Measuring Preferences: from Conjoint Analysis to Integrated Conjoint Experiments // Medición de preferencias: desde el Análisis Conjunto a los Experimentos Conjuntos Integrados

José Manuel Ramírez-Hurtado

Resumen


When there are many attributes, experiments with Conjoint Analysis include problems of information overload that affect the validity of such experiments. The impact of these problems can be avoided or reduced by using Hierarchical Information Integration (HII).

The present work aims to demonstrate how the integrated experiments can resolve the limitations arising in Conjoint Analysis and HII, and to further establish ways to proceed in these types of situations. A variation of Louviere's (1984) original HII model, proposed by Oppewal et al. (1994), is applied in this work for the selection of mobile phones.

------------------------------------

Los experimentos de Análisis Conjunto con muchos atributos incluyen problemas de sobrecarga de información que afectan a la validez de dichos experimentos. El impacto de esos problemas puede ser evitado o reducido utilizando la Integración de Información Jerárquica (HII).

El objetivo de este trabajo es mostrar cómo los experimentos integrados pueden resolver las limitaciones planteadas en el Análisis Conjunto y en el HII, estableciendo una forma de actuar para este tipo de situaciones. Una variante del modelo original de HII de Louviere (1984), propuesta por Oppewal et al. (1994), se aplica en este trabajo a la elección de teléfonos móviles.


Palabras clave


Conjoint Analysis; Hierarchical Information Integration; preferences; Análisis Conjunto; Integración de Información Jerárquica; preferencias

Texto completo:

PDF

Referencias


Addelman, S. (1962). “Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments”, Technometrics, 4, pp.21–46.

Anderson, N.H. (1981). Foundations of Information Integration Theory. New York, Academic Press.

Anderson, N.H. (1982). Methods of Information Integration Theory. New York, Academic Press.

Azpiazu, J. (1996). Selección de metodologías en el análisis conjunto: un enfoque de fiabilidad y de validez. Tesis Doctoral no publicada. Dpto. de Financiación e Investigación Comercial. Universidad Autónoma de Madrid.

Chiang, Y.S.; Lu, J.L. and Chang, H.C. (2003). “Modelling the effect of destination attributes on the intercity travelers' mode choice behaviour in Taiwan area”, Proceedings of the Eastern Asia Society for Transportation Studies, vol. 4 (October), pp.717–730.

Gil Luezas, C. (1990). “Una aplicación del análisis conjunto a la segmentación de mercados: la segmentación componencial”, Revista de Investigación y Marketing, 34, pp.65–69.

Green, P.E. (1974). “On the Desing of Choice Experiments Involving Multifactor Alternatives”, Journal of Consumer Research, vol. 1 (September), pp.61–68.

Green, P.E. and Krieger, A.M. (1993). “Conjoint Analysis with Product-Positioning Applications”, in Handbooks in OR&MS, Jehoshua Eliashberg and Gary L. Lilien, eds., Elsevier Science Publishers, 5, pp.467–513.

Green, P.E.; Krieger, A.M. and Wind, Y. (2001). “Thirty Years of Conjoint Analysis: Reflections and Prospects”, in Interfaces, vol.31, pp.S56–S73.

Green, P.E. and Rao, V.R. (1971). “Conjoint Measurement for Quantifying Judgmental Data”, Journal of Marketing Research, vol.VIII, pp.355–363.

Gustafsson, A.; Herrman, A. and Huber, F. (2003). Conjoint Measurement. Methods and Applications. Springer-Verlag, Berlin.

Hair, J.F.; Anderson, R.E.; Tatham, R.L. and Black, W.C. (1999). Análisis Multivariante, 5ª ed., Madrid, Prentice Hall.

Johnson, M. (1988). “Comparability and hierarchical processing in multiattribute choice”, Journal of Consumer Research, 15, December, pp.303–314.

Louviere, J.J. (1988). Analyzing Decision Making. Metric Conjoint Analysis, Newbury Park, Sage Publications Inc.

Louviere, J.J. and Timmermans, H.J.P. (1990a). “Hierachical Information Integration applied to residential choice behaviour”, Geographical Analysis, 22, pp.127–145.

Louviere, J.J. and Timmermans, H.J.P. (1990b). “Using hierarchical information integration to model consumer responses to possible planning actions: recreation destination choice illustration”, Environment and Planning A, 22, pp.291–309.

Luce, R.D. and Tukey, J.W. (1964). “Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement”, Journal of Mathematical Psychology, 1, pp.1–27.

Martín Dávila, M. (1987). “Cómo diagnosticar lo que los consumidores desean realmente: el Análisis Conjunto”, Investigación y Marketing, 23, marzo, pp.21–33.

McCullough, D. (2002). “A user's guide to conjoint analysis”, Marketing Research, vol.14, nº2, pp.18–23.

Molin, E.J.E. and Timmermans, J.P. (2009). “Hierarchical Information Integration Experiments and Integrated Choice Experiments”, Transport Reviews, pp.1–21.

Múgica Grijalba, J.M. (1989). “El Análisis Conjunto: Alternativas, Problemas y Limitaciones”, IPMARK, 326, (16-31 marzo), pp.45–54.

Myers, J.H. and Mullet, G.M. (2003). Managerial Applications of Multivariate Analysis in Marketing. American Marketing Association, Chicago, Illinois.

Oppewal, H.; Louviere, J.J. and Timmermans, H.J.P. (1994). “Modeling Hierarchical Conjoint Processes with Integrated Choice Experiments”, Journal of Marketing Research, vol.31, nº1, pp.92–105.

Oppewal, H. and Vriens, M. (2000). “Measuring perceived service quality using integrated conjoint experiments”, International Journal of Bank Marketing, vol.18, nº4, 154–169.

Ramirez, J.M. (2007). Determinación y estudio del perfil de franquiciado mediante la aplicación de análisis conjunto. Tesis Doctoral no publicada. Departamento de Economía, Métodos Cuantitativos e Historia Económica. Universidad Pablo de Olavide, Sevilla.

Schweikl, H. (1985). Computergestützte Präferenzanalyse mit individuell wichtigen Produktmerkmalen, Berlin.

Van de Vijvere, Y.; Oppewal, H. and Timmermans, H.J.P. (1998). “The validity of hierarchical information integration choice experiments to model residential preference and choice”, Geographical Analysis, vol.30, nº3, pp.254–272.

Varela, J.A. (1983). “El análisis conjunto, una técnica al servicio de la investigación comercial”, Revista de Economía y Empresa, vol.IV, pp.361–374.

Vázquez Casielles, R. (1990). “Investigación de las preferencias del consumidor mediante Análisis Conjunto. Importancia para el diseño de nuevos productos”, Información Comercial Española, julio, pp.149–163.

Verlegh, P.W.J.; Schifferstein, H.N.J. and Wittink, D.R. (2002). “Range and Number-of- Levels Effects in Derived and Stated Measures of Attribute Importance”, Marketing Letters, vol.13, nº1, pp.41–52.

Wittink, D.R.; Krishnamurthi, L. and Nutter, J.B. (1982). “Comparing Derived Importance Weights across Attributes”, Journal of Consumer Research, vol.8, pp.471–474.

Wittink, D.R.; Krishnamurthi, L. and Reibstein, D.J. (1990). “The Effect of Differences in the Number of Attribute Levels on Conjoint Results”, Marketing Letters, vol.1, nº2, pp.113–123.

Wittink, D.R.; Vriens, M. and Burhenne, W. (1994). “Commercial use of conjoint analysis in Europe: Results and critical reflections”, International Journal of Research in Marketing, vol.11, nº1, pp.41–52.

Wyner, G.A. (1992). “Uses and Limitations of Conjoint Analysis – Part I”, Marketing Research, vol.4, nº2, pp.42–44.


Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2010 Revista de Métodos Cuantitativos para la Economía y la Empresa

URL de la licencia: http://creativecommons.org/licenses/by-sa/3.0/es/

Licencia Creative Commons CC-BY-SA de tipo Reconocimiento-CompartirIgual. Se permite el uso comercial de la obra, reconociendo su autoría, y de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.