Publications
2024 |
Lopez-Fernandez, A.; Gómez-Vela, F.; Saz-Navarro, Dulcenombre M.; Delgado, F. M.; Rodríguez-Baena, D. Optimized Python library for reconstruction of ensemble-based gene co-expression networks using multi-GPU Journal Article In: The Journal of Supercomputing, 2024, ISSN: 1573-0484. Abstract | Links | BibTeX | Tags: Big Data, Bioinformatics, Data Mining, Gene co-expression network, GPU, High-Performance Computing @article{Lopez-Fernandez2024b, Gene co-expression networks are valuable tools for discovering biologically relevant information within gene expression data. However, analysing large datasets presents challenges due to the identification of nonlinear gene–gene associations and the need to process an ever-growing number of gene pairs and their potential network connections. These challenges mean that some experiments are discarded because the techniques do not support these intense workloads. This paper presents pyEnGNet, a Python library that can generate gene co-expression networks in High-performance computing environments. To do this, pyEnGNet harnesses CPU and multi-GPU parallel computing resources, efficiently handling large datasets. These implementations have optimised memory management and processing, delivering timely results. We have used synthetic datasets to prove the runtime and intensive workload improvements. In addition, pyEnGNet was used in a real-life study of patients after allogeneic stem cell transplantation with invasive aspergillosis and was able to detect biological perspectives in the study. |
Lopez-Fernandez, A.; Gómez-Vela, F.; González-Domínguez, J.; Bidare-Divakarachari, P. bioScience: A new python science library for high-performance computing bioinformatics analytics Journal Article In: SoftwareX, vol. 26, pp. 101666, 2024, ISSN: 2352-7110. Abstract | Links | BibTeX | Tags: Bioinformatics, Data analysis, Data Mining, Data science, High-Performance Computing @article{Lopez-Fernandez2024, BioScience is an advanced Python library designed to satisfy the growing data analysis needs in the field of bioinformatics by leveraging High-Performance Computing (HPC). This library encompasses a vast multitude of functionalities, from loading specialized gene expression datasets (microarrays, RNA-Seq, etc.) to preprocessing techniques and data mining algorithms suitable for this type of datasets. BioScience is distinguished by its capacity to manage large amounts of biological data, providing users with efficient and scalable tools for the analysis of genomic and transcriptomic data through the use of parallel architectures for clusters composed of CPUs and GPUs. |
2020 |
Delgado, F. M.; Gómez-Vela, F.; Divina, F.; García-Torres, M.; Rodríguez-Baena, D. Computational Analysis of the Global Effects of Ly6E in the Immune Response to Coronavirus Infection Using Gene Networks Journal Article In: Genes, vol. 11, no. 7, pp. 831, 2020, ISSN: 2073-4425. Abstract | Links | BibTeX | Tags: Data Mining, Gene Network, murine coronavirus, Systems biology, Viral infection @article{Delgado2020, Gene networks have arisen as a promising tool in the comprehensive modeling and analysis of complex diseases. Particularly in viral infections, the understanding of the host-pathogen mechanisms, and the immune response to these, is considered a major goal for the rational design of appropriate therapies. For this reason, the use of gene networks may well encourage therapy-associated research in the context of the coronavirus pandemic, orchestrating experimental scrutiny and reducing costs. In this work, gene co-expression networks were reconstructed from RNA-Seq expression data with the aim of analyzing the time-resolved effects of gene Ly6E in the immune response against the coronavirus responsible for murine hepatitis (MHV). Through the integration of differential expression analyses and reconstructed networks exploration, significant differences in the immune response to virus were observed in Ly6E?HSC compared to wild type animals. Results show that Ly6E ablation at hematopoietic stem cells (HSCs) leads to a progressive impaired immune response in both liver and spleen. Specifically, depletion of the normal leukocyte mediated immunity and chemokine signaling is observed in the liver of Ly6E?HSC mice. On the other hand, the immune response in the spleen, which seemed to be mediated by an intense chromatin activity in the normal situation, is replaced by ECM remodeling in Ly6E?HSC mice. These findings, which require further experimental characterization, could be extrapolated to other coronaviruses and motivate the efforts towards novel antiviral approaches. |
2019 |
García-Torres, M.; Becerra-Alonso, D.; Gómez-Vela, F.; Divina, F.; López-Cobo, I.; Martínez-Álvarez, F. Analysis of Student Achievement Scores: A Machine Learning Approach Conference International Joint Conference: 12th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2019) and 10th International Conference on EUropean Transnational Education (ICEUTE 2019), 2019, ISBN: 978-3-030-20005-3. Abstract | Links | BibTeX | Tags: Data Mining @conference{García-Torres2019, Educational Data Mining (EDM) is an emerging discipline of increasing interest due to several factors, such as the adoption of learning management systems in education environment. In this work we analyze the predictive power of continuous evaluation activities with respect the overall student performance in physics course at Universidad Loyola Andaluc{'i}{i}a, in Seville, Spain. Such data was collected during the fall semester of 2018 and we applied several classification algorithms, as well as feature selection strategies. Results suggest that several activities are not really relevant and, so, machine learning techniques may be helpful to design new relevant and non-redundant activities for enhancing student knowledge acquisition in physics course. These results may be extrapolated to other courses. |