Métodos de imputación para el tratamiento de datos faltantes: aplicación mediante R/Splus // Imputation methods to handle the problem of missing data: an application using R/Splus

Autores/as

  • Juan Francisco Muñoz Rosas Departamento de Métodos Cuantitativos para la Economía y la Empresa Universidad de Granada
  • Encarnación Álvarez Verdejo Departamento de Métodos Cuantitativos para la Economía y la Empresa Universidad de Granada

Palabras clave:

Información auxiliar, encuesta, probabilidades de inclusión, mecanismo de respuesta, auxiliary information, survey, inclusion probabilities, response mechanism

Resumen

La aparición de datos faltantes es un problema común en la mayoría de las encuestas llevadas a cabo en distintos ámbitos. Una técnica tradicional y muy conocida para el tratamiento de datos faltantes es la imputación. La mayoría de los estudios relacionados con los métodos de imputación se centran en el problema de la estimación de la media y su varianza y están basados en diseños muestrales simples tales como el muestreo aleatorio simple. En este trabajo se describen los métodos de imputación más conocidos y se plantean bajo el contexto de un diseño muestral general y para el caso de diferentes mecanismos de respuesta. Mediante estudios de simulación Monte Carlo basados en datos reales extraídos del ámbito de la economía y la empresa, analizamos las propiedades de varios métodos de imputación en la estimación de otros parámetros que también son utilizados con frecuencia en la práctica, como son las funciones de distribución y los cuantiles. Con el fin de que los métodos de imputación descritos en este trabajo se puedan implementar y usar con mayor facilidad, se proporcionan sus códigos en los lenguajes de programación R y Splus.

------------------------------------

Missing values are a common problem in many sampling surveys, and imputation is usually employed to compensate for non-response. Most imputation methods are based upon the problem of the mean estimation and its variance, and they also assume simple sampling designs such as the simple random sampling without replacement. In this paper we describe some imputation methods and define them under a general sampling design. Different response mechanisms are also discussed. Assuming some populations based upon real data extracted from the context of the economy and business, Monte Carlo simulations are carried out to analyze the properties of the various imputation methods in the estimation of parameters such as distribution functions and quantiles. The various imputation methods are implemented using the popular statistical softwares R and Splus, and codes are here presented.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arcos, A., Gámiz, M.L., González, A., Martínez, M.D. y Rueda, M.M. (2004). Programación en R. Aplicaciones al muestreo. Ed. Los autores. ISBN: 84-609-3077-7. Depósito legal: GR-1880-2004.

Arcos, A., Gámiz, M.L., González, A., Martínez, M.D., Muñoz, J.F., Román, Y. y Rueda, M.M. (2005). Estadística Computacional con SPSS y R. Ed. Los autores. ISBN: 84-689-5347-4. Dep´osito legal: GR-2110-2005.

Bello, A.L. (1993). Choosing among imputation techniques for incomplete multivariate data: a simulation study. Comunication in Statistics, 22 823–877.

Berger, Y.G. y Rao, J.N.K. (2006). Adjusted jackknife for imputation under unequal probability sampling without replacement. Journal of the Royal Statistical Society, Series B, 68 531–547.

Berger, Y.G. y Skinner, C.J. (2003). Variance estimation for a low income proportion. Journal of the Royal Statistical Society, Series B, 52 457–468.

Brick, J.M. y Kalton, G. (1996). Handling missing data in survey research. Statistical Methods in Medical Research, 5 215–238.

Chambers, R.L. y Dunstan, R. (1986). Estimating distribution functions from survey data. Biometrika, 73 597–604.

Chen, J. y Shao, J. (2000). Nearest neighbor imputation for survey data. Journal of Official Statistics, 16 113–131.

Cohen, M.P. (1996). A new approach to imputation. American Statistical Association Proceding of the Section on Survey Research Methods 293-298.

Everitt, B.S. (1994). A handbook of Statistical Analysis using S-Plus. Chapman and Hall, New York.

Fay, R.E. (1991). A design-based perspective on missing data variance. In Proc. Seventh Annual Res. Conf., Washington, D.C.: U.S. Bureau of the Census. 429-440.

Hu, M., Salvucci, S. y Lee, R. (2001). A Study of Imputation Algorithms. Working Paper No. 200117. Washington DC: U.S. Department of Education, National Center for Education Statistics, 2001. 27 Stata Statistical Software.

Healy, M.J.R. y Westmacott, M. (1956). Missing values in experments analysed on automatic computers. Appled Statistics, 5 203–206.

Ihaka, R. y Gentleman, R. (1996). R: a Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5 299–314.

Kalton, G. (1983). Compensating for missing data. Ann Arbor: Institute for Social Research, University of Michigan.

Kalton, G. y Kasprzyk, D. (1986). The treatment of missing survey data. Survey Methodology 12 1–16.

Krause, A. y Olson, M. (2005). The basic of S-Plus. Fourth Edition. Springer.

Kuk, A.Y.C. y Mak, T.K. (1989). Median estimation in the presence of auxiliary information. Journal of the Royal Statistical Society, Series B, 51 261-269.

Little, R.J.A. y Rubin, D.B. (2002). Statistical analysis with missing data. 2nd edition. New York: John Wiley & Sons, Inc.

Merino, M. y Vadillo, F. (2007). Matemática financiera con MATLAB©. Métodos Cuantitativos para la Economía y la Empresa, 4 35–55.

Murthy, M.N. (1967). Sampling theory and method. Calcutta: Statistical Publishing Society.

Rancourt, E., Lee, H. y Särndal, C.E. (1994). Bias correction for survey estimates from data with ratio imputed values for confounded nonresponse. Survey Methodology, 20 137–147.

Rao, J.N.K. (1996). On variance estimation with imputed survey data (with discussion). Journal of the American Statistical Association, 91 499–520.

Rao, J.N.K., Kovar, J.G. y Mantel, H.J. (1990). On estimating distribution function and quantiles from survey data using auxiliary information. Biometrika, 77 365–375.

Rao, J.N.K. y Shao, J. (1992). Jackknife Variance Estimation With Survey Data Under Hot-Deck Imputation. Biometrika, 79 811–822.

Rubin, D.B. (1978). Multiple imputations in sample surveys. A phenomenological bayesian approach to nonresponse. Proceedings of the Survey Research Methods Section, American Statistical Association. 20–34.

Rubin, D.B. (1996). Mutiple imputation after 18+ years. Journal of the American Statistical Association, 91 473–489.

Särndal, C.E., Swensson, B. y Wretman, J.H. (1992). Model Assisted Survey Sampling. Springer-Verlag, New York.

Sedransk, J. (1985). The objetive and practice of imputation. In Proc. First Annual Res. Conf., Washington, D.C.: Bureau of the Cencus. 445–452.

Silva P.L.D. y Skinner C.J. (1995). Estimating distribution function with auxiliary information using poststratification. Journal of Official Statistics, 11 277–294.

Valliant, R. (1993). Poststratification and conditional variance estimation. Journal of the American Statistical Association, 88 89–96.

Wu, C. (2005). Algorithms and R codes for the pseudo empirical likelihood methods in survey sampling. Survey Methodology, 31 239–243.

Publicado

2016-11-04

Cómo citar

Muñoz Rosas, J. F., & Álvarez Verdejo, E. (2016). Métodos de imputación para el tratamiento de datos faltantes: aplicación mediante R/Splus // Imputation methods to handle the problem of missing data: an application using R/Splus. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 7, Páginas 3 a 30. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2120

Número

Sección

Artículos