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Valor en riesgo y el dogma de la diversificación

RESUMEN

Se analiza el principio de diversificación de riesgos y se demuestra que
no siempre resulta mejor que no diversificar, pues esto depende de carac-
teŕısticas individuales de los riesgos involucrados, aśı como de la relación de
dependencia entre los mismos.
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1 Introduction

A popular proverb states don’t put all your eggs in one basket and it is implicitly based on a principle
(let’s call it that way momentarily) of risk diversification which could have the following “justification”:
Suppose it is needed to take 2n eggs from point A to point B, walking distance, and that there are only two
alternatives available, either one person carrying all the eggs in one basket, or two people with n eggs each in
separate (and independent) baskets. The proverb suggests that there is a higher risk with the single-person
alternative since if he/she happens to stumble and fall we would have a total loss, while with the second
alternative only half of the eggs would be lost, and in a worst case scenario (with lower probability) where
the two people fall the loss would be the same as in the first alternative, anyway.

Let X be a random variable which counts how many eggs are lost under the first alternative (one
basket), and let Y account for the same but for the second alternative (two baskets). Let 0 < θ < 1 be the
probability of falling and breaking the eggs in a basket while walking from point A to B. Then X and Y are
discrete random variables such that P(X ∈ {0, 2n}) = 1 and P(Y ∈ {0, n, 2n}) = 1, with point probabilities
P(X = 2n) = θ, P(X = 0) = 1 − θ, P(Y = 2n) = θ2, P(Y = n) = 2θ(1 − θ), and P(Y = 0) = (1 − θ)2.
Certainly the probability of facing the maximum loss of 2n eggs has a higher probability under the first
alternative, but it is also true that the no loss probability is also higher under such alternative. Moreover:

P(Y > 0) = θ2 + 2θ(1− θ) = θ(2− θ) > θ = P(X > 0) ,

which means that there is a higher probability of suffering a (partial or total) loss under the second alter-
native. Therefore... does it mean that it is better to put all the eggs in one basket? If a single trip is
going to take place, the answer would be yes, but if the same trip is going to be repeated a large number of
times we should analyze the long run average loss, which would be E(X) = 2nθ for the first alternative, and
E(Y ) = 2nθ2 + 2nθ(1 − θ) = 2nθ for the second alternative; that is, in the long run there is no difference
between the two alternatives.

Is it never more convenient to diversify in two baskets? If the probability of stumbling and falling with
2n eggs is the same as with half of them (which might be true up to certain value of n) then the proverb
is certainly wrong, but maybe for a sufficiently large value of n we should consider different probabilities of
falling and breaking the eggs, say θ1 for the first alternative and θ2 for the second one, with θ1 > θ2. This
last condition leads to E(X) > E(Y ) and in such case it is more convenient to diversify if a large number
of trips are going to be made. But for a single trip decision the condition θ1 > θ2 is not enough to prefer
diversification unless θ2(2− θ2) < θ1 , since θ2 < θ2(2− θ2).

The main purpose of the present work is to show that the common belief that risk diversification is
always better, is more a dogma1 rather than a general principle that has been proved, and that the correct
view is to state that risk diversification may be better, as good as, or worse than lack thereof, depending on
the risks involved and the dependence relationship among them.

2 Risk measures

Let X be a continuous random variable, with strictly increasing distribution function FX , that represents
an economic loss generated by certain events covered by insurance or related to investments. Without loss
of generality, we consider amounts of constant value over time (inflation indexed, for example). As a point
estimation for a potential loss, we may use the mean or the median. In the present work, the median is
preferred since it always exists for continuous random variables and it is robust, in contrast with the mean
that may not exist or could be numerically unstable under heavy-tailed probability distributions. Using the
quantile function (inverse of FX), we calculate the median as M(X) = F −1X (12) since P(X ≤M(X)) = 1

2 .

1A system of principles or tenets; doctrine. A specific principle of a doctrine put forth, such as by a church. Source:
WordReference Random House Learner’s Dictionary of American English c© 2016.
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Definition 2.1. The excess of loss for a continuous loss random variable X is the random variable:

L := X − M(X).

As suggested by McNeil et al. (2015) one way to interpret a risk measure is as the required additional
risk capital %(L) to cover a loss in excess of what was originally estimated. In the specialized literature on
this subject, there are many properties for risk measures that are considered as “desirable” or “reasonable”,
though some concerns have been raised for some of them.

Definition 2.2. A risk measure % is monotone if for any excess of loss random variables L1 and L2 such
that P(L1 ≤ L2) = 1, we have that %(L1) ≤ %(L2).

McNeil et al. (2015) and several other authors consider monotonicity as a clearly desirable property
since financial positions that involve higher risks under any circumstance should be covered by more risk
capital. Positions such that %(L) ≤ 0 do not require additional capital.

Definition 2.3. A risk measure % is translation invariant if for any excess of loss random variable L and
any constant c we have that %(L+ c) = %(L) + c.

This property is also considered as desirable by McNeil et al. (2015) and other authors under the
following argument: The uncertainty associated to L′ := L+ c totally depends on L since c is fixed, %(L) is
the additional risk capital required to cover an excess of loss under L and therefore it would be enough to
add the fixed amount c in order to cover for L′.

Definition 2.4. A risk measure % is subadditive if for any excess of loss random variables L1 and L2 we
have that %(L1 + L2) ≤ %(L1) + %(L2).

This property cannot be considered as generally acceptable since there is some debate around it. One
argument in favor is that diversification always reduces risk, which is more a dogma rather than something
proved to be true under all circumstances. We may counterargue that for some risks there could be some sort
of pernicious interaction that generates additional risk to the individual ones; so it may be also argued that it
is better for a risk measure not to be subadditive, so that whenever it happens that %(L1+L2) > %(L1)+%(L2)
then it becomes clear that diversification is not convenient in such case.

Definition 2.5. A risk measure % is positively homogeneous if for any excess of loss random variable L and
any constant λ > 0 we have that %(λL) = λ%(L).

With regard to this property McNeil et al. (2015) and other authors mention that, in case that subad-
ditivity has been accepted as reasonable, then for any positive integer n, it should be accepted that

%(nL) = %(L + · · · + L) ≤ n%(L) (1)

and since there is no diversification “benefit” (because just a single risk source is involved), then the highest
value would be attained in (1), that is equality. The same authors acknowledge there is some criticism about
this property since for sufficiently large values of λ we should have %(λL) > λ%(L) to penalize for a high
concentration of risk in a single source of it.

Definition 2.6. % is a coherent risk measure if it satisfies Definitions 2.2 to 2.5.

The adjective “coherent” in this definition is somehow overbearing since it implicitly suggests that any
risk measure that does not satisfy this definition would be incoherent despite the fact that there is some
debate and concerns about two of the four properties to be required. There are other additional properties
that have been proposed in some contexts, see McNeil et al. (2015) or Denuit et al. (2005), but for the
purpose of this article the above mentioned ones are enough.
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3 Value at risk

As suggested by McNeil et al. (2015), we may interpret %(L) as the additional risk capital to cover for a
potential excess of loss with L, but in practice such interpretation could be easily unachievable. Consider,
for example, an insurance portfolio with certain face amounts for each issued policy. The only way to
guarantee that the insurance company has enough resources to pay the claims under all possible scenarios
would require the total reserve to be equal to the sum of all the face amounts in such portfolio.

In practice, specially under the Basel Accords and Solvency II frameworks, what is calculated is the
amount of risk capital that has an acceptable high probability (but strictly less than 1) of covering an excess
of loss that might face an insurance or financial institution. Who determines how much is “acceptable”?
Typically the regulatory authority, but each company may decide to use probability levels even higher than
the regulatory ones.

Definition 3.1. Value at Risk of level 0 < α < 1 for an excess of loss random variable L is a risk measure
defined as

VaRα(L) := F −1L (α)

where F −1L is the quantile function of L, that is the inverse of the probability distribution function of L.

In other words, a level α Value at Risk associated to a continuous random variable is the amount that
such variable would not exceed with probability α. It should be noticed that the median is a Value at Risk
of level α = 1

2 .

Proposition 3.1. VaR is a monotone, translation invariant, and positively homogeneous risk measure.

Proof:

a) Let X and Y be random variables such that P(X ≤ Y ) = 1. Then for any value x ∈ R :

P(X ≤ x) = P(X ≤ x < Y ) + P(X ≤ Y ≤ x) ≥ P({X ≤ Y } ∩ {Y ≤ x}) = P(Y ≤ x) ,

that is FX(x) ≥ FY (x). Let xα := VaRα(X) and yα := VaRα(Y ). Then α = FX(xα) ≥ FY (xα) and
since α = FY (yα) and distribution functions are non decreasing, necessarily xα ≤ yα and therefore
VaRα(X) ≤ VaRα(Y ).

b) Let X be a continuous random variable with strictly increasing distribution function FX and let c ∈ R
be any given constant. Define the random variable Y := X + c , its probability distribution function
is:

FY (y) = P(Y ≤ y) = P(X + c ≤ y) = P(X ≤ y − c) = FX(y − c).
Let xα := VaRα(X) and yα := VaRα(Y ). Then:

FX(xα) = α = FY (yα) = FX(yα − c) ,

and since FX is strictly increasing then xα = yα−c which is equivalent to VaRα(X)+c = VaRα(Y ) =
VaRα(X + c).

c) Let X be a continuous random variable with strictly increasing distribution function FX and let λ > 0
be a given constant. Define the random variable Y := λX, its probability distribution function is:

FY (y) = P(Y ≤ y) = P(λX ≤ y) = P(X ≤ y/λ) = FX(y/λ).

Let xα := VaRα(X) and yα := VaRα(Y ). Then:

FX(xα) = α = FY (yα) = FX(yα/λ) ,

and since FX is strictly increasing then xα = yα/λ , which is equivalent to λVaRα(X) = VaRα(Y ) =
VaRα(λX). ���
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It should be noticed that VaR is proved to be positively homogeneous without a subadditivity argument
as in (1). In fact, VaR is not generally subadditive as it will become clear in a following section, but it will
be also argued that this should not be considered as a disadvantage.

Example 3.1. Let X be a Pareto continuous random variable with parameters β > 0 y δ > 0. Its probability
density function is given by:

fX(x |β, δ) =
δβδ

xδ+1
, x > β,

and therefore its probability distribution function:

FX(t) =

∫ t

−∞
fX(x |β, δ) dx = δβδ

∫ t

β

dx

xδ+1
= 1 −

(
β

t

)δ
, t > β.

The quantile function of X is the inverse of FX , that is F −1X (u) = β(1 − u)−1/δ for 0 < u < 1, and
consequently the median is M(X) = VaR1/2(X) = F −1X (12) = 21/δβ. The level α > 1

2 VaR for the excess of
loss L = X −M(X) is given by:

VaRα(L) = VaRα(X −M(X)) = VaRα(X)−M(X) = β[(1− α)−1/δ − 21/δ].

Thus, with probability α, the excess of loss will not exceed the amount VaRα(L). Notice that if α→ 1− then
VaRα(L)→ +∞, which would require an infinite risk capital, something impossible in practice, and instead
a value α < 1 sufficiently close to 1 is arbitrarily set by the regulatory authority, for example α = 0.995,
though it is not clear how a particular value of α is considered “safe enough” in some sense.

As an additional comment for this last example, the mean for the Pareto model may no exist; it only
does when δ > 1 and even, in such a case, E(X) = βδ/(δ− 1), which implies that for values of δ sufficiently
close to 1, it is possible to have E(X) > VaRα(X) for any given value α < 1 because limδ→1+ E(X) = +∞.
Since parameter δ controls tail heaviness of this probability distribution (lower values for δ imply heavier
right tail), this exemplifies a comment at the beginning of the previous section in the sense that it is better
to use the median instead of the mean.

4 Loss aggregation

Consider n excess of loss random variables L1, . . . , Ln where Li = Xi − M(Xi) for i ∈ {1, . . . , n} as in
Definition 2.1. It is of interest to calculate VaR of the aggregation of such random variables:

L = L1 + · · · + Ln =
n∑

i=1

Xi −
n∑

i=1

M(Xi) = S − c , (2)

where the random variable S :=
∑n

i=1Xi and the constant c :=
∑n

i=1M(Xi). In this case, we get
VaRα(L) = VaRα(S) − c ; so this last calculation essentially depends on obtaining or estimating the prob-
ability distribution function of S, that is FS , because VaRα(S) = F −1S (α). Since S is a transformation of
the n-dimensional random vector (X1, . . . , Xn), it is necessary to know either the joint probability distri-
bution function FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn) or its joint probability density function
fX1,...,Xn(x1, . . . , xn) ≥ 0 such that

P[ (X1, . . . , Xn) ∈ B ] =

∫
· · ·
∫

B
fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn .

A very popular probabilistic model is the multivariate Normal distribution, which undoubtedly has very
nice mathematical properties that makes it very attractive for analysis and simplified calculations, but in
practice it is usually inappropriate for the following reasons:
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• All the univariate marginal distributions have to be Normal. Very often excess of loss random variables
exhibits such a probabilistic behavior that is easily rejected by standard statistical normality tests,
specially for heavier tails than those of the Normal distribution.

• The multivariate Normal is completely unable to consider tail dependence that very often is present
among risks in finance and insurance, which consists in an important increase of the dependence degree
under extreme values of the random variables involved.

These two flaws combined usually lead to a significant underestimation of the total aggregated risk.
Instead, more flexible models have been explored, such as the ones built by means of copula functions which
allow for any kind and distinct marginal univariate distributions and also account for tail dependence.
Getting into the details of copula modeling is beyond the scope of the present article; the interested reader
should refer to Nelsen (2006) for a book on basic copula theory, and the books by McNeil et al. (2015) and
Denuit et al. (2005) for applications of copulas in finance and insurance risk modeling.

In two following sections, calculation of aggregated VaR will be considered in two extreme cases: Perfect
positive dependence (comonotonicity) and complete absence of dependence (that is, independence). For
simplicity, but without loss of generality, it is considered the aggregation of two excess of loss random
variables, that is L = L1 +L2 where L1 = X −M(X) and L2 = Y −M(Y ), which is equivalent to L = S− c
with S := X + Y and c := M(X) + M(Y ) and therefore VaRα(L) = VaRα(S)− c.

5 Comonotonicity

The following result comes from the works by Hoeffding (1940) and Fréchet (1951) and it is known as the
Fréchet-Hoeffding bounds for joint probability distribution functions, which for simplicity is stated for the
bivariate case:

Lemma 5.1 (Fréchet–Hoeffding). If (X,Y ) is a random vector with joint probability distribution function
FX,Y (x, y) = P(X ≤ x, Y ≤ y) and marginal distribution functions FX(x) = P(X ≤ x) and FY (y) = P(Y ≤
y), then:

H∗(x, y) := max{FX(x) + FY (y)− 1, 0} ≤ FX,Y (x, y) ≤ min{FX(x), FY (y)} =: H∗(x, y) ,

where the lower bound H∗ and the upper bound H∗ are both joint distribution functions and therefore infimum
and supremum for all bivariate joint distribution functions.

Definition 5.1. Two random variables X and Y are comonotone or perfectly positively dependent if there
exists a strictly increasing function g such that P[Y = g(X)] = 1.

Proof of the following lemma may be found in Nelsen (2006) as Theorem 2.5.4 and following comment
thereof:

Lemma 5.2 (Nelsen, 2006). Let X and Y be continuous random variables with marginal distribution func-
tions FX and FY , respectively, and joint distribution function FX,Y . Then X and Y are comonotone if and
only if FX,Y is equal to the Fréchet-Hoeffding upper bound.

Now the main result for this section:

Theorem 5.1. If X and Y are continuous comonotone random variables, then:

VaRα(X + Y ) = VaRα(X) + VaRα(Y ).
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Proof:

Since X and Y are comonotone, there exists a strictly increasing function g such that P[Y = g(X)] = 1.
Hence, the distribution function of Y may be expressed as:

FY (y) = P(Y ≤ y) = P[g(X) ≤ y] = P[X ≤ g−1(y)] = FX(g−1(y)).

By Lemma 5.2, we get:

FX,Y (x, y) = min{FX(x), FY (y)} = min{FX(x), FX(g−1(y))}.

Define S := X + Y . Then, its distribution function satisfies:

FS(s) = P(S ≤ s) = P(X + Y ≤ s) = P(X + g(X) ≤ s) = P(Y ≤ s−X).

Since P[Y = g(X)] = 1, then FX,Y is a singular distribution because all the probability is distributed along
the curve y = g(x) and therefore, FS(s) is equal to the value of FX,Y at the intersection point (x∗, y∗) between
the increasing curve y = g(x) and the decreasing line y = s−x, for all s ∈ Ran g, which requires g(x) = s−x
and hence the intersection point is (x∗, g(x∗)) where x∗ is the solution to the equation x + g(x) = s which
will be denoted as x∗ = h(s). Since g is strictly increasing so it is h which has inverse h−1(x) = x + g(x).
Then:

FS(s) = FX,Y (x∗, g(x∗)) = min{FX(x∗), FX(g−1(g(x∗)))} = FX(h(s)),

and consequently:

VaRα(X + Y ) = VaRα(S) = F −1S (α) = h−1(F −1X (α))

= F −1X (α) + g(F −1X (α)) = VaRα(X) + VaRα(Y ) ���

Corollary 5.1. If X and Y are continuous comonotone random variables, then for the excess of loss random
variables L1 := X −M(X) and L2 := Y −M(Y ), we have that:

VaRα(L1 + L2) = VaRα(L1) + VaRα(L2).

Proof:

VaRα(L1 + L2) = VaRα(X + Y −M(X)−M(Y )) = VaRα(X + Y )−M(X)−M(Y )

= VaRα(X)−M(X) + VaRα(Y )−M(Y ) = VaRα(L1) + VaRα(L2) ���

Example 5.1. Let X be a Pareto random variable with parameters β = 1 and δ > 0 and define the random
variable Y := X2. Since Y = g(X) with g(x) = x2 a strictly increasing function on RanX = ]1,+∞[ then X
and Y are comonotone, with RanY = ]1,+∞[ also. Making use of the formulas in Example 3.1, we obtain:

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(X ≤ √y )

= FX(
√
y ) = 1 −

(
1

y

)δ/2
, y > 1,

which implies that Y is also a Pareto random variable but with parameters β = 1 and δ/2. Therefore:

Varα(X) = (1− α)−1/δ , Varα(Y ) = (1− α)−2/δ.

Now let S := X + Y = X +X2 where RanS = ]2,+∞[ and we get:

FS(s) = P(S ≤ s) = P(X +X2 ≤ s) = P
(
X ≤ (

√
1 + 4s− 1)/2

)
= FX

(
(
√

1 + 4s− 1)/2
)

= 1−
(
2/(
√

1 + 4s− 1)
)δ
, s > 2,

from where we obtain for any 0 < α < 1 the following:

VaRα(X + Y ) = VaRα(S) = F −1S (α) = (1− α)−1/δ + (1− α)−2/δ = Varα(X) + Varα(Y ) ,

as expected. ���
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6 Independence

In contrast with the comonotonicity case where such property always implies that the VaR of the sum is
equal to sum of the individual VaRs, under lack of dependence (independence), it is not possible to establish
a general formula that relates the VaR for a sum of independent random variables to the individual VaRs,
it will depend on each particular case, as it is shown in the following three examples:

Example 6.1. Let X and Y be independent and identically distributed Pareto random variables with
parameters β = 1 and δ = 1 such that the right tail of their distributions is heavy enough for non existence
of a mean. Again applying formulas from Example 3.1, we get VaRα(X) = (1 − α)−1 = VaRα(Y ) where
0 < α < 1 and, by independence, the joint density function for the random vector (X,Y ) is the product of
the marginal densities:

fX,Y (x, y) = fX(x)fY (y) =
1

x2y2
, x > 1, y > 1.

Let S := X + Y then RanS = ]2,+∞[ and its distribution function:

FS(s) = P(S ≤ s) = P(X + Y ≤ s) = P(Y ≤ s−X) =

∫∫
y≤ s−x

fX,Y (x, y) dxdy

=

∫ s−1

1
x−2
∫ s−x

1
y−2 dydx = 1 − 2

s
− 2

s2
log(s− 1) , s > 2.

Let s∗ := VaRα(X) + VaRα(Y ) = 2/(1− α) > 2. Then:

FS(s∗) = α − (1− α)2

2
log

(
1 + α

1− α

)
< α ,

which implies for any 0 < α < 1 :

VaRα(X) + VaRα(Y ) = s∗ < F −1S (α) = VaRα(S) = VaRα(X + Y ).

Despite total absence of dependence between the random variables, the right tails of their distributions are
heavy enough such that the diversification effect is definitely not convenient: The VaR of the sum is greater
than the sum of the individual VaRs, in this particular case. ���

Example 6.2. Now let X and Y be independent and identically distributed Normal (0, 1) random variables.
Their distribution function is expressed as:

Φ(z) =
1√
2π

∫ z

−∞
e− t

2/2 dt.

The tails of this distribution are not as heavy as in the previous example, and it has finite mean and
variance. Then the random variable S := X + Y has Normal (0, 2) distribution, which is the same as

√
2X

since a linear transformation of a Normal random variable is still Normal and E(
√

2X) =
√

2E(X) = 0 and
V(
√

2X) = 2V(X) = 2. Therefore the distribution function of S may be expressed as:

FS(s) = P(S ≤ s) = P(
√

2X ≤ s) = P(X ≤ s/
√

2) = Φ(s/
√

2) ,

and its quantile function as F −1S (u) =
√

2 Φ−1(u), 0 < u < 1. Consequently, for any 0 < α < 1 :

VaRα(X + Y ) = VaRα(S) = F −1S (α) =
√

2 Φ−1(α) < 2Φ−1(α) = VaRα(X) + VaRα(Y ).

In contrast with the previous example, the VaR of this sum of random variables is strictly less than the sum
of the individual VaRs, and therefore in this particular case diversification is clearly convenient. ���
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Figure 1: Graph of g(α) = FS
(
− 2 log(1− α)

)
in Example 6.3.

Example 6.3. Lastly, let X and Y be independent and identically distributed Exponential random variables
with parameter equal to 1. The right tail of this distribution is not as heavy as in Example 6.1 but certainly
heavier than in Example 6.2, with finite mean and variance. Their marginal probability density function is
f(x) = e−x, x > 0, and the corresponding distribution function F (x) = 1 − e−x, x > 0, hence VaRα(X) =
− log(1−α) = VaRα(Y ) where 0 < α < 1. By independence the joint density function of the random vector
(X,Y ) is the product of the marginal densities:

fX,Y (x, y) = fX(x)fY (y) = e−(x+y) , x > 0, y > 0.

Let S := X + Y, then RanS = ]0,+∞[ and its distribution function is:

FS(s) = P(X + Y ≤ s) =

∫∫
y≤ s−x

fX,Y (x, y) dxdy

=

∫ s

0
e−x
∫ s−x

0
e−y dydx = 1− e−s(1 + s) , s > 0.

By the way, calculating the derivative of FS(s), we get fS(s) = se−s, s > 0, which is a density of a
Gamma (2, 1) random variable. Let s∗ := VaRα(X) + VaRα(Y ) = −2 log(1− α). Then:

g(α) := FS(s∗) = 1− (1− α)2
(
1− 2 log(1− α)

)
, 0 < α < 1.

By numerical approximation it is obtained that g(α) = α if and only if α ≈ 0.7153319, see Figure 1, g(α) < α
if α < 0.7153319 and g(α) > α if α > 0.7153319, which implies that

VaRα(X) + VaRα(Y )


< VaRα(X + Y ) if α < 0.7153319

= VaRα(X + Y ) if α ≈ 0.7153319

> VaRα(X + Y ) if α > 0.7153319

This is an example where diversification convenience depends on the desired α level for VaR, in contrast
with the two previous examples. ���

7 Final remarks

The main conclusion in the present work is that diversification is not always convenient. As shown in
the examples, risk diversification may result better, worse or equivalent to lack thereof, depending on the
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individual risks involved and the dependence relationship between them, and even on the desired risk level.
In particular, as a consequence of Theorem 5.1, if two continuous random variables are comonotone then we
can guarantee that the VaR is always equal to the sum of the individual VaRs. But for independent random
variables everything may happen.

Moreover, it is argued that the fact of VaR being not subadditive is better and advantageous: When
the VaR of a sum is greater than the sum of individual VaRs, we would be detecting a specially pernicious
combination of risks on which is not convenient to diversify; while under “coherent” risk measures as in
Definition 2.6 where subadditivity is always present, it would not possible to detect such a harmful risk
combination.
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