Regla de reparto proporcional con referencias múltiples: aplicación al caso de agregación y actualización de probabilidades // A Proportional Rule for the Division Problems with Multiple References: An Application to the Problems of Probability Aggregation and Probability Updating

Autores/as

  • Miguel Ángel Hinojosa Ramos Departamento de Economía, Métodos Cuantitativos e Historia Económica Universidad Pablo de Olavide, Sevilla
  • Ana Dolores López Sánchez Departamento de Economía, Métodos Cuantitativos e Historia Económica Universidad Pablo de Olavide, Sevilla

Palabras clave:

Problemas de división con referencias múltiples, regla proporcional ponderada, agregación y actualización de probabilidades, division problems with multiple references, weighted proportional rule, probability aggregation, probability updating.

Resumen

En este trabajo se extiende la regla proporcional de los problemas clásicos de reparto al caso de problemas con referencias múltiples y se presenta una caracterización de la regla proporcional ponderada. Como caso particular, se analiza el problema de agregación y actualización de probabilidades.

------------------------------------

In this paper we extend the proportional rule to division problems with multiple references and we present a result of characterization of the weighted proportional rule. As a particular case, we analyze the problems of probability aggregation and probability updating.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bergantiños, G.; Lorenzo, L.; Lorenzo-Freire, S. (2010) "A characterization of the proportional rule in multi-issue allocation situations". Operations Research Letters 38, 17-19.

Bergantiños, G.; Lorenzo, L.; Lorenzo-Freire, S. (2008) "New characterizations of the constrained equal awards rule in multi-issue allocation situations". Mimeo, University of Vigo.

Branzei, R.; Dimitrov, D.; Pickl, S; Tijs, S. (2004) "How to cope with division problems under interval uncertainty claims?". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12, 191-200.

Calleja, P.; Borm, P.; Hendrickx, R. (2005) "Multi-issue allocation situations". European Journal of Operational Research 164, 730-747.

Chun, Y. (1988a) "The proportional solution for rights problem". Mathematical Social Sciences 15, 231-246.

Gilboa, I.; Schmeidler, D. (1993) "Updating ambiguous beliefs". J. Econ. Theory 59, 33-49.

González-Alcón, C.; Borm, P.; Hendrickx, R. (2007) "A composite run to the bank rule for multi-issue allocation situations". Mathematical Methods of Operations Research 65, 339-352.

Ju, B.G.; Miyagawa, E. (2002) "Proportionality and non-manipulability in claims problems". Mimeo.

Ju, B.G., Miyagawa, E.; Sakai, T. (2007) "Non-manipulable division rules in claim problems and generalizations". Journal of Economic Theory 132, 1-26.

Lorenzo-Freire, S.; Casas-Méndez, B.; Hendrickx, R. (2009) "The two-stage constrained equal awards and losses rules for multi-issue allocation situations". Top.

Majumdar, D. (2004) "An axiomatic charaterization of Bayes' rule". Math. Soc. Sci. 47, 261-273.

McConway, K.J. (1981) "Marginalization and Liear Opinion Pools". J. Amer. Statis. Assoc. 76, 410-414.

Moreno-Ternero, J. (2009) "The proportional rule for multi-issue banckrupty problems". Economics Bulletin 29, 483-490.

Moulin, H. (1985b) "The separability axiom and equal-sharing methods". Journal of Economics Theory 36, 120-148.

Pulido, M.; Sánchez-Soriano, J.; Llorca, N. (2002) "Game theory techniques for university management: an extended bankruptcy model". Annals of Operations Research 109, 129-142.

Pulido, M.; Borm, P.; Hendrickx, R.; Llorca, N.; Sánchez-Soriano, J. (2008) "Compromise solutions for bankruptcy situations with references". Annals of Operations Research 158, 133-141.

Rubinstein, A.; Fishburn, P.C. (1986) "Algebraic aggregation theory". J. Econ. Theory 38, 63-77.

Thomson, W. (2003) "How to divide when there isn't enough: from the Talmud to modern game theory". University of Rochester.

Young, P. (1988) "Distributive justice in taxation". Journal of Economic Theory 44, 321-335.

Publicado

2016-11-04

Cómo citar

Hinojosa Ramos, M. Ángel, & López Sánchez, A. D. (2016). Regla de reparto proporcional con referencias múltiples: aplicación al caso de agregación y actualización de probabilidades // A Proportional Rule for the Division Problems with Multiple References: An Application to the Problems of Probability Aggregation and Probability Updating. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 12, Páginas 65 a 80. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2105

Número

Sección

Artículos