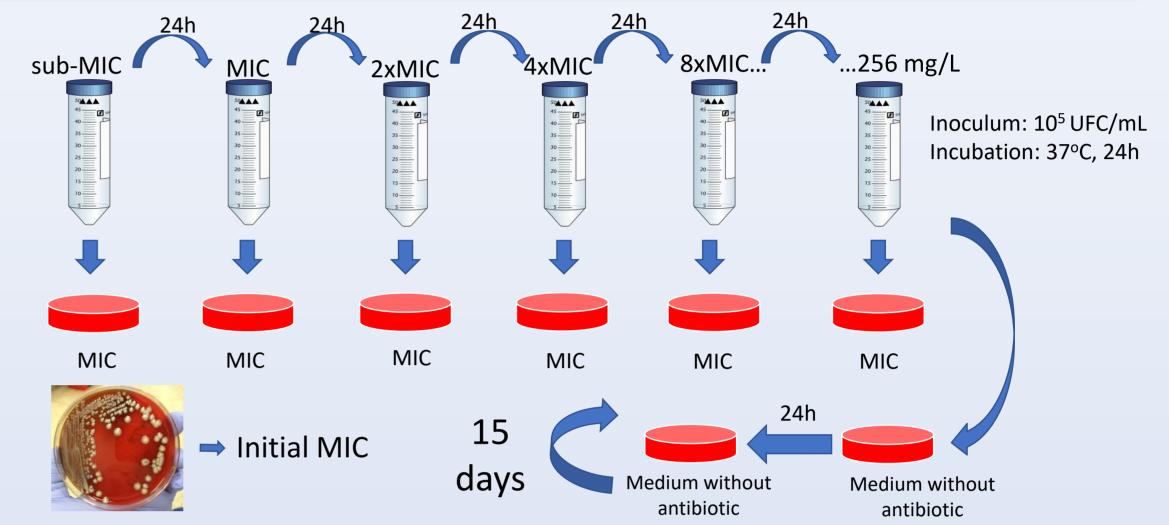
In vitro effect of ceftazidime-avibactam pressure on ceftazidime-avibactam resistance in KPC-producing *Klebsiella pneumoniae* clinical isolates.

Díaz-Roblizo, Daniel¹, Rodríguez-Villodres, Ángel^{1,2}, Lepe, José Antonio², Pachón, Jerónimo¹, Smani, Younes^{1,2,*}

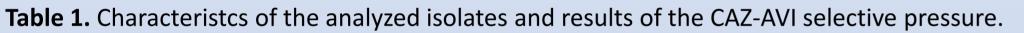
¹Institute of Biomedicine of Seville (IBiS)/CSIC/University of Seville. University Hospital Virgen del Rocío, Seville, Spain. ²Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío. University Hospital Virgen del Rocío, Seville, Spain. *Email: ysmani-ibis@us.es; >> @y_smani

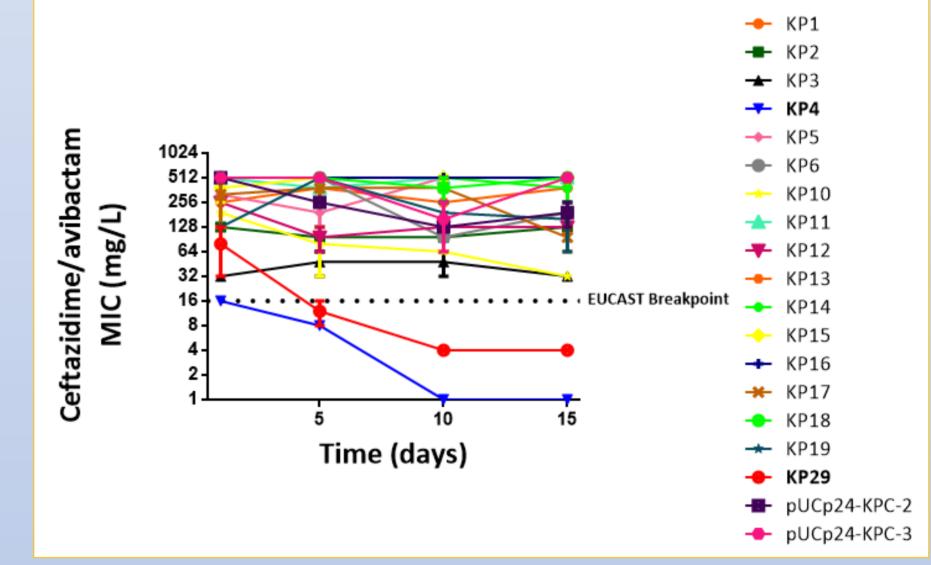

INTRODUCTION AND PURPOSE

Infections caused by KPC-producing *Klebsiella pneumoniae* represent a challenge due to the limited available treatment choices. In this context, ceftazidimeavibactam (CAZ-AVI) is postulated as an alternative treatment effective against class A β-lactamases such as KPC [1]. But, recent data reported the failure of CAZ-AVI treatment of infections by KPC-producing *K. pneumoniae* due to the development of CAZ-AVI resistance [2]. However, little is known concerning the CAZ-AVI resistance development by CAZ-AVI selective pressure. Here, we aimed to determine *in vitro* whether the exposure of KPC-producing *K. pneumoniae* clinical isolates to CAZ-AVI subinhibitory concentrations could lead to the selection of CAZ-AVI resistant isolates.

METHODS

Seventeen KPC-producing *K. pneumoniae* clinical isolates were analyzed. **Minimum inhibitory concentrations (MICs)** of CAZ-AVI were determined by broth microdilution assay using a fixed AVI concentration of 4 mg/L [3]. Moreover, these isolates were further **exposed to increasing concentrations of CAZ and fixed 4 mg/L of AVI**, from a sub-MIC up to 256/4 mg/L of CAZ-AVI (or the concentration able to kill the bacterial isolate) at 37°C with shaking during 24h. **New MICs to CAZ-AVI were determined in each condition and after 15 days without CAZ-AVI pressure**.


Therefore, in order to demonstrate that bla_{KPC} gene is responsible for acquisition of CAZ-AVI resistance in KPC-producing *K. pneumoniae*, bla_{KPC-2} and bla_{KPC-3} were cloned into a reference *K. pneumoniae* CECT 997 strain. Resistance or susceptibility were determined according to EUCAST criteria [3].



RESULTS

- All (17/17, 100%) KPC-producing K.pneumoniae isolates were able to grow at high concentrations of CAZ-AVI (≥64/4 mg/L), increasing their resistance to CAZ-AVI ≥8-fold (Table 1).
- Fifteen of the 17 (88.2%) resistant isolates maintained the acquired CAZ-AVI resistance 15 days without CAZ-AVI pressure (Figure 1).
- The K. pneumoniae CECT 997 mutants with bla_{KPC-2} or bla_{KPC-3} were able to grow up to 256/4 mg/L of CAZ-AVI, displaying and maintaining CAZ-AVI MIC shift from <0.01/4 mg/L (susceptible) to 512/4 mg/L (resistant) (Table 1) (Figure 1).

Isolate	Source	ST	bla _{кPC}	CAZ-AVI	MIC	Fold
				Pressure (mg/L)	CAZ-AVI (mg/L)	change
KP1	Blood	512	KPC-3	0.5 → 256	1 → 256 (S → R)	256
KP2	Rectal exudate	Unknown	KPC-2	2 → 256	$4 \rightarrow 256$ (S \rightarrow R)	64
КРЗ	Intraabdominal abscess	512	KPC-3	4 → 256	$8 \rightarrow 128$ (S \rightarrow R)	16
KP4	Rectal exudate	Unknown	KPC-2	$1 \rightarrow 64$	$2 \rightarrow 16$ (S \rightarrow R)	8
KP5	Rectal exudate	745	KPC-3	1 → 256	$2 \rightarrow 256$ (S \rightarrow R)	128
KP6	Unknown	353	KPC-3	0.25 → 256	$0.5 \rightarrow 512$ $(S \rightarrow R)$	1024
KP10	Unknown	784	KPC-2	0.5 → 256	1 → 512 (S → R)	512
KP11	Unknown	86	KPC-2	0.125 → 256	0.25 → >512 (S → R)	>2048
KP12	Unknown	258	KPC-2	1 → 256	2 → 256 (S → R)	128
KP13	Unknown	376	KPC-3	2 → 256	$4 \rightarrow >512$ (S \rightarrow R)	>128
KP14	Unknown	392	KPC-2	0.125 → 256	0.25 → 256 (S → R)	1024
KP15	Unknown	258	KPC-11	0.25 → 256	0.5 → >512 (S → R)	>1024
KP16	Unknown	340	KPC-3	1 → 256	$2 \rightarrow 512$ (S \rightarrow R)	256
KP17	Unknown	231	KPC-3	0.25 → 256	$\begin{array}{c} 0.5 \rightarrow 128 \\ (\mathbf{S} \rightarrow \mathbf{R}) \end{array}$	256
KP18	Unknown	166	KPC-2	0.25 → 256	0.5 → 256 (S → R)	512
KP19	Unknown	307	KPC-3	1 → 256	$2 \rightarrow 256$ (S \rightarrow R)	128
КР29	Unknown	512	KPC-3	$1 \rightarrow 64$	$2 \rightarrow 64$ (S \rightarrow R)	32
<i>K. pneumoniae</i> CECT 997- pUCp24-KPC-2	_	-	KPC-2	0.02 → 256	<0.01 → 512 (S → R)	>51200
<i>K. pneumoniae</i> CECT 997- pUCp24-KPC-3	-	-	KPC-3	0.02 → 256	<0.01 → 512 (S → R)	>51200

Figure 1. CAZ-AVI MIC Values for the clinical isolates and mutants analyzed over the 15 days without CAZ-AVI pressure. **pUCp24-KPC-2** and **pUCp24-KPC-3**, the *K. pneumoniae* CECT 997 mutants.

CONCLUSIONS

ST, Sequence Type; **S**, susceptible; **R**, resistant.

- 1. These data suggest that exposure of KPC-producng *K. pneumoniae* to subinhibitory CAZ-AVI concentrations could lead to the selection of CAZ-AVI resistant isolates.
- 2. The acquisition of CAZ-AVI resistance seems to be stable over the time, without CAZ-AVI pressure conditions.
- 3. The bla_{KPC-2} and bla_{KPC-3} genes are involved in the acquisition of CAZ-AVI resistance.
- 4. Programs for optimizing the use of antibiotics should consider these data to avoid the increase of CAZ-AVI resistance.

REFERENCES

[1] López-Hernández, I. et al. (2016) Activity of ceftazidime-avibactam against multidrug-resistance Enterobacteriaceae expressing combined mechanisms of resistance. Enferm. Infecc. Microbiol. Clin., **35** (8), 499-504.

[2] Räisänen, K. *et al.* (2019) Emergence of ceftazidime-avibactam-resistant *Klebsiella pneumoniae* during treatment, Finland, December 2018. *Euro Surveill.*, **24** (19), 1900256.

[3] European Committee on Antimicrobial Susceptibility Testing (2019). Breakpoint tables for interpretation of MICs and zone diameters. EUCAST.

