negativos muestra ser bastante inestable.

Palabras claves: Teoŕıa de valores extremos; valor en riesgo (VaR); pérdida
esperada (ES); distribución de Pareto Generalizada (GPD); distribución de
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mercado bursátil peruano.
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1 Introduction

As part of the Peruvian economy’s good performance in recent years, the financial sector has
played a significant role in terms of the objective of economic growth and capital accumulation.
Nonetheless, the global financial crisis that began in the fourth quarter of 2007 affected the Peruvian
capitals market and brought about a sharp fall in the General Index of the Lima Stock Exchange
(IGBVL) of 59.78%, and in the Selective Index (ISBVL) of 59.73%. This event illustrates that
big losses occur as a result of extreme movements in the markets, and hence that financial risk is
related to the possible losses that investors can suffer in these markets; see Jorion (2001).

In general, the series of stock market returns have heavy-tailed distribution, due to which,
unlike traditional distributions, the distribution of stock market returns possess greater probabilistic
density on the tails. The above has, as a consequence, greater probability of extreme losses and it
is necessary to analyze the tails of the distribution through the use of methodologies in the context
of the Extreme Values Theory (EVT). I seek to capture in the best way possible the sudden
movements of the performances of financial assets associated with the tails of the distribution, and
thus allow better measurement of the behavior of financial asset performance1. The recent financial
crisis put in evidence the existence of multiple faults in the form of risk modeling, and this in turn
prompted notable criticism of the different mathematical models and traditional statistics employed
by companies in attempts to predict the risk. In 1993, the members of the Bank for International
Settlements (BIS) gathered in Basel and amended the Basel Accords to require that banks and
other financial institutions keep sufficient capital in reserve to cover ten days of potential losses
based on the 10-day Value at Risk (VaR)2.

The estimation of VaR by way of traditional models is not entirely adequate, because many of
the techniques employed are based on the assumption that the financial returns follow a normal
distribution. In this context, the measurement of risk through traditional measures occasions large
losses to market participants because of the unexpected falls in financial market returns. Another
measure of risk is that proposed by Artzner et al. (1999), called expected shortfall or expected loss
(Expected Shortfall - ES) which is an expectation of loss conditioned to exceeding the indicated VaR
level. One of the objectives of financial risk management is the exact calculation of the magnitudes
and probabilities of big financial losses that are produced at times of financial crisis. It is thus of
relevance to model the probability of loss distribution and estimate the maximum quantiles and
tail probabilities associated with this distribution; see Zivot and Wang (2006).

The modern EVT started with von Bortkiewicz (1922). Thereafter, Fisher and Tippett (1928)
laid the foundations of the asymptotic theory of the distributions of extreme values. Hill (1975)
introduces a general approach for inference around the behavior of the tail of a distribution, while
Danielsson and De Vries (1997) believe that a specific estimation of the form of the tail of foreign
currency returns is of vital importance for adequate risk assessment.

1Important texts include Embrechts et al. (1997) and Coles (2001). Other references applied to finance and
financial risk management are Diebold et al. (1998), Danielsson and De Vries (1997), McNeil (1998a, 1998b) and
Longin (2000).

2Danielsson et al. (2001) hold that the Committee on Banking Supervision was wrong to consider the risk to be
endogenous and affirm that VaR can destabilize an economy and generate breaks which would not otherwise occur.
In this way, the authors leave open the possibility that traditional financial models employed to measure and diagnose
the risk have a certain degree of inconsistence, primarily because certain assumptions of these models are incapable of
capturing the behavior of the indices that are used to measure risk. In particular, it is found that traditional models
have a poor performance against sudden movements of these indices in a context of crisis.
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On the other hand, Embrechts et al. (1997) present the probabilistic models and techniques
with the aim of mathematically describing extreme events in the unidimensional case. McNeil
(1998a) reduces data from the S&P500 index to 28 annual maximums corresponding to the period
1960-1987, and adjusts them to a Fréchet distribution. In this way, they calculate the estimations
of various levels of returns, as well as the confidence interval at 95% for a 50-year level of return
—which on average must be exceeded in just one year— every fifty years. The most probable
calculated value is 7.4, but there is a great deal of uncertainty in the analysis as the confidence
interval is approximately [4.9, 24].

Moreover, McNeil (1998b) considers the estimation of quantiles in the marginal distribution
tail in the series of financial returns, utilizing statistical methods of extreme values based on the
distribution limit of maximum blocks of stationary time series. The author proposes a simple
methodology for the quantification of the worst possible scenarios, with losses of ten or twenty
years.

Diebold et al. (1998) hold that the literature on the EVT is more accurate for the exact
estimation of the extreme quantiles and tail probabilities of the financial assets3. McNeil (1999)
shows a general vision of the EVT in the management of risks as a method for modeling and
measuring extreme risks, concentrating on the peaks through a threshold. McNeil and Frey (2000)
propose a method for estimating VaR and relate it to the risk measurements that describe the
conditional distribution tail of a series of heteroskedastic financial yields.

Moreover, Longin (2000) present an application of the EVT to calculate VaR of a position in
the market. For Embrechts et al. (2002), the modern risk management requires an understanding
of stochastic dependence. The authors conduct a discussion on joint distributions and the use of
copulas as descriptions of dependency among random variables.

Tsay (2002) applies the EVT to the logarithm of profitability of IBM shares for the period
from July 3, 1962 to December 31, 1998 and finds that the range of fluctuation of the daily yields,
excluding the crisis of 1987, fluctuates between 0.5% and 13%. He also estimates the Hill estimator
and finds stable results for a minimum and a maximum value of the biggest n-th observation of
this estimator. Tsay (2002) performs the estimation for different sample sizes (monthly, quarterly,
weekly, and yearly) and concludes that the estimation of the scale and location parameters increase
in modulus when the sample size increases. The shape parameter is stable for extreme negatives
values when the sample size is greater than 62 and is approximately equal to a -0.33. The estimator
of the shape parameter is small, significantly different to zero, and less stable for positive extremes.
The result for the annual sample size has high variability when the number of subperiods is relatively
small.

According to Delfiner and Gutiérrez Girault (2002), the returns in developing markets are
characterized by being more leptokurtic compared to the returns of more developed economies; see
also Humala and Rodŕıguez (2013) for stylized facts in the Peruvian stock market. The authors
estimate an autoregressive AR-GARCH model of stochastic volatility, and then apply the EVT
to the distribution tail of standardized residuals of the model by estimating a generalized Pareto
distribution with a view to obtaining a better estimation of the probability when extreme losses
are presented.

Finally, McNeil et al. (2005) provide two main types of models of extreme values. The most
traditional models are maximum block, which are models for the biggest ordered observations of

3Diebold et al. (1998) demonstrate the existence of a trade off between the bias error and the variance when the
largest n-th observation increases in Hill’s tail index estimator (Hill, 1975).
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big samples of identically distributed observations. The other group of models are for threshold
exceedances and apply to all big observations that exceed a high level. They are generally considered
very useful for practical applications, given their more efficient use (often limited) of the data on
the extreme results.

Using daily observations of the index and stock market returns for the Peruvian case from
January 3, 1990 to May 31, 2013, this paper models the distribution of daily loss probability,
estimates maximum quantiles and tail probabilities of this distribution, and models the extremes
through a maximum threshold. This is used to obtain the best measurements of the Value at Risk
(VaR) and the Expected Short-Fall (ES) at 95% and 99%. One of the results on calculating the
maximum annual block of the negative stock market returns is the observation that the largest
negative stock market return (daily) is 12.44% in 2011. The shape parameter is equal to -0.020
and 0.268 for the annual and quarterly block, respectively. Then, in the first case, we have that
the non-degenerate distribution function is Gumbel-type. In the other case, we have a thick-
tailed distribution (Fréchet). Estimations of VaR and ES are higher using the Generalized Pareto
Distribution (GPD) in comparison with the normal distribution and the differences at 99.0% are
notable. Finally, the non-parametric estimation of the Hill tail-index and the quantile for negative
stock market returns shows quite instability.

This paper is structured as follows: Section 2 describes the main definitions associated with
EVT, as well as the method for estimating the main measurements of risk, VaR and ES. Section 3
presents the results, utilizing a sample of daily returns of the Peruvian stock market. Section 4
presents the main conclusions.

2 Methodology

In this Section, we closely follow and employ the notation in Zivot and Wang (2006). The EVT
provides the statistical tools to model the unknown cumulative distribution function of the random
variables that represent the risk or losses, especially in those situations where large losses are
produced. Let {X1, X2, ..., Xn} independent and identically distributed (i.i.d.) random variables
that symbolize the risk or expected losses, which have an unknown cumulative distribution function
F (x) = Pr[Xi ≤ x]. Mn = max[X1, X2, ..., Xn] is specified as the worst loss in a n-size sample of
losses. In virtue of the assumption of i.i.d., the cumulative distribution function of Mn is

Pr[Mn ≤ x] = Pr[X1 ≤ x,X2 ≤ x, ...,Xn ≤ x] =
n∏
i=1

F (x) = Fn(x).

It is assumed that the function Fn is unknown, and, moreover, it is known that the function of
empirical distribution is not a good approximation of Fn(x). According to Fisher-Tippett Theorem
(Fisher and Tippet, 1928)4, an asymptotic approximation is obtained for Fn based on the standard-
ization of the maximum value; that is, Zn = Mn−µn

σn
where σn > 0 and µn are measurements of scale

and position, respectively. In this way, for Fisher and Tippett (1928), the maximum standardized
value converges to a distribution function of generalized extreme value (GEV), defined as:

Hξ(z) =

 exp[−(1 + ξz)−1/ξ], for ξ 6= 0 and 1 + ξz > 0

exp[− exp(−z)], for ξ = 0 and −∞ ≤ z ≤ ∞

4This theorem is anolagous to the Central Limit Theorem for extreme values.
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where ξ is denominated the shape parameter and determines the behavior of the tail of Hξ(.)
5.

This distribution is not degenerated and is generalized in the sense that the parametric shape
summarizes three types of known distributions. Moreover, if ξ = 0, H is a Gumbel distribution; if
ξ > 0, H is a Fréchet distribution; and finally if ξ < 0, H is a Weibull distribution.

The parameter shape ξ is associated with the behavior of the tail of the distribution F and
decays exponentially for a function of power 1 − F (x) = x−1/ξL(x) where L(x) changes slowly.
The GEV distribution is not changed for the transformations of location and scale: Hξ(z) =
Hξ(

x−µ
σ ) = Hξ,µ,σ(x). For a large size n, Fisher-Tippett Theorem (Fisher and Tippet, 1928) can

be interpreted as follows: Pr[Zn < z] = Pr[Mn−µn
σn

< z] ≈ Hξ(z). Assuming x = σnz + µn, then:

Pr[Mn < x] ≈ Hξ,µ,σ(x−µnσn
) = Hξ,µn,σn(x). This expression is useful for performing inference

related to the maximum loss Mn. The expression depends on the parameter of ξ in form and the
standardized constants σn and µn, which are estimated for maximum likelihood.

To perform the estimation of maximum likelihood, it is supposed to be a set of identically
distributed losses from a sample of size T represented for {X1, X2, ..., XT } that have an cumula-
tive density function F . A sub-sample method is utilized to form the likelihood function for the
parameters ξ, σn and µn from the GEV distribution for Mn. In this way, the sample is divided into
m non-overlapping blocks of equal size n = T/m, with which we have [X1, ..., Xn|Xn+1, ..., X2n|...|
X(m−1)n+1, ..., Xmn] and where M

(j)
n is defined as the maximum value of Xi in the block j =

1, · · · ,m. The likelihood function for the parameters ξ, σn and µn of the GEV distribution is con-

structed from the maximum block sample of {M (1)
n , ...,M

(m)
n }. The likelihood log function assuming

i.i.d. observations of the GEV distribution when ξ 6= 0 is

log(µ, σ, ξ) = −m log(σ)− (1 +
1

ξ
)
m∑
i=1

log[1 + ξ(
M

(i)
n − µ
σ

)]−
m∑
i=1

[1 + ξ(
M

(i)
n − µ
σ

)]−1/ξ

with the restriction 1 + ξ(M
(i)
n −µ
σ ) > 0. When ξ = 0, we obtain a Weibull distribution6.

It is important to discuss the limit distribution of extremes on high thresholds and the general-
ized Pareto distribution (GPD). When there is a succession of i.i.d.random variables {X1, X2, ..., Xn}
associated with an unknown function of distribution F (x) = Pr[Xi ≤ x], the extreme values are
defined as the Xi values that exceed the high threshold κ. So, the variable X − κ represents the
excesses on this threshold. The distribution of excesses on the threshold κ is defined as a conditional
probability: Fκ(y) = Pr[X − κ ≤ y|X > κ] = F (y+κ)−F (κ)

1−F (κ) for y > 0. This is interpreted as the
probability that a loss exceeds the threshold κ for a value that is equal to or less than y, given that
the threshold of κ has been exceeded. For Mn = max{X1, X2, ..., Xn}, defined as the worst loss in a
n-sized sample of losses, the distribution function F satisfies Fisher-Tippett Theorem (Fisher and
Tippet, 1928) and, for a sufficiently large κ, there is a positive function β(κ). Thus, the surplus
distribution is approximated through the GPD

Gξ,β(κ)(y) =

 1− [1 + ξy/β(κ)]−1/ξ, for ξ 6= 0 and β(κ) > 0

1− exp[−y/β(κ)], for ξ = 0 and β(κ) > 0

5The expression Hξ(.) is continuous in the shape parameter ξ.
6Distribution in the domain of attraction of the Gumbel-type distribution are thin-tailed distributions where

practically all moments exist. If they are Fréchet-type, they include fat-tailed distributions such as Pareto, Cauchy
or t-Student, among others. Some moments do not exist for these distributions.
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defined for y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −β(κ) when ξ < 0. For a sufficiently high threshold κ,
it is found that Fκ(y) ≈ Gξ,β(κ)(y) for a wide range of loss functions F (.). To apply this result, the
value of the threshold must be specified and the estimates of ξ and β(κ) can be obtained.

There is a close connection between the GEV limit distribution for maximum blocks and the
GPD for excesses with respect to the threshold. For a given value of κ, the parameters ξ, µ and σ
of the GEV distribution determine the parameters ξ and β(κ). It is clear that the shape parameter
ξ of the GEV distribution is the same parameter ξ in the GPD and is independent of the threshold
value κ. In consequence, if ξ > 0, the function F is Fréchet-type and the expression Gξ,β(κ)(y) is
denominated classic Pareto distribution; when ξ = 0, the function F is Gumbel-type and Gξ,β(κ)(y)
follows an exponential distribution. Finally, it is found that 0 ≤ y ≤ −β(κ)/ξ when ξ < 0, so the
function F is Weibull-type and Gξ,β(κ)(y) is a type-II Pareto distribution. The parameter ξ is the
shape or tail-index parameter and is associated with the rate of decay of the tail of the distribution,
and the decreasing parameter β is the shape parameter and is associated with the position of the
threshold κ.7

Now, assuming that the parameter of form is ξ < 1, the mean excess function above the
threshold κ0 will be E[X − κ0|X > κ0] = β(κ0)

1−ξ for any κ > κ0, and it is found that the excess

function of the mean e(κ) = E[X − κ|X > κ] = β(κ0)+ξ(κ−κ0)
1−ξ . Analogously, for any value of y > 0,

the following conditions hold: e(κ0 + y) = E[X − (κ0 + y)|X > κ0 + y] = β(κ0)+ξy
1−ξ . Therefore, to

graphically deduce the threshold value for the GPD, we get the excess function of the empirical
mean: en(κ) = 1

nκ

∑nκ
i=1[x(i) − κ], where x(i) (i = 1, 2, ..., nκ) is the value of xi such that xi > κ.

With the previous expression, a graph representation of en(κ) is constructed with the mean excess
on the vertical axis. This graph can be interpreted as follows: if the slope is rising, it indicates thick
tail behavior; but if there is a downward trend, this shows thin tail behavior in the distribution; and
finally, if the slope of the line is equal to zero, the behavior of the tail is exponential. If the line is
straight and has a positive slope located above the threshold, then it is an example of Pareto-type
tail behavior.

For the values of the maximum losses that exceed the threshold (that is, when xi > κ), the
threshold excess is defined as yi = x(i)−κ for i = 1, ..., k, in which the values of x1, ...., xn have been
denoted as x(i), ...., x(k). When the threshold value is sufficiently large, then the sample {y1, ..., yk}
can be expressed within a likelihood that is based on the unknown parameters ξ and β(κ); that is,
a random sample of a GPD.

When ξ 6= 0, the log likelihood function of Gξ,β(κ)(y) has the following form

log[β(κ)] = −k log[β(κ)]− [1 +
1

ξ
]

k∑
i=1

log[1 +
ξyi

β(κ)
]

where yi ≥ 0 when ξ > 0 and 0 ≤ yi ≤ −β(κ)/ξ when ξ < 0. If the parameter of form is ξ = 0,
then the log likelihood function is

log[β(κ)] = −k log[β(κ)]− β(κ)−1
k∑
i=1

yi.

7For ξ > 0 (the most relevant case for risk administration purposes), it can be shown that E[Xk] = ∞ for
k ≥ α = 1/ξ. If ξ = 0.5, E[X2] = ∞ and the distribution of losses X does not have finite variance. Analogously, if
ξ = 1, then E[X] =∞.
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To estimate the tails of the loss distribution for F (x), and where x > κ, we use F (x) = [1 −
F (κ)]Gξ,β(κ)(y) +F (κ). The previous expression is fulfilled for a sufficiently large threshold and in
which Fκ(y) ≈ Gξ,β(κ)(y).8

There are two common risk measurements: Value at Risk (VaR) and Expected Shortfall (ES).
The VaR is the largest quantile of the distribution of loss; that is, V aRq = F−1(q).9 For a

given probability q > F (κ), it is found that V̂ aRq = κ + β̂(κ)

ξ̂
[nk (1 − q)−ξ̂ − 1]. The ES is the

expected size loss, given that V aRq is exceeded: ESq = E[X|X > V aRq]. This equation is
related to V aRq in accordance with ESq = V aRq + E[X − V aRq|X > V aRq], where the second
term is the mean of excess of the distribution FV aRq(y) on a threshold V aRq. The approximation
of the GPD (due to the translation property) to FV aRq(y) has the shape parameter ξ and the

scale parameter β(κ) + ξ[V aRq − κ] : E[X − V aRq|X > V aRq] =
β(κ)+ξ(V aRq−κ)

1−ξ provided that

ξ > 1. Moreover, it is found that the GPD approximates ÊSq =
V̂ aRq

1−ξ̂
+ β̂(κ)−ξ̂κ

1−ξ̂
.10 It is also

possible to perform the non-parametric estimation of the shape parameter ξ or the tail-index
parameter a = 1/ξ of the distributions Hξ(z)and Gξ,β(κ)(y) utilizing Hill method (Hill, 1975), in
which ξ > 0 (α > 0), is generated by the same thick-tailed distributions in the domain of attractions
of a Fréchet GEV. Considering a sample of losses {X1, X2, ..., XT }, the statistical order is defined
as X(1) ≥ X(2) ≥ ... ≥ X(T ) for a positive whole k, and the Hill estimator of ξ is defined as

ξ̂Hill(k) = 1
k

∑k
j=1[logX(j) − logX(k)]. The Hill estimator of α is α̂Hill(k) = 1

ξ̂Hill(k)
.11

3 Empirical Evidence

Figure 1 shows the series for the closing prices of the General Index of the Lima Stock Exchange
(IGBVL)12. The series is of daily frequency and covers the period from January 3, 1990 to May
30, 2013. The returns are defined as rt = log[ Pt

Pt−1
], which are shown in Figure 2. Empirically, the

returns display certain properties as marginal thick-tailed distributions, nonexistence of correlation,
and dependency across these; though they are highly correlated if it concerns the squared results
or their absolute value; see Humala and Rodŕıguez (2013) for a more detailed description about
the stylized facts.

By way of motivation, Figure 3 shows the GEV cumulative distribution function for the dis-
tribution function Hξ(.), which adopts Fréchet, Weibull or Gumbel form of distribution when the
shape parameter is ξ = 0.5, ξ = −0.5 or ξ = 0, respectively, and for general values of z, the param-
eter of position µ and the parameter of scale σ. In this particular case, the Fréchet distribution
is defined for z > −2 and the Weibull distribution is only defined for z < 2. Figure 4 shows the
GEV probability density function Hξ(.) for the non-degenerate Fréchet, Weibull and Gumbell dis-

8It is assumed that x = κ+ y.
9If X ∼ N(µ, σ2), then V aR0.99 = µ+ σq0.99.

10If X ∼ N(µ, σ2), it is found that ES0.99 = µ+ σ φ(z)
1−Φ(z)

.
11It can be seen that if F is located in the domain of attraction of a GEV distribution, then ξ̂Hill(k) converges

in probability to ξ when k → ∞ and k
n
→ 0, and ξ̂Hill(k) is normally asymptotically distributed with asymptotic

variance: avar[ξ̂Hill(k)] = ξ2

k
. Via the delta method, α̂Hill(k) is normally asymptotically distributed with asymptotic

variance avar[α̂Hill(k)] = a2

k
.

12The closing prices of the General Index of the Lima Stock Exchange are taken into account from Monday until
the closure price on Friday. Moreover, it should be recalled that non-working days are not considered, and more
generally the days on which the market was closed.
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Figure 1: Closing prices of the General Index of the Lima Stock Exchange.

Figure 2: Daily Percentage Returns of the Stock Market of Peru.

tribution functions depending on the values ξ = 0.5, ξ = −0.5 and ξ = 0 for the shape parameter,
respectively. The Fréchet and Weibull distributions are defined for z > −2 and z < 2, respectively.

Figure 5 shows the GEV density function for negative stock market returns. The horizontal
axis represents the standardized value Zn of the maximum value of the block Mn with respect to
the measurements of scale and position. The vertical axis shows the probability associated with
the GEV density function. It is observed that this distribution does not have the form of a known
distribution and the maximum probability shows positive asymmetry.

The p-quantile of a distribution function G is defined by the value Xp such that G(p) = Xp; that
is, the value of Xp that leaves the p-percentile of probability to its left. If a distribution function G is
continuous and thus strictly growing, the quantile function is the inverse of the distribution function
G and is usually denoted as G−1. Figure 6 shows the q-q plot, taking the normal distribution as
theoretical distribution to be contrasted with the distribution of stock market returns. Let us
note that a straight diagonal line is not observed (approximately), and so it is concluded that the
distribution of the variable is not the same as the comparison distribution, showing evidence that
the distribution of negative stock market returns is unknown.

Subsequently, the annual maximum block of the negative stock market returns is calculated.
Figure 7 shows four representations for this annual maximum block. In the upper-left graph, it
is shown the largest negative return of the period analyzed, which reaches 12.44% in 2011. The
upper-right graph shows the histogram where the horizontal axis represents the annual maximum
blocks. In the lower-left representation, the q-q plot is shown, contrasting again the distribu-
tion of stock market returns for the period of analysis. In the vertical axis, the quantiles of
the referential theoretical distribution are represented (Gumbel distribution, H0), which satisfies
H−1

0 (p) = − log[− log(p)] and the horizontal axis represents the empirical quantiles for the annual
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Figure 3: Generalized Extreme Value CDFs for Fréchet, Weibull and Gumbel.

Figure 4: Generalized Extreme Value pdfs for Fréchet, Weibull and Gumbel.
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Figure 5: GEV pdf for Daily Returns in Peru.

Figure 6: Normal q-q plot for the Daily Percentage Returns in Peru.
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maximum blocks of the distribution of stock market returns. It is observed that the point cloud
fits approximately the bisector for the axes, which suggests that the distribution of the variable of
real data (empirical distribution) is the same as the distribution of comparison (Gumbel distribu-
tion). Finally, the lower-right graph shows the development of the records (new maximum) for the
negative stock market returns, together with the expected number of returns for the i.i.d. data. In
this graph, it is observed that the data was not within the confidence interval (delimited by dotted
lines), due to which it can be concluded that the data is not consistent with the i.i.d. behavior.

Figure 7: Annual block maxima, histogram, Gumbel q-q plot and records summary for the Daily
Stock Returns in Peru.

Analogously to the lower-left graph in Figure 7, Figure 8 shows the q-q plot, using as referential
distribution the Gumbel distribution H0. Unlike Figure 7, the horizontal axis represents the stan-
dardization of maximum value Zn. As shown previously for the Gumbel distribution, the quantiles
satisfy H−1

0 (p) = − log[− log(p)] and the points of the quantiles correspond to the standardization
of the maximum value Zn and indicate a GEV distribution with ξ = 0.

Then, the entire annual value of the number of observations in each maximum block is deter-

mined by M
(i)
n i = 1, ...,m for the stock market returns, with m = 24. The shape parameter ξ

is statistically insignificant (ξ̂ = −0.020, t
ξ̂

= −0.126) and so the value of this parameter is equal

to zero (ξ = 0). Moreover, the asymptotic interval at 95% of confidence for ξ is [−0.337, 0.2968]
and indicates the considerable uncertainty related to the value of ξ. This result determines the tail
behavior of the GEV distribution function of stock market returns, and it is concluded that the
non-degenerate distribution function is Gumbel-type. The position and scale parameters (standard-
ized constants) are statistically significant: µ̂n = 4.232, tµ̂n = 8.713 and σ̂n = 2.098, tσ̂n = 5.954,
respectively.
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Figure 8: Gumbel q-q plot of Stock Daily Returns in Peru.

Utilizing the estimation by maximum likelihood of the adjusted GEV distribution for the max-
imum annual block of negative stock market returns, the following question can be answered: How
probable is it that the maximum annual negative profitability for the following year exceeds the
above negative returns? This probability is calculated utilizing the expression Hξ,µn,σn(x) where
the maximum block is equal to 1.68%, and so there is a 1.68% possibility that a new maximum
record of negative performance will be established during the following year.

A similar analysis is possible by considering the GEV distribution adjusted for the quarterly
maximum block for the data from the series of stock market returns. The maximum block for the
return of this series is m = 94. It is observed that estimated standard asymptotic errors are much
lower when quarterly blocks are employed. The shape estimator is ξ̂ = 0.268 (t

ξ̂
= 2.031) and in

this case, the asymptotic interval at 95% of confidence for ξ is [−0.004, 0.532] and contains only
positive values for the shape parameter, indicating a thick-tailed distribution, with the estimated
probability equal to 0.0172. Finally, the estimations of the position and scale parameters are
significant: µ̂n = 2.419, tµ̂n = 9.186 and σ̂n = 2.419, tσ̂n = 13.705, respectively.

In Figure 9, the asymmetric form of the asymptotic confidence interval can be observed. Figure
9 allows us to give response to the following question: What is the level of stock market return for
the last forty years? The estimated point of the level of return (11.67%) is at the point where the
vertical line cuts at the maximum point of the asymmetric curve. The upper extreme point of the
confidence interval of 95% is approximately 22%; this point is located where the asymmetrical curve
cuts at the straight horizontal line. In addition, Figure 10 shows the estimation of the expected
yield level of the negative stock market returns for forty years with a confidence level band of 95%
based on the model of GEV for an annual maximum block. In Figure 10, a horizontal line is drawn
dividing the graph into two halves and corresponding to the expected level of return (11.67%). In
addition, the dot horizontal line below the line for the expected level of return corresponds to the
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lowest level of return (9.33%); whereas the dot horizontal line above the expected level of return
corresponds to the highest level of return (22.21%). In this Figure, the 24 annual maximum blocks
(m = 24) obtained from the real data of the stock market returns (point cloud) can also be seen,
in which only two points exceed the lower extreme.

Figure 9: Asymptotic 95% Confidence Interval for the 40 Year Return Level.

Following Zivot and Wang (2006), the 40-year level of return can also be estimated based on
the GEV fitted to quarterly periods as a maximum, where forty years correspond to 160 quarters,
obtaining the lowest and highest level of return; see Figures 11 and 12. In Figure 12, the horizontal
line located on the mean corresponds to the expected level of return (17.18%); the dot horizontal
line below the level of expected return corresponds to the lowest level of return (10.88%) and the
dotted line above the expected level of return corresponds to the highest level of return, being
equal to 40.68%. Figure 12 also shows the 94 (m = 94) quarterly maximum blocks obtained from
the data on stock market returns (point cloud) below the lower confidence band of the confidence
interval, except for two points, which means that the return for these 160 quarters must be above
these values.

According to Zivot and Wang (2006), modeling only the maximum block of data is inefficient if
there are other data being available on the extreme values. A more efficient, alternative approach
that utilizes more observations is to model the behavior of extreme values above a given high
threshold. This method is called peaks over threshold (POT). Another advantage of the POT
method is that the common risk measurements, such as VaR and ES, can be calculated easily13.

To motivate the importance of the foregoing in Figure 13, the calculation of the cumulated

13For risk administration purposes, insurance companies may be interested in the frequency of occurrence of a large
demand above a certain threshold, as well as the average value of the demand that exceeds the threshold. In addition,
they may be interested in the daily VaR and ES. The statistical models for extreme values above a threshold can be
used to tackle these questions.
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Figure 10: Estimated 40-Year Return Level with 95% Confidence Band for the Stock Daily Returns
in Peru.

Figure 11: Asymptotic 95% Confidence Interval for the 160-Quarterly Return Level.
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Figure 12: Estimated 160-Quarters Return Level with 95% Confidence Band for the Stock Daily
Returns in Peru.

distribution and probability functions are shown with β(κ) = 1 for Pareto (ξ = 0.5), exponential
(ξ = 0), and Pareto type II (ξ = −0.5) distributions. The Pareto type II distribution is defined only
for y < 2. According to Zivot and Wang (2006), to infer the tail behavior of the observed losses,
a q-q plot is created using the exponential distribution as reference distribution. If the excess on
the threshold is a thin-tailed distribution, then the generalized Pareto distribution is exponential
with ξ = 0 and the q-q plot should be linear. Deviations from the linearity in the q-q plot indicate
thick-tailed behavior (ξ > 0) or bounded tails (ξ < 0).

In Figure 14, the q-q plot is observed for the distribution of negative stock market returns
through the threshold when this is equal to one (κ = 1). The selection of the threshold under this
methodology is complicated. Hence, to identify the threshold, there are a number of methodologies,
such as parametric and graphic methods14. Figure 14 shows a slight deviation from the linearity for
negative stock market returns, which leads us to conclude that the distribution of negative stock
market returns is a thick-tailed distribution.

The main distributional model for excess through the threshold is the GPD. So, when defining
the excess function of the empirical sample mean, a graph can be prepared in which the expectation
of the values above the threshold κ is represented, once the threshold has been exceeded on the
vertical axis associated with each of the thresholds. This is useful for discerning tails of a distribution
against the different possible levels of threshold κ on the horizontal axis. Figure 14 must be
approximately linear at the level of the selected threshold, and it is possible to determine intervals
that allow for selecting the threshold. In general, the thick-tailed distributions give way to a mean
excess function that tends toward the infinite for high values of κ and displays a linear form with a

14One of these methods is the mean excess plot.
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Figure 13: Generalized Pareto CDFs and pdfs for Pareto.

Figure 14: Q-q plot with Exponential Reference Distribution for the Stock Daily Negative Returns
over the Threshold κ = 1.
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positive slope. All the above mentioned is shown in Figure 15. On the vertical axis, the empirical
mean excess is represented for the series of stock market returns, and on the horizontal axis, the
threshold κ is represented. If the points that are represented have an upward trend (upward slope),
this indicates thick-tailed behavior in the sample represented, as well as a GPD with positive shape
parameter ξ > 0. If there is a downward trend (negative slope), this involves the thin-tailed behavior
of the GPD with negative parameter ξ < 0. Finally, if an approximately linear graph is obtained
(tending toward the horizontal axis), this indicates a GPD and the tail behavior is exponential (an
exponential excess distribution), with the shape parameter approximately equal to zero (ξ = 0).
From the observation of Figure 15 on mean excess, a declining trend for the data up to the value of
the threshold κ = −1 is detected, which indicates a thin-tailed distribution therein; but from this
value for the threshold, there is an upward trend for the data, indicating the thick-tailed behavior
in the sample represented15.

Figure 15: Mean Excess Plot for the Stock Daily Negative Returns.

Once the mean excess function is determined, the tails of the distribution of negative stock
market losses are estimated for the period of analysis by way of the maximum likelihood estimation
of the parameters β(κ) and ξ of the GPD. To determine this estimation, a threshold κ must be
specified, which must be big enough for the approximation of the GPD to be valid, but must also be
small enough so that a sufficient number of observations is available for an exact fit; see Carmona
(2004). In Figure 16 on the excess of the mean for stock market returns, it is observed that the
threshold has a value of one (that is κ = 1) and may be appropriate for the GPD to be valid. The
estimation of the parameters indicates ξ̂ = 0.185 (t

ξ̂
= 4.463) and β̂(1) = 0.941 (t

β̂(1)
= 18.801). If

the estimated shape parameter for the GPD (ξ̂ = 0.185) is compared with the GEV estimations of

15Empirical evidence on different behavior in the tails of the Peruvian stock market returns is also found in
Rodŕıguez (2017) and Lengua Lafosse et al. (2014).
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the yearly and quarterly maximum blocks, it is seen that this is higher in the case where the analysis
is based on quarterly data (ξ̂ = 0.268), but less if annual data are used (ξ̂ = −0.020), being close to
zero in the latter case. According to Carmona (2004), Figure 16 shows the underlying distribution.
In the left-side graph, the survival function 1 − F (x) is represented on the vertical axis instead
of the cumulative distribution function F (x) and it is seen that the curve moves very close to the
horizontal axis, so it is extremely difficult to correctly quantify the quality of fitting. Since this
graph is not very useful, the right-side graph represents the survival function in logarithmic scale
on the vertical axis, which helps ensure that the fit of the distribution is adequate by taking into
account the available data. Observing both graphs in Figure 16, it is concluded that the fitting is
good.

Figure 16: Diagnostic Plots for GPD Fit to Daily Negative Returns on Stock Index.

Changing the value of the threshold brings about changes in the estimation of ξ, so the stability
of the shape parameter must be considered. It is optimal not to depend on a procedure that is too
sensitive to small changes in the threshold selection. In effect, since there is no clear procedure for
the selection of the threshold with a high level of accuracy, the estimation of the shape parameter
must remain robust in the face of variations in the errors in the selection of this threshold. The best
way to verify the stability of the parameter is through visual inspection. Now, to show how the
estimation by maximum likelihood in the shape parameter ξ varies with the threshold which has
been selected, we can observe Figure 17 where the lower horizontal axis represents the maximum
number of threshold excesses, and it is assumed to be equal to six hundred. On the upper horizontal
axis, the threshold is represented, whereas the estimation of the shape parameter with a confidence
of 95% is represented on the vertical axis. Figure 17 shows that ξ has a very stable behavior close
to 0.185 for threshold values lower than 1.91.
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Figure 17: Estimates of the Shape Parameter for the Daily Negative Returns as a Function of the
Threshold.
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In accordance with the above, Figure 18 shows how the estimator of the GPD shape parameter
varies with the threshold, where starting value of the quantile has been specified based on the data
equal to 0.9, to be used as a threshold that fits the model. In the upper horizontal axis in Figure 18,
the proportion of the points included in the estimation is represented. This information is useful
to decide whether it is necessary or not to take seriously some of the estimations of ξ that appear
on the left and right extremes of Figure 18. The central part of the graph should essentially be
horizontal, though this does not always result in a straight line, when the empirical distribution
of the data can be reasonably explained by a GPD. Finally, on the lower horizontal axis in Figure
18, the threshold is represented. The leftmost part of the graph should be ignored because of the
following reason: If the threshold is too small, much of the data (that must be included in the center
of the distribution) contributes to the estimation of the tail, skewing the result. Analogously, the
rightmost part of the graph should also be ignored as few points will contribute to the estimation.
This is the case in the current situation, and a value of ξ = 0.185 appears to be a reasonable
estimation for the intersection of a horizontal line fitted to the central part of the graph.

Figure 18: Estimates of the Shape Parameter with Time-Varying Threshold.

On the other hand, according to Zivot and Wang (2006), it is often desirable to estimate the
parameters ξ and β(κ) through the maximum likelihood estimation of the GPD separately for the
upper and lower tails of the negative returns (POT analysis). In the analysis of the mean excess
through the threshold (see Figure 15), the lower threshold is determined, which is equal to −1.
Analogously, with the help of Figure 15, the upper threshold is selected, which is equal to 1. The
estimations for the lower threshold are ξ̂ = 0.185 and β̂(κ) = 0.912, while for the upper threshold
they are ξ̂ = 0.217 and β̂(κ) = 1.087. Note that the estimated values of the parameters ξ and β(κ)
are the same as the estimates in the analysis of excess on the previously realized threshold when
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the threshold equal to minus one was estimated (see Figure 15).
The next analysis is very similar to the previous one: the difference lies in the presence of two

tails instead of one. Figure 19 shows the q-q plots of the excess on the specified threshold versus
that of the quantiles of the GPD by employing the estimated shape parameters of the upper and
lower tails. In this case, the lower tail (above graph) could start at minus one, and the upper tail
(below graph) at one16. In both representations in Figure 19, it is seen that the point sets form a
straight line up to a certain stage, so it is reasonable to assume that a GPD fits the data. Moreover,
the two estimations for the shape parameter ξ are not the same based on the particular selections
of the upper (0.217) and lower (0.185) thresholds. If the distribution is not symmetrical, there is
no special reason for the two values of ξ to be the same; that is, there is no particular reason why,
in general, the polynomial decay of the right and left tails must be identical.

Figure 19: Estimated Tails when Distributions does not have Lower or Upper Limit.

At the beginning of this paper it is held that, for a better understanding of the risk, VaR and ES
should be borne in mind to quantify the financial risks. The estimation of these risk measurements
is performed for negative stock market returns for the quantiles q = 0.95 and q = 0.99, which
are based on the GPD17. For the case of the GPD, it is inferred that with probability of 5%,
V̂ aR0.95 = −2.146% and, given that the return is less than -2.146%, then ÊS0.95 is -3.562%.
Analogously, with probability of 1%, V̂ aR0.99 = −4.309% and ÊS0.99 = −6.217% given that the

16It should be recalled that the upper and lower thresholds do not necessarily have to be equal in absolute value,
as they are in this case.

17Under the assumption of normally distributed returns, it is found that V aR0.99 = µ + σ × q0.99 and ES0.99 =
µ+ σ × φ(z)

1−Φ(z)
for the case of the quantile 0.99.
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return is less than -4.309%. Compared with the results obtained utilizing a normal distribution,
V̂ aR0.95 is less than the estimation of the GPD. Nonetheless, V̂ aR0.99 is higher in the case of the
GPD in comparison with the normal distribution. In the case of ÊS0.95 and ÊS0.99, both are higher
using the GPD approximation. The difference at 99.0% is remarkable and significant (6.217% in
the GPD compared with 4.375% for the normal distribution).

Once adjusted to a model of GPD for the excess of stock market returns above a threshold,
we proceed to the estimation of valid asymptotic confidence intervals for V aRq and ESq.

18 These

intervals can be visualized in Figure 20 with the tail estimate F̂ (x) = 1 − k
n [1 + ξ̂ × x−κ

β̂(κ)
]. The

confidence intervals for VaR are [2.062, 2.240] and [4.048, 4.643] for 95% and 99%, respectively.
With respect to ES, the intervals are [3.358, 3.839] and [5.595, 7.156] for 95% and 99%, respectively.

Figure 20: Asymptotic Confidence Intervals for V aR0.99 and ES0.99 based on the GDP Fit.

Figure 21 allows for an analysis of the sensitivity of V aRq estimated in response to changes in
the threshold κ. It is observed how the estimation by maximum likelihood of the parameter of form
ξ varies with the threshold. In Figure 21, it is estimated that the behavior of the shape parameter
is very stable and close to the estimated value of the Value at Risk (4.309) for threshold values less
than four.

According to McNeil et al. (2005), the GPD method is not the only way to estimate the tails
of a distribution as has been performed above. The other methodology for the selection of the
threshold is based on the Hill estimator, estimating, in a non-parametric way, the Hill tail index
α = 1/ξ and the quantile xq,k for the negative stock market returns. This estimator is often a good
estimator of α, or its reciprocal ξ. In practice, the general strategy is to graph the Hill estimator for
all possible values of k (numbers of excesses through the threshold). Practical experience suggests
that the best options for k are relatively small —for example, between 10 and 50 of statistical

18V aRq and ESq are based on the delta method of the likelihood log function profile.
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Figure 21: Estimation of V aR0.99 as a function of the Threshold.

orders in a sample of size 1000. In Figure 22, the Hill estimator {k, α̂(H)
k,n : k = 2, ..., n} is estimated

for negative stock market returns of the shape parameter ξ. We expect to find a stable region for
the Hill estimator where estimations are constructed based on the different numbers of statistical
order. In Figure 22, the upper horizontal axis represents the threshold associated with the possible
values of k; in the lower horizontal axis, the number of observations included in the estimation is
represented, and finally the confidence interval is observed at 95% (dotted lines). According to the
results, it is observed that the estimation of the shape parameter does not stabilize as the statistical
order increases hence, ξ̂Hill(k) is quite unstable. It should be borne in mind that in practice, the
ideal situation does not usually occur if the data does not come from a distribution with a tail that
changes with regularity. If this occurs, the Hill method is not appropriate. The serial dependence
on the data can also impair the performance of the estimator, although this can also be said of the
estimator of the GPD.

4 Conclusions

Using daily observations of the index and stock market returns for the Peruvian case from January
3, 1990 to May 31, 2013, this paper models the distribution of daily loss probability, estimates
maximum quantiles and tail probabilities of this distribution, and models the extremes through a
maximum threshold. This is used to obtain the best measurements of VaR and ES at 95% and
99%.

One of the results on calculating the maximum annual block of the negative stock market returns
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Figure 22: Estimates of the Hill ξ for the Daily Negative Returns.

is the observation of the fact that the largest negative stock market return (daily) is 12.44% in 2011.
Moreover, if it is estimated that the probability of the maximum negative annual profitability for
the following year exceeds all previous negative returns, turning out equal to 1.68, which means a
probability of 1.68% of a negative maximum record of the negative yield being stabilized during
the following year.

Then, by way of the estimator of maximum likelihood, the parameter of form and the asymptotic
interval are estimated at 95% confidence level thereof for the annual and quarterly maximum
block. The results indicate that the shape parameter is equal to -0.020 and 0.268, as well as the
asymptotic interval [-0.337, 0.2968] and [-0.004, 0.532] for the maximum annual and quarterly block,
respectively. The shape parameter estimation (-0.020) of the calculation of the maximum annual
block of negative stock market returns is insignificant, due to which the value of this parameter is
equal to zero and determines the tail behavior of the GEV distribution, and it is concluded that the
non-degenerate distribution function is Gumbel-type. In the case of the estimation by maximum
likelihood for the maximum quarterly block, a positive value was obtained for the shape parameter
(0.268), with this being significant, indicating a thick-tailed distribution (Fréchet).

For the case of the GPD, it is inferred that with probability of 5%, the daily return would be
as low as -2.146% and, given that the return is less than -2.146%, the average of the value of the
return is -3.562%. Analogously, with probability of 1%, the daily returns could be as low as -4.309%
with an average return of -6.217%, given that the return is less than -4.309%. Compared with the
results obtained utilizing a normal distribution, the V̂ aR0.95 is smaller with the estimation of the
GPD. Nonetheless, the V̂ aR0.99 is higher in the case of the GPD, in comparison with the normal
distribution. In the case of ÊS0.95 and ÊS0.99, both are higher using the GPD approximation. The
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difference in 99.0% is remarkable and significant (6.217% in the GPD, compared with 4.375% for
the normal distribution).

Finally, the non-parametric estimation is performed for the Hill tail-index and the quantile for
negative stock market returns, expecting to find a stable region for the Hill estimator. The results
related to the estimation of the parameter do not stabilize as the statistical order increases, due to
which the estimator of the Hill tail-index is quite unstable. This allows us to infer that the data
do not come from a distribution with a tail that regularly changes, where the estimated values of
the Hill parameter of form suggest a threshold close to one, according to their respective statistical
order.
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