Tiempo, Población y Modelos de Crecimiento // Time, population and economic growth model

Autores/as

  • Gaston Cayssials Facultad de Ciencias Económicas y de Administración-Universidad de la República-Uruguay

Palabras clave:

modelo de crecimiento de Mankiw-Romer-Weil, tiempo discreto, tiempo continuo, tasa de crecimiento de la población decreciente, velocidad de convergencia.

Resumen

En este trabajo se presenta un análisis de las implicaciones que tiene sobre los modelos de crecimiento estándar asumir una hipótesis alternativa al crecimiento exponencial de la población y cómo la forma de modelizar el tiempo puede alterar el comportamiento dinámico de estos modelos. Se estudia también una extensión (en tiempo continuo y en tiempo discreto) del modelo de crecimiento de Mankiw-Romer-Weil al apartarse del supuesto estándar de la tasa de crecimiento de la población constante. Más concretamente, se asume que esta tasa es decreciente en el tiempo y se introduce una ley general de crecimiento de la población que verifica esta característica. Con esta especificación, el modelo puede ser representado por un sistema dinámico de dimensión tres, que admite una única solución para cualquier condición inicial. Se muestra que existe un único equilibrio no trivial que es un atractor global. Además, se caracteriza a la velocidad de convergencia hacia el estado estacionario, mostrando que en este modelo la velocidad es inferior a la del modelo original de Mankiw-Romer-Weil.

------------------------------------

This paper presents an analysis of the implications it has on standard growth models assume an alternative hypothesis to the exponential growth of the population and how modeling time can alter the dynamic behavior of these models. An extension (in continuous time and discrete time) of the Mankiw-Romer-Weil growth model is also studied by departing from the standard assumption of the constant population growth rate. More concretely, this rate is assumed to be decreasing over time and a general population growth law verifying this characteristic is introduced. In this setup, the model can be represented by a three dimensional dynamical system which admits a unique solution for any initial condition. It is shown that there is a unique nontrivial equilibrium which is a global attractor. In addition, the speed of convergence to the steady state is characterized, showing that in this framework this velocity is lower than in the original model.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Accinelli, E., & Brida, J. (2007a). The Ramsey model with logistic population growth. Economics Bulletin, 3, 1-8.

Accinelli, E., & Brida, J.G. (2007b). The dynamics of the Ramsey economic growth model with the Von Bertalanffy population growth law. Applied Mathematical Sciences, 1(1-4), 109-118.

Acemoglu, D., Johnson, S., & Robinson, J. A. (2012). The colonial origins of comparative development: An empirical investigation: Reply. The American Economic Review, 102(6), 3077-3110.

Arrow, K., Bolin, B., Costanza, R., Dasgupta, P., Folke, C., Holling, C. S., Jansson, B.-O., et al. (1995). Economic growth, carrying capacity, and the environment. Ecological Economics, 15(2), 91-95.

Barnett, W.A., Serletis, A., & Serletis, D. (2015). Nonlinear and complex dynamics in economics. Macroeconomic Dynamics, 19(8), 1749-1779.

Barro, R.J., & Sala-i Martin, X. (2003). Economic Growth, 2nd edition. Boston: MIT press.

Bay, N. (2013). On the attraction of positive equilibrium point in Solow economic discrete model with Richards population growth. Journal of Applied Mathematics & Bioinformatics, 2(3), 177-192.

Bernanke, B.S., & Gurkaynak, R.S. (2001). Is growth exogenous? Taking Mankiw, Romer, and Weil seriously. NBER macroeconomics annual, 16, 11-57.

Beverton, R. (1957). On the dynamics of exploited fish populations. UK Ministry of Agriculture and Fisheries Investigations (Ser 2), 19.

Bosi, S., & Ragot, L. (2012). Time representation in economics. Theoretical Economics Letters, 2(01), 10-15.

Brauer, F., & Castillo-Chavez, C. (2001). Mathematical models in population biology and epidemiology, vol. 40. New York: Springer.

Brianzoni, S., Mammana, C., & Michetti, E. (2007). Complex dynamics in the neoclassical growth model with differential savings and non-constant labor force growth. Studies in Nonlinear Dynamics & Econometrics, 11(3), 3-3.

Brianzoni, S., Mammana, C., & Michetti, E. (2012). Variable elasticity of substituition in a discrete time Solow-Swan growth model with differential saving. Chaos, Solitons & Fractals, 45(1), 98-108.

Brida, J.G. (2008). Población y crecimiento económico. Una versión mejorada del modelo de Solow. El Trimestre Económico, 75(SPECI), 5-22.

Brida, J.G., Cayssials, G., & Pereyra, J.S. (2014). The Ramsey model in discrete time and decreasing population growth rate. Dynamics of Continuous, Discrete and Impulsive Systems, 22, 97-115.

Brida, J.G., & Maldonado, E.L. (2010). Closed form solutions to a generalization of the Solow growth model. Applied Mathematical Sciences, 1, 1991-2000.

Brida, J.G., & Pereyra, J.S. (2008). The Solow model in discrete time and decreasing population growth rate. Economics Bulletin, 41(3), 1-14.

Cai, D. (2012). An economic growth model with endogenous carrying capacity and demographic transition. Mathematical and Computer Modelling, 55(3), 432-441.

Cass, D. (1965). Optimum growth in an aggregative model of capital accumulation. The Review of Economic Studies, 32(3), 233-240.

Cohen, J.E. (1995a). How many people can the earth support? WW Norton & Company.

Cohen, J.E. (1995b). Population growth and earth’s human carrying capacity. Science, 269(5222), 341-346.

Daily, G.C., & Ehrlich, P.R. (1992). Population, sustainability, and Earth’s carrying capacity. BioScience, 42(10), 761-771.

Day, R.H. (1982). Irregular growth cycles. The American Economic Review, 72(3), 406-414.

De la Fuente, A. (1997). The empirics of growth and convergence: a selective review. Journal of Economic Dynamics and Control, 21(1), 23-73.

DESA, U. (2015). World population prospects: The 2015 revision, key findings and advance tables. Working paper ESA/P/WP. 227, United Nations Department of Economic and Social Affairs, Population Division., New York.

Ding, S., & Knight, J. (2009). Can the augmented Solow model explain China remarkable economic growth? A cross-country panel data analysis. Journal of Comparative Economics, 37(3), 432-452.

Durlauf, S.N., & Aghion, P. (2005). Handbook of Economic Growth. Amsterdam: Elsevier.

Federici, D., & Gandolfo, G. (2014). Chaos in economics. Journal of Economics and Development Studies, 2(1), 51-79.

Ferrara, M., & Guerrini, L. (2009). The Ramsey model with logistic population growth and Benthamite felicity function revisited. WSEAS Transactions on Mathematics, 8, 41-50.

Gandolfo, G. (1997). Economic Dynamics: study edition. Springer Science & Business Media.

Giannitsarou, C., & Anagnostopoulos, A. (2005). Modeling Time and Macroeconomic Dynamics. In Money Macro and Finance (MMF) Research Group Conference 2005, no. 60.

Gómez, M.A. (2014). Discrete Versus Continuous Time in an Endogenous Growth Model with Durable Consumption. Mathematical Economics Letters, 2(3-4), 67-75.

González, J.I., & Pecha, A. (1995). La dinámica en economía. Los enfoques de Hicks y Samuelson. Cuadernos de Economía, 14(23), 92-116.

Guerrini, L. (2006). The Solow-Swan model with a bounded population growth rate. Journal of Mathematical Economics, 42(1), 14-21.

Guerrini, L. (2010a). A closed-form solution to the Ramsey model with logistic population growth. Economic Modelling, 27(5), 1178-1182.

Guerrini, L. (2010b). A Closed-Form Solution to the Ramsey Model with the Von Bertalanffy Population Law. Applied Mathematical Sciences, 4(65), 3239-3244.

Guerrini, L. (2010c). The dynamic of the AK Ramsey growth model with quadratic utility and logistic population change. International Journal of Pure and Applied Mathematics, 62(2), 221-225.

Guerrini, L. (2010d). Logistic population change and the Mankiw-Romer-Weil model. APPS. Applied Sciences, 12, 96-101.

Guerrini, L. (2010e). Transitional dynamics in the Ramsey model with AK technology and logistic population change. Economics Letters, 109(1), 17-19.

Gundlach, E. (2005). Solow vs. Solow: Notes on identification and interpretation in the empirics of growth and development. Review of World Economics, 141(3), 541-556.

Gushing, J., & Henson, S.M. (2001). Global Dynamics of Some Periodically Forced, Monotone Difference Equations. Journal of Difference Equations and Applications, 7(6), 859-872.

Hassell, M. (1975). Density-dependence in single-species populations. The Journal of animal ecology, pp. 283-295.

Jones, C. (2002). Introduction to Economic Growth. New York: WW Norton.

Koopmans, T.C. (1963). On the concept of optimal economic growth. Discussion paper, Cowles Foundation for Research in Economics, Yale University.

Li, T.Y., & Yorke, J.A. (1975). Il American Math. Monthly, 82, 985-992.

Licandro, O., & Puch, L.A. (2006). Is discrete time a good representation of continuous time? Working paper ECO No. 2006/28, European University Institute, San Domenico di Fiesole, Italy.

Lomelí, H., & Rumbos, B. (2003). Métodos Dinámicos en Economía: Otra búsqueda del tiempo perdido. México: Thomson Editorial.

Lotka, A.J. (1934). Theorie analytique des associations biologiques. Discussion paper.

Lucas, Jr.R.E. (1988). On the mechanics of economic development. Journal of monetary economics, 22(1), 3-42.

Mankiw, N.G., Romer, D., & Weil, D.N. (1992). A contribution to the empirics of economic growth. The Quarterly Journal of Economics, 107(2), 407-437.

May, R.M., et al. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459-467.

Maynard, S.J. (1974). Models in ecology. Cambridge: Cambridge UP.

McQuinn, K., & Whelan, K. (2007). Conditional convergence and the dynamics of the capital-output ratio. Journal of Economic Growth, 12(2), 159-184.

Medio, A. et al. (2011). Simple and Complex Dynamics: A Hidden Parameter. Discussion paper, Mimeo, University of Nice.

Ordorica-Mellado, M. (2009). En la búsqueda del estado estacionario de la población del planeta. Papeles de población, 15(61), 39-51.

Pielou, E.C., et al. (1969). An introduction to mathematical ecology. New York: Wiley-Interscience.

Ramsey, F.P. (1928). A mathematical theory of saving. The Economic Journal, 38(152), 543-559.

Ricker, W.E. (1954). Stock and recruitment. Journal of the Fisheries Board of Canada, 11(5), 559-623.

Romer, P.M. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002-1037.

Scarpello, G.M., & Ritelli, D. (2003). The Solow model improved through the logistic manpower growth law. Annali dellUniversit`a di Ferrara, 49(1), 73-83.

Solow, R.M. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65-94.

Solow, R.M. (2001). What have we learned from a decade of empirical research on growth? Applying Growth Theory across Countries. The World Bank Economic Review, 15(2), 283-288.

Sordi, S. (1996). Chaos in Macrodynamics: an excursion through the Literature. Citeseer.

Uzawa, H. (1965). Optimum technical change in an aggregative model of economic growth. International Economic Review, 6(1), 18-31.

Verhulst, P.-F. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A. Quetelet, 10, 113-121.

Von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws II). Human biology, 10(2), 181-213.

Wanxin, W., & Zequn, G. (2013). A Localization of Solow Growth Model with Labor Growth Pattern in China. Technology and Investment, 4(1B), 24-26.

Publicado

2019-11-07

Cómo citar

Cayssials, G. (2019). Tiempo, Población y Modelos de Crecimiento // Time, population and economic growth model. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 28, 278-300. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/3166

Número

Sección

Artículos