Bankruptcy Prediction in Emerging Economies: Use of a Mixed Logistic Model
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.2187Keywords:
Modelo logístico mixto, estados contables, ratios financieros, crisis financiera, predicción de quiebra, Argentina, mixed logistic model, financial statements, accounting ratios, financial distress, bankruptcy predictionAbstract
This study is a replication and adaptation of Jones and Hensher (2004) model in an emerging economy with the purpose of testing its eternal validity. It compares the logistic standard model's performance with the logistic mixed model to predict bankruptcy risk of Argentinean companies between 1993-2000 by using financial statements and ratios defined in previous studies by Altman and Jones and Hensher. Similar to previous studies, profitability, asset turnover, debt and cash flow from operations explain financial distress' probability. The main contribution of this new methodology is the important reduction of error type I to the 9 %. This study asserts that the logistic mixed model, that considers the effect of non-observed heterogeneity, significantly improves the performance of the logistic standard model.
Downloads
References
Altman, E. (1968) “Financial ratios, discriminant analysis and the prediction of corporate bankruptcy”, Journal of Finance, Vol. 23, No. 3, pp. 589–609.
Altman, E., Baidya, T. y Ribeiro Dias, L. (1979) “Assessing potential financial problems for firms in Brazil”, Journal of International Business Studies, Vol. 10, No. 2, pp. 9–24.
Altman, E. (1984) “The success of business failure prediction models: An international survey”, Journal of Banking and Finance, Vol. 8, pp. 171–198.
Altman, E. (1993) Corporate financial distress and bankruptcy: A complete guide to predicting & avoiding distress and profiting from bankruptcy, 2nd edition, John Wiley and Sons, New York, NY.
Altman, E., Hartzell, J. y Peck, M. (1995) Emerging markets corporate bonds: A scoring system, Salomon Brothers Inc., New York, NY.
Baltagi, B.H. (1995) Econometric Analysis of Panel Data. Chichester: John Wiley and Sons.
Beaver, W. (1966) “Financial ratios as predictors of failures” Journal of Accounting Research, Empirical Research in Accounting Selected Studies 1966, Vol. 5 (supplement), pp. 71–111.
Beaver, W. (1968) “Alternative Accounting Measures as Predictors of Failure”, The Accounting Review, Vol. 43, No. 1, pp. 113–122.
Díaz, M., Ferrero, F., Díaz, C., Stímolo, M. y Caro, N. (2001) “Perfomance del análisis discriminante regularizado y la regresión logística en la predicción de crisis financieras”, Revista de la Sociedad Argentina de Estadística, Vol. 5, No. 1-2, pp. 33–45.
Fitzpatrick, P. (1932) “A comparison of ratios of successful industrial enterprises with those of failed companies”, The Certified Public Accountant, Vols. Oct., Nov., Dec., pp. 598–605, 656–662 y 727–731, respectivamente.
Ibarra, A. (2001) Análisis de las dificultades financieras de las empresas en una economía emergente: las bases de datos y las variables independientes en el sector hotelero de la Bolsa mexicana de valores. Unpublished Doctoral Dissertation, Departament d'Economía de l'Empresa, Universitat Autónoma de Barcelona, Barcelona, España. Disponible en http://ddd.uab.cat/pub/tesis/2001/tdx-1018101-164847/aim1de1.pdf (última consulta en noviembre de 2013).
Jones, F. (1987) “Current techniques in bankruptcy prediction”, Journal of Accounting Literature, Vol. 6, pp. 131–164.
Jones, S. y Hensher, D. (2004) “Predicting firm financial distress: A mixed logit model”, The Accounting Review, Vol. 79, No. 4, pp. 1011–1039.
Leclere, M. (1999) “The Interpretation of Coefficients in N-Chotomous Qualitative Response Models”, Contemporary Accounting Research, Vol. 16, pp. 711–747.
Maddala, G. (1991) “A perspective on the use of limited-dependent and qualitative variables models in accounting research”, The Accounting Review, Vol. 66, No. 4, pp. 788–807.
Merwim, C. (1942) Financing small corporations in five manufacturing industries, 1926-36, New York National Bureau of Economics Research, New York, NY.
Mongrut Montalvan, S., Fuenzalida O'Shee, D., Alberti Delgado, F. y Akamine Yamashiro, M. (2011) “Determinantes de la Insolvencia Empresarial en el Perú”, Academia, Revista Latinoamericana de Administración, Vol. 47, pp. 126–139.
Pascale, R. (1988) “A Multivariate Model to Predict Firm Financial Problems: The Case of Uruguay”, Studies in Banking and Finance, Vol. 7, pp. 171–182.
Ohlson, J. (1980) “Financial ratios and the probabilistic prediction of bankruptcy”, Journal of Accounting Research, Vol. 18, No. 1, pp. 109–131.
Rabe-Hesketh, S. y Skrondal, A. (2005) Multilevel and Longitudinal Modeling Using Stata, 1st edition, Stata Press Books, StataCorp LP, London, UK.
Sandin, A. y Porporato, M. (2007) “Corporate bankruptcy prediction models applied to emerging economies. Evidence from Argentina in the years 1991-1998”, International Journal of Commerce and Management, Vol. 17, No. 4, pp. 295–311.
Swanson, E. y Tybout, J. (1988) “Industrial bankruptcy determinants in Argentina”, Journal of Banking and Finance, Vol. 7, pp. 1–25.
Tamura, K. y V. Giampaoli (2013) “New prediction method for the mixed logistic model applied in a marketing problem”, Computational Statistics & Data Analysis, Vol. 66, pp. 202–216. Disponible en http://www.informatik.uni-trier.de/~ley/pers/hd/t/ Tamura:Karin_Ayumi.html (última consulta en noviembre de 2013).
Tascón Fernández, M. y Castaño Gutiérrez, F. (2012) “Variables y modelos para la identificación y predicción del fracaso empresarial: revisión de la investigación empírica reciente”. Revista de Contabilidad-Spanish Accounting Review Vol. 15, Nº 1, pp. 7–58.
Train, K. (1986) Qualitative Choice Analysis, MIT Press, Cambridge, MA.
Train, K. (2003) Discrete Choice Methods with Simulation, Cambridge University Press, Cambridge, UK.
Winakor, A. y Smith, R. (1935) “Changes in financial structure of unsuccessful industrial companies”. Bulletin Nº 51, Bureau of Business Research, University of Illinois, IL.
Zmijewski, M.E. (1984) “Methodological issues related to the estimation of financial distress prediction models”, Journal of Accounting Research, Vol. 22, No. 1, pp. 59–82.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 Revista de Métodos Cuantitativos para la Economía y la Empresa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.