Extreme Learning Machine to Analyze the Level of Default in Spanish Deposit Institutions // Análisis de la morosidad de las entidades financieras españolas mediante Extreme Learning Machine

Autores/as

  • Teresa Montero-Romero Department of Management and Quantitative Methods, ETEA, Córdoba (Spain)
  • María del Carmen López-Martín Department of Economics, Legal Sciences and Sociology, ETEA, Córdoba (Spain)
  • David Becerra-Alonso Department of Management and Quantitative Methods, ETEA, Córdoba (Spain)
  • Francisco José Martínez-Estudillo Department of Management and Quantitative Methods, ETEA, Córdoba (Spain)

Palabras clave:

Level of default, financial institutions, neural networks, Extreme Learning Machine, nivel de morosidad, instituciones financieras, redes neuronales, Extreme Learning Machine.

Resumen

The level of default in financial institutions is a key piece of information in the activity of these organizations and reveals their level of risk. This in turn explains the growing attention given to variables of this kind, during the crisis of these last years. This paper presents a method to estimate the default rate using the non-linear model defined by standard Multilayer Perceptron (MLP) neural networks trained with a novel methodology called Extreme Learning Machine (ELM). The experimental results are promising, and show a good performance when comparing the MLP model trained with the Leverberg-Marquard algorithm.

------------------------------------

La morosidad en las entidades financieras es un dato muy importante de la actividad de estas instituciones pues permite conocer el nivel de riesgo asumido por fiestas. Esto a su vez explica la creciente atención otorgada a esta variable, especialmente en los últimos  años de crisis.

Este artículo presenta un método para estimar el nivel de la tasa de morosidad por medio de un modelo no lineal definido por la red neuronal Multilayer Perceptron (MLP) entrenada con una nueva metodología llamada Extreme Learning Machine (ELM). Los resultados experimentales son prometedores, mostrando un buen resultado si se compara con el modelo MLP entrenado con el algoritmo de Leverberg-Marquard.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bishop, C.M. (1995) Neural networks for pattern recognition, Oxford, Oxford University Press.

Boal Velasco N. and González Sánchez, M. (2001) “Estimación del riesgo de crédito mediante modelos internos”, Banca & Finanzas, n. 66, pp. 40–45.

Coakley, J.R. and Brown, C.E. (2000) “Artificial Neural Networks in Accounting and Finance: Modelling Issues”, International Journal of Intelligent Systems in Accounting, Finance & Management, n. 9, pp. 119–144.

Confederación Española de Cajas de Ahorro (CECA) (2010) “Informe sobre la morosidad en las cajas de ahorros”, Mimeo.

Cruz González, F.J. de la (1998) “Enfoques cuantitativos para la predicción del riesgo de crédito”, en Predicción de la insolvencia empresarial, Madrid, Monografías AECA.

García Céspedes, J.C., (2005) “Nuevas técnicas de medición del riesgo de crédito”, Revista Economía Financiera, n. 5, abril, pp. 86–114.

Gutiérrez, P.A., Segovia-Vargas, M.J., Salcedo-Sanz, S., Hervás-Martínez, C., Sanchis, A., Portilla-Figueras, J.A., Fernández-Navarro, F. (2009) “Hybridizing logistic regression with product unit and RBF networks for accurate detection and prediction of banking crises”, Omega, doi:10.1016/j.omega.2009.11.001.

Herbrich, D., Keilbach, M., Graepel, T., Bollmann-Sdorra, P., and Obermayer, K. (2000) “Neural Networks in Economics: Background, applications and new developments”, in Advances in Computational Economics: Computational techniques for Modelling Learning Economics, T. Brenner, Editor, Kluwer Academics. pp.169–196 .

Hornik, K. (1989). “Multilayer feedforward neural networks are universal approximators”, Neural Networks, 2 (5), pp. 359–366.

Huang, G.B., Wang, D.H., and Lan, Y. (2011) “Extreme learning machines: a survey”, International Journal of Machine Learning and Cybernetics, pp. 1–16.

Huang, G., Zhu, Q., and Siew, C. (2004). “Extreme learning machine: a new learning scheme of feedforward neural networks”, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), 70, pp. 985–990.

Huang, G., Zhu, Q., and Siew, C. (2006). “Extreme learning machine: Theory and applications”, Neurocomputing, 70 (1-3), pp. 489–501.

Levenberg, K. (1944) “A Method for the Solution of Certain Non-linear Problems in Least Squares”, Quarterly of Applied Mathematics, 2(2) , Jul, pp. 164–168.

Li, F.C., Wang, P.K., and Wang, G.E. (2009) “Comparison of the primitive classifiers with extreme learning machine in credit scoring”, en Industrial Engineering and Engineering Management, 2009. IEEM 2009. IEEE International Conference, pp. 685–688.

López, J.A. and Saidenberg, M.R. (2000) “Evaluating credit risk models”, Journal of Banking & Finance, vol. 24, n. 1-2, pp. 151–165.

López-Martín, M.C., Montero-Romero, M.T., Becerra-Alonso, D., and Martínez Estudillo, F.J. (2011), “Clasificación por nivel de morosidad de las entidades de depósito españolas mediante redes neuronales”, Anales de Economía Aplicada 2011, p. 373.

Mahdavi, M. Fesanghary, M., and Damangir, E. (2007) “An improved harmony search algorithm for solving optimization problems”, Applied Mathematics and Computation 188, no. 2, pp. 1567–1579.

Marquardt, D.W. (1963). “An Algorithm for the Least-Squares Estimation of Nonlinear Parameters”, SIAM Journal of Applied Mathematics, 11(2), pp. 431–441, Jun.

Martínez Estudillo, F.J., Hervás Martínez, C., Torres Jiménez, M., and Martínez Estudillo, A.C. (2007) “Modelo no lineal basado en redes neuronales de unidades producto para la clasificación. Una aplicación a la determinación del riesgo en tarjetas de crédito”, Revista de Métodos Cuantitativos para la Economía y la Empresa, n. 3, junio, pp. 40–62.

Mcnelis, P.D. (2005) Neural Networks in Finance: Gaining Predictive Edge in the Market, Advanced Finance Series, Elsevier Academic Press.

Parisi, A., Parisi, F., and Díaz, D. (2006), “Modelos de Algoritmos Genéticos y Redes Neuronales en la Predicción de Índices Bursátiles Asiáticos”, Cuadernos de Economía, n. 43, pp. 251–284.

Rodríguez Fernández, J.M. (1987) “Crisis en los bancos privados españoles: un modelo logit”, Investigaciones Económicas, suplemento, pp. 59–64.

Serre, D. (2002) Matrices: theory and applications, New York, Springer.

Soler, M. and Miró. A. (2001) “Enfoques cuantitativos para riesgo de crédito de particulares y su aplicación a realidades nacionales diferentes”, Perspectivas del sistema financiero, n. 72, pp. 43–56.

Sorjamaa, A., Miche, Y., Weiss, R., and Lendasse, A. (2008) “Long-term prediction of time series using NNE-based projection and OP-ELM”, en Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference, pp. 2674–2680.

Van Heeswijk, M., Miche, Y., Lindh-Knuutila, T., Hilbers, P., Honkela, T., Oja, E., and Lendasse, A. (2009) “Adaptive ensemble models of extreme learning machines for time series prediction”, Artificial Neural Networks–ICANN 2009, pp. 305–314.

Wong, W.K. and Guo, Z.X. (2010) “A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm”, International Journal of Production Economics, pp. 614–624.

Publicado

2016-11-04

Cómo citar

Montero-Romero, T., López-Martín, M. del C., Becerra-Alonso, D., & Martínez-Estudillo, F. J. (2016). Extreme Learning Machine to Analyze the Level of Default in Spanish Deposit Institutions // Análisis de la morosidad de las entidades financieras españolas mediante Extreme Learning Machine. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 13, Paginas 3 a 23. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2137

Número

Sección

Artículos