A Decision Making Method for Educational Management Based on Distance Measures // Toma de decisiones en procesos de gestión de la educación basados en las medidas de distancia

Autores/as

  • José M. Merigó Lindahl Departamento de Economía y Organización de Empresas. Universidad de Barcelona
  • María Pilar López-Jurado Departamento de Economía y Organización de Empresas. Universidad de Barcelona
  • María Carmen Gracia Ramos Departamento de Economía y Organización de Empresas. Universidad de Barcelona

Palabras clave:

Decision making, selection of studies plan, uncertainty, Minkowski distance, aggregation operators, toma de decisiones, selección de plan de estudios, incertidumbre, distancia de Minkowski, operadores de agregación

Resumen

We develop a new approach for decision making in educational management based on the use of distance measures. We focus on the selection of a studies plan from the perspective of an academic institution. We try to develop this approach showing the benefits of establishing an ideal plan that we compare with the available alternatives. We use the Minkowski distance, the ordered weighted averaging (OWA) operator and the interval numbers. The use of the Minkowski distance allows to make comparisons between the ideal plan and the available ones in the market. The OWA operator is an aggregation operator that provides a parameterized family of aggregation operators that includes the maximum, the minimum and the average criteria, among others. And the interval numbers is a very useful technique to represent the information when the environment is very complex, because it gives all the possible results from the minimum to the maximum. We introduce a new aggregation operator called the uncertain generalized ordered weighted averaging distance (UGOWAD) operator. It is a distance aggregation operator that uses the main characteristics of the Minkowski distance, the OWA operator and the interval numbers. We develop an illustrative example where we can see the usefulness of the UGOWAD operator to select a studies plan in education management. The main advantage of using the UGOWAD is that we can consider a wide range of distance aggregation methods in the decision problem. Then, the decision maker gets a more complete view of the decision problem, being able to select the alternative that better fits the interests.

-------------------------------------

Se desarrolla un nuevo modelo para la toma de decisiones en procesos de gestión de la educación basados en las medidas de distancia. El análisis se enfoca en analizar un proceso de selección de plan de estudios desde la perspectiva de una institución académica. Se intenta mostrar la practicidad de utilizar un plan de estudios imaginario que sería el ideal a partir del cual se compararían las diferentes alternativas disponibles. Para realizar esto, se utilizarán diferentes técnicas disponibles en Teoría de la Decisión, como son la distancia de Minkowski, el operador de medias ponderadas (OWA) y los intervalos de confianza. La utilización de la distancia de Minkowski nos permite hacer comparaciones entre un plan de estudios ideal y los disponibles en la realidad. El operador OWA es un operador de agregación que proporciona una familia parametrizada de operadores de agregación entre los cuales se destaca el máximo, el mínimo y la media aritmética. Los intervalos de confianza son de gran utilidad para representar la información cuando el entorno es muy complejo, porque proporciona todos los resultados que se podrían producir desde un mínimo hasta un máximo. Por eso, incluye todos los posibles resultados que se pueden producir. Para realizar esto, se introduce un nuevo operador de agregación denominado como el operador de distancia media ponderada ordenada generalizada incierta (UGOWAD o UMOWAD). Es un operador de agregación de distancias que utiliza las principales características de la distancia de Minkowski, del operador OWA y de los intervalos de confianza. Se desarrolla un ejemplo ilustrativo en donde se puede ver la utilidad del operador UGOWAD para la selección de un plan de estudios en la gestión de la educación. La principal ventaja de utilizar el operador UGOWAD está en poder considerar una amplia gama de operadores de agregación de distancias en el problema decisional. Entonces, el decisor obtiene un visión mucho más completa del problema y está capacitado para seleccionar la alternativa que se acerca más a sus intereses.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahn, B.S. and H. Park (2008). “Least-squared ordered weighted averaging operator weights”, International Journal of Intelligent Systems, 23, 33-49.

Beliakov, G., A. Pradera and T. Calvo (2007). Aggregation Functions: A guide for practitioners, Springer-Verlag, Berlin.

Bustince, H., F. Herrera, and J. Montero (2008). Fuzzy Sets and their Extensions: Representation, Aggregation and Models, Springer, Berlin.

Calvo, T., G. Mayor and R. Mesiar (2002). Aggregation Operators: New Trends and Applications, Physica-Verlag, New York.

Canós, L. and V. Liern (2008). “Soft computing-based aggregation methods for human resource management”, European Journal of Operational Research, 189, 669-681.

Emrouznejad, A. (2008). “MP-OWA: The most preferred OWA operator”, Knowledge-Based Systems, 21, 847-851.

Figueira, J., S. Greco and M. Ehrgott (2005). Multiple criteria decision analysis: state of the art surveys, Springer. Boston.

Fodor, J., J.L. Marichal and M. Roubens (1995). “Characterization of the ordered weighted averaging operators”, IEEE Transactions on Fuzzy Systems, 3, 236-240.

Gil-Aluja, J. (1998). The interactive management of human resources in uncertainty, Kluwer Academic Publishers, Dordrecht.

Gil-Aluja, J. (1999). Elements for a theory of decision in uncertainty, Kluwer Academic Publishers, Dordrecht.

Gil-Aluja, J. (2001). Handbook of management under uncertainty, Kluwer Academic Publishers, Dordrecht.

Gil-Lafuente, A.M. (2005). Fuzzy logic in financial analysis, Springer, Berlin.

Hamming, R.W. (1950). “Error-detecting and error-correcting codes”, Bell Systems Technical Journal, 29, 147-160.

Herrera, F., E. Herrera-Viedma and F. Chiclana (2003). “A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making”, International Journal of Intelligent Systems, 18, 689-707.

Karayiannis, N. (2000). “Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators”, IEEE Transactions on Neural Networks, 11, 1093-1105.

Kaufmann, A. (1975). Introduction to the theory of fuzzy subsets, Academic Press, New York.

Kaufmann, A. and J. Gil-Aluja (1986). Introducción de la teoría de los subconjuntos borrosos a la gestión de las empresas (In Spanish), Ed. Milladoiro, Santiago de Compostela.

Kaufmann, A. and J. Gil-Aluja (1987). Técnicas operativas de gestión para el tratamiento de la incertidumbre (In Spanish), Ed. Hispano-europea, Barcelona.

Kaufmann, A., J. Gil-Aluja and A. Terceño (1994). Matemática para la economía y la gestión de empresas, Ed. Foro Científico, Barcelona, Spain.

Liu, X. (2008). “A general model of parameterized OWA aggregation with given orness level”, International Journal of Approximate Reasoning, 48, 598-627.

Merigó, J.M. (2008). Nuevas extensiones a los operadores OWA y su aplicación en los métodos de decisión, PhD Thesis (In Spanish), Department of Business Administration, University of Barcelona.

Merigó, J.M. and M. Casanovas (2007). “The uncertain generalized OWA operator”, Proceedings of the AEDEM International Conference, Krakow, Poland, pp. 547-556.

Merigó, J.M. and M. Casanovas (2008). “The induced Minkowski ordered weighted averaging distance operator”, In Proceedings of the ESTYLF Conference, Langreo – Oviedo, Spain, pp. 35-41.

Merigó, J.M. and M. Casanovas (2009). “Induced aggregation operators in decision making with the Dempster-Shafer belief structure”, International Journal of Intelligent Systems, 24, 934-954.

Merigó, J.M. and A.M. Gil-Lafuente (2006). “Using the OWA operators in the selection of financial products”, In Proceedings of the 41st CLADEA Congress, Montpellier, France, CD-ROM.

Merigó, J.M. and A.M. Gil-Lafuente (2007). “The ordered weighted averaging distance operator”, Lectures on Modelling and Simulation, 8, 1-11.

Merigó, J.M. and A.M. Gil-Lafuente (2008a). “On the use of the OWA operator in the Euclidean distance”, International Journal of Computer Science and Engineering, 2, 170-176.

Merigó, J.M. and A.M. Gil-Lafuente (2008b). “Using the OWA operator in the Minkowski distance”, International Journal of Computer Science, 3, 149-157.

Merigó, J.M. and A.M. Gil-Lafuente (2008c). “The generalized adequacy coefficient and its application in strategic decision making”, Fuzzy Economic Review, 13, 17-36.

Merigó, J.M. and A.M. Gil-Lafuente (2009a). “OWA operators in generalized distances”, International Journal of Applied Mathematics and Computer Science, 5, 11-18.

Merigó, J.M. and A.M. Gil-Lafuente (2009b). “The induced generalized OWA operator”, Information Sciences, 179, 729-741.

Moore, R. (1966). Interval analysis, Prentice-Hall, Englewood Cliffs, NJ.

Szmidt, E. and J. Kacprzyk (2000). “Distances between intuitionistic fuzzy sets”, Fuzzy Sets and Systems, 114, 505-518.

Xu, Z.S. (2005). “An overview of methods for determining OWA weights”, International Journal of Intelligent Systems, 20, 843-865.

Xu, Z.S. (2008a). “Dependent uncertain ordered weighted averaging operators”, Information Fusion, 9, 310-316.

Xu, Z.S. (2008b). “On multi-period multi-attribute decision making”, Knowledge-Based Systems, 21, 164-171.

Xu, Z.S. (2008c). “Group decision making based on multiple types of linguistic preference relations”, Information Sciences, 178, 452-467.

Xu, Z.S. and Q.L. Da (2002). “The uncertain OWA operator”, International Journal of Intelligent Systems, 17, 569-575.

Xu, Z.S. and Q.L. Da (2003). “An overview of operators for aggregating the information”, International Journal of Intelligent Systems, 18, 953-969.

Yager, R.R. (1988). “On ordered weighted averaging aggregation operators in multi-criteria decision making”, IEEE Transactions on Systems, Man and Cybernetics B, 18, 183-190.

Yager, R.R. (1992). “On generalized measures of realization in uncertain environments”, Theory and Decision, 33, 41-69.

Yager, R.R. (1993). “Families of OWA operators”, Fuzzy Sets and Systems, 59, 125-148.

Yager, R.R. (1996). “Constrained OWA aggregation”, Fuzzy Sets and Systems, 81, 89-101.

Yager, R.R. (2002). “Heavy OWA operators”, Fuzzy Optimization and Decision Making, 1, 379-397.

Yager, R.R. (2004). “Generalized OWA aggregation operators”, Fuzzy Optimization and Decision Making, 3, 93-107.

Yager, R.R. (2007). “Centered OWA operators”, Soft Computing, 11, 631-639.

Yager, R.R. (2008). “Using trapezoids for representing granular objects: Applications to learning and OWA aggregation”, Information Sciences, 178, 363-380.

Yager, R.R. and D.P. Filev (1994). “Parameterized andlike and orlike OWA operators”, International Journal of General Systems, 22, 297-316.

Yager, R.R. and J. Kacprzyk (1997). The Ordered Weighted Averaging Operators: Theory and Applications, Kluwer Academic Publishers, Norwell, MA.

Publicado

2016-11-04

Cómo citar

Merigó Lindahl, J. M., López-Jurado, M. P., & Gracia Ramos, M. C. (2016). A Decision Making Method for Educational Management Based on Distance Measures // Toma de decisiones en procesos de gestión de la educación basados en las medidas de distancia. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 8, Páginas 29 a 49. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2128

Número

Sección

Artículos