Technical progress: an approach from Lie Transformation Group Theory
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.2051Keywords:
Cambio técnico, progreso técnico tipo Lie, holoteticidad, technical change, Lie type of technical progress, holotheticityAbstract
In this paper we explain some tools of Differential Geometry. In detail we deal with Lie Theory, which is currently being investigated in Economics. Firstly we indicate the conditions demanded to production functions in such studies, and the definition of a particular type of technical progress: the Lie type. For this type, the three properties of Lie groups have to be verified by the technical progress. We also show the use of Lie operator for economical interpretations, and for quantifying the impact of the technical progress. This operator allows us to answer Solow-Stigler Controversy. Finally we introduce some applications of Lie Theory in Economics, and suggest new future research lines they can generate. In this way, our main aim is to show the actual and future applications of Lie Theory in Economics.Downloads
References
Ancochea, J. M. y Goze, M. (1989) Classification des Algèbres de Lie Nilpotentes de Dimension 7, Archiv. Math. 52, pp. 175–185.
Arrow, K. J., Chenery, H. B., Minhas, B. S. y Solow, R. M. (1961) Capital-Labor Substitution and Economic Efficiency, Review of Economics and Statistics 53, pp. 225–251.
Boza, L., Fedriani, E. M. y Núñez, J. (2001) A New Method for Classifying Complex Filiform Lie Algebras, Applied Mathematics and Computation 121 (2-3), pp. 169–175.
Boza, L., Fedriani, E. M. y Núñez, J. (2003) Complex Filiform Lie Algebras of Dimension 11, Applied Mathematics and Computation 141, pp. 611–630.
de Graaf, W. A. (2004) Classification of Solvable Lie Algebras. E-print disponible en http://arxiv.org/PS cache/math/pdf/0404/0404071.pdf.
Falcón, R. M. y Núñez, J. (2002) La Isoteoría de Lie-Santilli. America-Europe-Asia. International Academic Press.
Frappat, L., Sorba, P. y Sciarrino, A. (1996) Dictionary on Lie Superalgebras. E-print disponible en http://arxiv.org/PS cache/hep-th/pdf/9607/9607161.pdf.
Fulton, W. y Harris, J. (1991) Representation Theory: A First Course. Springer-Verlag, New York.
Jacobson, N. (1979) Lie Algebras. Dover Publications, Inc. New York.
Kellman, M. E. (1996) Symmetry in chemistry from the hydrogen atom to proteins. Proc. Natl. Acad. Sci. USA 93, pp. 14287–14294.
Mubarakzjanov, G. M. (1963) Classification of Real Structures of Lie Algebras of Fifth Order, Izv. Vysˇs. Uˇcebn. Zaved. Matematika, 3 (34), pp. 99–106 (en ruso).
Noether, E. (1918) Invariante Variationsprobleme, Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math-phys. Klasse, pp. 235–257.
Núñez, J. y Tenorio, A. F. (2002) Sophus M. Lie, La Gaceta de la RSME 5:1, pp. 121–130.
Núñez, J., Tenorio, A. F. y Vilches, J. A. (2006) Elementos de la Teoría de Grupoides y Algebroides. Monografía por aparecer.
Rueda, J. M. (2004) Análisis Input-Output Estocástico de la Economía Andaluza. Tesis Doctoral. Universidad Pablo de Olavide, Sevilla.
Sánchez, R. y Grau, R. (2005) A Novel Lie Algebra of the Genetic Code over the Galois Field of Four DNA Bases. E-print disponible en http://arxiv.org/ftp/q-bio/papers/0501/0501036.pdf.
Sato, R. (1981) Theory of Technical Change and Economic Invariance. Academic Press. Reeditado en: Sato, R. (1998) Theory of Technical Change and Economic Invariance. Edward Elgar.
Sattinger, D. H. y Weaver, O. L. (1997) Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. University of Bangalore Press, Bangalore.
Solow, R. M. (1957) Technical Change and the Aggregate Production Function, Rewiew of Economics and Statistics 39, pp. 312–320.
Solow, R. M. (1961) Comment on Stigler, en Output, Input and Productivity Measurement, Income and Wealth Series, pp. 64–68. Princeton Univ. Press, Princeton.
Stigler, G. J. (1961) Economic Problems in Measuring Changes in Productivity, en Output, Input and Productivity Measurement, Income and Wealth Series, pp. 47–63. Princeton Univ. Press, Princeton.
Varadarajan, V. S. (1998) Lie Groups, Lie Algebras and their Representations. Selected Monographies 17, Collæge Press, Beijing.
Yang, B., Han, K. y Ding, S. (2000) Dynamical Lie Algebraic Approach to Energy Transfer of the Scattering System A + BC, Int. J. Quantum Chem. 78, pp. 295–302.
Yang, B., Yin, H.; Han, K. y Ding, S. (2001) Dynamical Lie Algebraic Treatment for the A + BC Scattering, Int. J. Quantum Chem. 81, pp. 214–221.
Zheng, Y., Yi, Z. y Guan, D. (2000) Rotationally Inelastic Molecule-Surface Scattering: Dynamical Lie Algebraic Method, Int. J. Quantum Chem. 76, pp. 500–510.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2006 Revista de Métodos Cuantitativos para la Economía y la Empresa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.