Quantitative Methods for a Linear Regression Model with Multicollinearity. Application to Yields of Treasury Bills

Authors

  • Román Salmerón Gómez Departamento de Métodos Cuantitativos para la Economía y la Empresa Universidad de Granada
  • Eduardo Rodríguez Martínez Máster en Técnicas Cuantitativas en Gestión Empresarial Universidad de Granada

DOI:

https://doi.org/10.46661/revmetodoscuanteconempresa.2886

Keywords:

modelos de regresión, multicolinealidad, regresión alzada, regresión cresta, regresión con variables ortogonales, regression models, multicollinearity, raised regression, ridge regression, regression with orthogonal variables

Abstract

It is known that, when in the linear regression model there is a high degree of multicollinearity, the results obtained by using the Ordinary Least Squares (OLS) method are unstable. As a solution to this situation, in this paper we present the raised method, the ridge method and the orthogonal variables method as an alternative to the estimate by OLS. It is also shown that regression with orthogonal variables makes sense regardless of the existence of serious multicollinearity because it allows to answer questions which are not accessible when using the original model. These methodologies are applied to a data set of yields of treasury bills.

Downloads

Download data is not yet available.

References

Belsley, D.A. (1982). "Assessing the presence of harmful collinearity and other forms of weak data through a test for signal-to-noise". Journal of Econometrics, 20, 211-253.

García, C.B.; García, J.; López Martín, M.M. y Salmerón, R. (2015). "Collinearity: revisiting the variance inflation factor in ridge regression". Journal of Applied Statistics, 42(3), 648-661.

García, C.; Salmerón, R.; García, J. y López, M.M. (2016). "Estimación cresta y alzada: selección de $k$ y $lambda$ a partir del coeficiente de correlación". Anales de Economía Aplicada, XXX, 949-955.

García, J.; Salmerón, R.; García, C. y López Martín, M.M. (2016): "Standardization of Variables and Collinearity Diagnostic in Ridge Regression". International Statistical Review, 84(2), 245-266.

Marquardt, D.W. (1970). "Generalized inverses, ridge regression, biased linear estimation and nonlinear estimation''. Technometrics, 12(3), 591-612.

McDonald, G.C. (2010). "Tracing ridge regression coefficients". Wiley Interdisciplinary Reviews: Computational Statistics, 2, 695-703.

Novales, A. (1993). Econometría. McGraw-Hill, 2ª edición.

Novales, A.; Salmerón, R.; García, C.; García, J. y López, M.M. (2015). "Tratamiento de la multicolinealidad aproximada mediante variables ortogonales". Anales de Economía Aplicada, XXIX, 1212-1227.

O’Brien, R.M. (2007). "A caution regarding rules of thumb for variance inflation factors". Quality and Quantity, 41, 673–690.

Salmerón, R.; García, C.; García, J. y López, M. M. (2017). "The raise estimators. Estimation, inference and properties". Communications in Statistics-Theory and Methods, 46(13), 6446-6462.

Spanos, A. y McGuirk, A. (2002). "The problem of near-multicollinearity revisited: erratic vs systematic volatily". Journal of Econometrics, 108 (2), 365-393.

Zhang, J. e Ibrahim, M. (2005). "A simulation study on SPSS ridge regression and ordinary least squares regression procedures for multicollinearity data". Journal of Applied Statistics, 32(6), 571-588.

Published

2017-12-20

How to Cite

Salmerón Gómez, R., & Rodríguez Martínez, E. (2017). Quantitative Methods for a Linear Regression Model with Multicollinearity. Application to Yields of Treasury Bills. Journal of Quantitative Methods for Economics and Business Administration, 24, Páginas 169 a 189. https://doi.org/10.46661/revmetodoscuanteconempresa.2886

Issue

Section

Articles