Selección y utilización de niveles de desagregación adecuados en pronósticos de series temporales: caso de estudio en una empresa de suscripción utilizando el proceso analítico jerárquico // Selecting and Using an Adequate Disaggregation Level in Time Series Forecasting: A Study Case in a Subscription Business Model Company through the Analytic Hierarchy Process


  • Jorge Andrés Alvarado Valencia Departamento de Ingeniería Industrial Pontificia Universidad Javeriana, Bogotá
  • Javier Alexander García Buitrago Departamento de Ingeniería Industrial Pontificia Universidad Javeriana, Bogotá

Palabras clave:

Toma de decisiones multicriterio, análisis jerárquico, agregación de series temporales, pronósticos de series temporales, empresas de suscripción


El problema de la agregación o desagregación de series temporales para la realización de pronósticos se presenta frecuentemente en situaciones empresariales y econométricas. Este trabajo presenta una metodología novedosa para la selección de un nivel de desagregación adecuado de las series temporales a partir del cual realizar pronósticos. La metodología toma en cuenta criterios cualitativos -los recursos empresariales y el entorno de decisión- y cuantitativos -predictibilidad de las series y calidad de la información-, utilizando la metodología de toma de decisiones multicriterio conocida como el proceso analítico jerárquico (AHP) para llegar a una decisión final. Un caso de estudio en una empresa de suscripción muestra la utilidad de combinar AHP con técnicas de pronóstico de series de tiempo y la importancia de utilizar múltiples criterios en la selección de un nivel de desagregación adecuado.


Hierarchical aggregation/disaggregation of time series in order to make forecasts is a frequent challenge in business and econometric scenarios. This work presents a novel approach for selecting an adequate time series disaggregation level as a starting point for making forecasts. The methodology combines qualitative criteria - such as business resources and decision environment - and quantitative criteria - such as information quality and forecastability - in a multicriteria decision making task which is addressed through the analytic hierarchy process (AHP) technique. Results from a study case in a subscription business model company show the usefulness of combining AHP and time series forecasting techniques and the importance of multicriteria decision-making in the task of selecting an adequate aggregation/disaggregation level.


Los datos de descargas todavía no están disponibles.


Alt, R. & Zimmermann, H.-D. (2001). Preface: Introduction to special Section- Business Models. Electronic Markets, 11(1), 3–9.

Armstrong, J.S. (2006). Findings from evidence-based forecasting: Methods for reducing forecast error. International Journal of Forecasting, 22(3), 583–598.

Chen, A. & Blue, J. (2010). Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands. International Journal of Production Economics, 128(2), 586–602. doi: 10.1016/j.ijpe.2010.07.006

Danese, P. & Kalchschmidt, M. (2011). The role of the forecasting process in improving forecast accuracy and operational performance. International Journal of Production Economics, 131(1), 204–214. doi: 10.1016/j.ijpe.2010.09.006

Espasa, A., Senra, E. & Albacet, R. (2002). Forecasting inflation in the European Monetary Union. European Journal of Finance, 8(4), 402–421.

Ewing, B.T., Sari, R. & Soytas, U. (2007). Disaggregate energy consumption and industrial output in the United States. Energy Policy, 35(2), 1274–1281. doi: 10.1016/j.enpol.2006.03.012

Fliedner, G. (2001). Hierarchical forecasting: issues and use guidelines. Industrial Management & Data Systems, 101(1-2), 5–12. doi: 10.1108/02635570110365952

Giot, P. & Petitjean, M. (2011). On the statistical and economic performance of stock return predictive regression models: an international perspective. Quantitative Finance, 11(2), 175–193. doi: 10.1080/14697680903468971

Ho, W. (2008). Integrated analytic hierarchy process and its applications -A literature review. European Journal of Operational Research, 186(1), 211–228. doi: 10.1016/j.ejor.2007.01.004

Hogarth, R.M. & Makridakis, S. (1981). Forecasting and Planning: An Evaluation. Management Science, 27(2), 115–138.

Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G. & Shang, H.L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics & Data Analysis, 55(9), 2579–2589. doi: 10.1016/j.csda.2011.03.006

Hyndman, R.K. & Anne, B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22, 679–688.

Ishizaka, A., Balkenborg, D. & Kaplan, T. (2011). Does AHP help us make a choice? An experimental evaluation. Journal of the Operational Research Society, 62(10), 1801–1812. doi: 10.1057/jors.2010.158

Kahn, K.B. (1998). Revisiting top-down versus bottom-up forecasting. The Journal of Business Forecasting, 17(5), 14–19.

Lederer, A.L. & Smith, G.L. (1988). Individual Differences and Decision-Making Using Various Levels of Aggregation of Information. Journal of Management Information Systems, 5(3), 53–69.

Makridakis, S. & Taleb, N. (2009). Decison making and planning under low levels of predictability. International Journal of Forecasting, 25, 716–733.

Makridakis, S., Wheelwright, S. & Hyndman, R. (1997). Forecasting: methods and applications: Wiley.

Man, K.S. (2004). Linear prediction of temporal aggregates under model misspecification. International Journal of Forecasting, 20(4), 659–670. doi: 10.1016/j.ijforecast.2003.11.010

Manfren, M., Caputo, P. & Costa, G. (2011). Paradigm shift in urban energy systems through distributed generation: Methods and models. Applied Energy, 88(4), 1032–1048. doi: 10.1016/j.apenergy.2010.10.018

Marcellino, M., Stock, J.H. & Watson, M.W. (2003). Macroeconomic forecasting in the Euro area: Country specific versus area-wide information. European Economic Review, 47(1), 1–18. doi: 10.1016/s0014-2921(02)00206-4

Oliver, L. (2006). The cost management toolbox: A Manager's Guide to Controlling Costs and Boosting Profits. USA: AMACOM.

Saaty, T. & Kearns, K. (1985). Analytical Planning. The Organization of Systems (Vol. IV). Pittsburgh, PA, USA: RWS Publications.

Saaty, T. & Vargas, L. (2001). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Pittsburgh, PA, USA: Springer.

Sanders, N. & Manrodt, K.B. (2003). The efficacy of using judgmental versus quantitative forecasting methods in practice. Omega, 31(6), 511–522.

Smith, C.D. & Mentzer, J.T. (2010). Forecasting task-technology fit: The influence of individuals, systems and procedures on forecast performance. International Journal of Forecasting, 26(1), 144–161.

Sporcic, M., Landekic, M., Lovric, M., Bogdan, S. & Segotic, K. (2010). Multiple cirteria decision maiking in forestry -Methods and experiences. Sumarski List, 134(5-6), 275–286.

Subramanian, N. & Ramanathan, R. (2012). A review of applications of Analytic Hierarchy Process in operations management. International Journal of Production Economics, 138(2), 215–241. doi: 10.1016/j.ijpe.2012.03.036

Syntetos, A.A., Nikolopoulos, K., Boylan, J.E., Fildes, R. & Goodwin, P. (2009). The effects of integrating management judgement into intermittent demand forecasts. International Journal of Production Economics, 118(1), 72–81.

Temurshoev, U., Webb, C. & Yamano, N. (2011). Projection of supply and use tables: methods and their empircal assessment. Economic Systems Research, 23(1), 91–123.

Triantaphyllou, E. & Sánchez, A. (1997). A sensitivity analysis approach for some deterministic multicriteria decision making methods. Decision Sciences, 28(1), 151–194.

Tsoukiàs, A. (2008). From decision theory to decision aid methodology. European Journal of Operational Research, 187, 138–161.

Uddameri, V. (2007). Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas. Environmental Geology, 51(6), 885–895. doi: 10.1007/s00254-006-0452-5

Vaidya, O.S. & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. doi: 10.1016/j.ejor.2004.04.028

Velásquez-Henao, J.D., Franco-Cardona, C.J. & Olaya-Morales, Y. (2012). A Review of DAN2 (Dynamic architecture for artificial neural networks) model in time series forecasting. Ingeniería y Universidad, 16(1), 135–146.

Winklhofer, H. & Diamantopoulos, A. (2002). Managerial evaluation of sales forecasting effectiveness: A MIMIC modeling approach. International Journal of Research in Marketing, 19(2), 151–166.

Wright, G., Lawrence, M.J. & Collopy, F. (1996). The role and validity of judgment in forecasting. International Journal of Forecasting, 12(1), 1–8.



Cómo citar

Alvarado Valencia, J. A., & García Buitrago, J. A. (2016). Selección y utilización de niveles de desagregación adecuados en pronósticos de series temporales: caso de estudio en una empresa de suscripción utilizando el proceso analítico jerárquico // Selecting and Using an Adequate Disaggregation Level in Time Series Forecasting: A Study Case in a Subscription Business Model Company through the Analytic Hierarchy Process. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 15, Páginas 45 a 64. Recuperado a partir de