Quantitative Methods for a Linear Regression Model with Multicollinearity. Application to Yields of Treasury Bills
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.2886Keywords:
modelos de regresión, multicolinealidad, regresión alzada, regresión cresta, regresión con variables ortogonales, regression models, multicollinearity, raised regression, ridge regression, regression with orthogonal variablesAbstract
It is known that, when in the linear regression model there is a high degree of multicollinearity, the results obtained by using the Ordinary Least Squares (OLS) method are unstable. As a solution to this situation, in this paper we present the raised method, the ridge method and the orthogonal variables method as an alternative to the estimate by OLS. It is also shown that regression with orthogonal variables makes sense regardless of the existence of serious multicollinearity because it allows to answer questions which are not accessible when using the original model. These methodologies are applied to a data set of yields of treasury bills.
Downloads
References
Belsley, D.A. (1982). "Assessing the presence of harmful collinearity and other forms of weak data through a test for signal-to-noise". Journal of Econometrics, 20, 211-253.
García, C.B.; García, J.; López Martín, M.M. y Salmerón, R. (2015). "Collinearity: revisiting the variance inflation factor in ridge regression". Journal of Applied Statistics, 42(3), 648-661.
García, C.; Salmerón, R.; García, J. y López, M.M. (2016). "Estimación cresta y alzada: selección de $k$ y $lambda$ a partir del coeficiente de correlación". Anales de Economía Aplicada, XXX, 949-955.
García, J.; Salmerón, R.; García, C. y López Martín, M.M. (2016): "Standardization of Variables and Collinearity Diagnostic in Ridge Regression". International Statistical Review, 84(2), 245-266.
Marquardt, D.W. (1970). "Generalized inverses, ridge regression, biased linear estimation and nonlinear estimation''. Technometrics, 12(3), 591-612.
McDonald, G.C. (2010). "Tracing ridge regression coefficients". Wiley Interdisciplinary Reviews: Computational Statistics, 2, 695-703.
Novales, A. (1993). Econometría. McGraw-Hill, 2ª edición.
Novales, A.; Salmerón, R.; García, C.; García, J. y López, M.M. (2015). "Tratamiento de la multicolinealidad aproximada mediante variables ortogonales". Anales de Economía Aplicada, XXIX, 1212-1227.
O’Brien, R.M. (2007). "A caution regarding rules of thumb for variance inflation factors". Quality and Quantity, 41, 673–690.
Salmerón, R.; García, C.; García, J. y López, M. M. (2017). "The raise estimators. Estimation, inference and properties". Communications in Statistics-Theory and Methods, 46(13), 6446-6462.
Spanos, A. y McGuirk, A. (2002). "The problem of near-multicollinearity revisited: erratic vs systematic volatily". Journal of Econometrics, 108 (2), 365-393.
Zhang, J. e Ibrahim, M. (2005). "A simulation study on SPSS ridge regression and ordinary least squares regression procedures for multicollinearity data". Journal of Applied Statistics, 32(6), 571-588.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Quantitative Methods for Economics and Business Administration

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.