Pricing strategies and economic uncertainty
case-study for the Argentinian pharmaceutical sector using machine learning
DOI:
https://doi.org/10.46661/rev.metodoscuant.econ.empresa.6407Keywords:
pharmaceutical market, uncertainty, machine learningAbstract
In August 2019 an unexpected presidential election result caused a
change in expected exchange and inflation rates. The objective of this study is to
analyze the relation between market share and the decision of increasing prices in
the pharmaceutical industry in Argentina.
Methods: Online weekly data on variations of some medicine’s prices were obtained
using web scraping, and then classification algorithms (Random Forests, Gradient
Boosting Machine and logistic regression) were applied.
Results: The results were mixed: market share was found to have high importance
in tree-based methods. (Random Forests and Gradient Boosting Machine).
However, in logistic regression, this variable wasn’t significant.
Conclusions: Exchange rate volatility after the election result caused several
changes on price expectations, and pharmaceutical market structure influenced
the resulting price reactions. Laboratories which owned a higher market share rose
their prices first.
Downloads
References
Aguilar, A., Ascitelli, A., Carosella, L., Izurieta, M., Perandones, M., Soverchia, S., Yapur, C., Zolezzi, C., Barreña, A., Genaro, A. M., & Scublinsky, D. (2015). Prevalencia de automedicación de antiinflamatorios y analgésicos en la práctica ambulatoria. Revista Argentina de Reumatología, 26(3), 13-15. https://revistasar.org.ar/revistas/2015/n3/2_articulo_original.pdf
Alomar, A. V., Moscoso, N. S. y Larrosa, J. M. C. (2006). Determinantes del acceso a los medicamentos: El caso argentino. Artículo presentado en la XLI Reunión Anual de la Asociación Argentina de Economía Política, Salta, Argentina. https://bd.aaep.org.ar/anales/works/works2006/Alomar_Moscoso_Larrosa.pdf
Al-Thaqeb, S. A., & Algharabali, B. G. (2019). Economic policy uncertainty: A literature review. The Journal of Economic Asymmetries, 20, e00133. https://doi.org/10.1016/j.jeca.2019.e00133 DOI: https://doi.org/10.1016/j.jeca.2019.e00133
Apella, I. (2009). Gasto de bolsillo en salud e impacto financiero sobre los adultos mayores en argentina. Anales de La Asociación Argentina de Economía Política, XLIV Reunión Anual. https://aaep.org.ar/anales/works/works2009/apella.pdf
Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, 131 (4), 1593-1636. https://doi.org/10.1093/qje/qjw024 DOI: https://doi.org/10.1093/qje/qjw024
Balcilar, M., Gupta, R. and Jooste, C. (2016a). Long memory, economic policy uncertainty and forecasting US inflation: A Bayesian VARFIMA approach. Applied Economics, 49 (11), 1047-1054. https://doi.org/10.1080/00036846.2016.1210777 DOI: https://doi.org/10.1080/00036846.2016.1210777
Balcilar, M., Gupta, R., Kyei, C. and Wohar, M. E. (2016b). Does economic policy uncertainty predict exchange rate returns and volatility? Evidence from a nonparametric causality-in-quantiles test. Open Economies Review, 27, 229-250. https://doi.org/10.1007/s11079-016-9388-x DOI: https://doi.org/10.1007/s11079-016-9388-x
Barberis, M. (2021). Asimetrías del traspaso del tipo de cambio a precios: el caso argentino 2004-2019. Ensayos Económicos (76), 103-143.
Bartsch, Z. (2019). Economic policy uncertainty and dollar-pound exchange rate return volatility. Journal of International Money and Finance, 98, 102067. https://doi.org/10.1016/j.jimonfin.2019.102067 DOI: https://doi.org/10.1016/j.jimonfin.2019.102067
Bhattacharya, P. S., Karayalcin, C. A., & Thomakos, D. D. (2008). Exchange rate pass-through and relative prices: An industry-level empirical investigation. Journal of International Money and Finance, 27, 1135-1160. https://doi.org/10.1016/j.jimonfin.2008.05.004 DOI: https://doi.org/10.1016/j.jimonfin.2008.05.004
Bramuglia, C., Abrutzky, R., y Godio, C. (2012). Análisis de la industria farmacéutica estatal en Argentina (Documento de Jóvenes Investigadores n° 34). Instituto de Investigaciones Gino Germani, Facultad de Ciencias Sociales, Universidad de Buenos Aires. https://biblioteca.clacso.edu.ar/Argentina/iigg-uba/20120801053021/dji34.pdf
Bramuglia, C., Abrutzky, R., & Godio, C. (2015). El perfil de la industria farmacéutica de la Argentina. Interrogantes a mediano plazo. Ciencia, docencia y tecnología, 26 (51), 102-130. https://pcient.uner.edu.ar/index.php/cdyt/article/view/55
Breiman, L. (2001). Random Forests. Machine Learning, 45 (1), 5-32. https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324
Castiglione, B. (2017). El traspaso a precios de las depreciaciones cambiarias: Una estimación VECM para el caso argentino. Premio Anual de Investigación Económica Dr. Raúl Prebisch.
Central Bank of Argentinian Republic (2019). Resultados del Relevamiento de Expectativas de Mercado. http://www.bcra.gob.ar/Pdfs/PublicacionesEstadisticas/REM200131%20Resultados%20web.pdf
Central Bank of Argentinian Republic (2024). Principales variables. https://www.bcra.gob.ar/PublicacionesEstadisticas/Principales_variables.asp
Chen, L., Du, Z., & Hu, Z. (2020). Impact of economic policy uncertainty on exchange rate volatility of China. Finance Research Letters, 32, 101266. https://doi.org/10.1016/j.frl.2019.08.014 DOI: https://doi.org/10.1016/j.frl.2019.08.014
Dai, Y., Zhang, J., Yu, X., & Li, X. (2017). Causality between economic policy uncertainty and exchange rate in China with considering quantile differences. Theoretical and Applied Economics, 24 (3), 29-38. http://www.ectap.ro/causality-between-economic-policy-uncertainty-and-exchangerate-in-china-with-considering-quantile-differences-yin-dai_jing-wen-zhang_xiu-zhen-yu_xin-li/a1291/
Dornbusch, R. (1987). Exchange rates and prices. The American Economic Review, 77 (1), 93-106. https://www.jstor.org/stable/1806731
Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29 (5), 1189-1232. https://doi.org/10.1214/aos/1013203451 DOI: https://doi.org/10.1214/aos/1013203451
Greenwell B., Boehmke B. & Cunningham J. (2022). Gbm: Generalized Boosted Regression Models. R package version 2.1.8.1, https://CRAN.R-project.org/package=gbm
Gutman, G. & Lavarello, P. (2011). Formas de organización de las empresas biotechnológicas en el sector farmacéutico argentino. Desarrollo Económico, 51 (201), 81-105. https://www.jstor.org/stable/23612337
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: Pearson new international edition. Essex: Pearson Education Limited.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer Science & Business Media.
He, B., Zhu, H., Chen, D., & Shi, Y. (2015). On pass-through of RMB exchange rate to prices of different industries. Procedia Computer Science, 55, 886-895. https://doi.org/10.1016/j.procs.2015.07.146 DOI: https://doi.org/10.1016/j.procs.2015.07.146
Herguera, I. (1994). Industry price adjustment to exchange rate fluctuations in oligopoly: An empirical study of the pass-through relationship determinants in the Spanish automobile industry, 1981-1991 (PhD Thesis). European University Institute, Florence. https://op.europa.eu/es/publication-detail/-/publication/213f69a9-c5b3-4219-bf1d-a5195f9ab738
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
https://doi.org/10.1007/978-1-4614-7138-7 DOI: https://doi.org/10.1007/978-1-4614-7138-7
Jones, P. M., & Olson, E. (2013). The time-varying correlation between uncertainty, output and inflation: Evidence from a DCC-GARCH model. Economics Letters, 118, 33-37. https://doi.org/10.1016/j.econlet.2012.09.012 DOI: https://doi.org/10.1016/j.econlet.2012.09.012
Kirman, A., & Phlips, L. (1996). Exchange rate pass-through and market structure. Journal of Economics, 64 (2), 129-154. https://doi.org/10.1007/BF01250111 DOI: https://doi.org/10.1007/BF01250111
Krol, R. (2014). Economic policy uncertainty and exchange rate volatility. International Finance, 17 (2), 241-255. https://doi.org/10.1111/infi.12049 DOI: https://doi.org/10.1111/infi.12049
Kurasawa, K. (2016). Policy uncertainty and foreign exchange rates: The DCC-GARCH model of the US/Japanese foreign exchange rate. International Journal of Economic Sciences, 5 (4), 1-19. https://doi.org/10.52950/ES.2016.5.4.001 DOI: https://doi.org/10.20472/ES.2016.5.4.001
Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5), 1-26.
https://doi.org/10.18637/jss.v028.i05 DOI: https://doi.org/10.18637/jss.v028.i05
Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. The R Journal, 2/3, 18-22. https://journal.r-project.org/articles/RN-2002-022/RN-2002-022.pdf
Lu, Z. J., & Comanor, W. S. (1998). Strategic Pricing of New Pharmaceuticals. The Review of Economics and Statistics, 80(1), 108-118.
https://doi.org/10.1162/003465398557212 DOI: https://doi.org/10.1162/003465398557212
Mallick, S., & Marques, H. (2010). Data frequency and exchange rate pass-through: Evidence from India's exports. International Review of Economics and Finance, 19, 13-22. https://doi.org/10.1016/j.iref.2009.02.007 DOI: https://doi.org/10.1016/j.iref.2009.02.007
Mann, C. L. (1986). Prices, profit margins, and exchange rates. Federal Reserve Bulletin, (Jun), 366-379. https://fraser.stlouisfed.org/files/docs/publications/FRB/pages/1985-1989/31910_1985-1989.pdf
Mayo Clinic. (2023). Drugs and Supplements. Atorvastatin (Oral Route). https://www.mayoclinic.org/diseases-conditions/dementia/symptoms-causes/syc-20352013
Medications Committee of the Spanish Association of Pediatrics (2015). Pediamécum. Edición 2015. https://www.aeped.es/comite-medicamentos/pediamecum/enalapril.
Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2nd ed.). https://christophm.github.io/interpretable-ml-book/
Molnar, C., Casalicchio, G., & Bischl, B. (2018). iml: An R package for Interpretable Machine Learning. The Journal of Open Source Software, 3 (26), 786. https://doi.org/10.21105/joss.00786 DOI: https://doi.org/10.21105/joss.00786
Olanipekun, I. O., Olasehinde-Williams, G., & Güngör, H. (2019). Impact of economic policy uncertainty on exchange market pressure. SAGE Open, 9(3), 1-13. https://doi.org/10.1177%2F2158244019876275 DOI: https://doi.org/10.1177/2158244019876275
Otero, G. A., Cadelli, M. E., Carbajal, R., y Cerimedo, F. (2005). Explorando los determinantes del traspaso de la devaluación a precios: Una explicación del éxito devaluatorio argentino de 2002 (documento de trabajo). Grupo de Investigación Económica (GIE) del Ministerio de Economía de la Provincia de Buenos Aires. https://www.ec.gba.gov.ar/prensa/Archivos/Julio2005.pdf
Perticara, M. (2008). Incidencia de los gastos de bolsillo en salud en siete países latinoamericanos. Santos, G., and Thomas, H. (2018). Producción pública de medicamentos. Ciencia, Tecnología y Política, 1(1), 007-007. https://www.cepal.org/es/publicaciones/6146-incidencia-gastos-bolsillo-salud-siete-paises-latinoamericanos
Perehudoff, S. K., Alexandrov, N. V., & Hogerzeil, H. V. (2019). The right to health as the basis for universal health coverage: A cross-national analysis of national medicines policies of 71 countries. PLOS ONE, 14(6), e0215577. https://doi.org/10.1371/journal.pone.0215577 DOI: https://doi.org/10.1371/journal.pone.0215577
R Core Team (2022). R: A language and environment for statistica lcomputing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Santos, G., y Thomas, H. (2018). Producción pública de medicamentos: desafíos para una política estratégica en materia de salud, Ciencia, Tecnología y Política, 1 (1), 1-7. https://doi.org/10.24215/26183188e007 DOI: https://doi.org/10.24215/26183188e007
Statement N° 113/2019. National Commission of Competition Defense, Buenos Aires, Argentina, 23 de December 2019. https://www.argentina.gob.ar/sites/default/files/im._4_-_medicamentos_-_disposicion_y_anexo.pdf
Thorbecke, W., & Kato, A. (2018). Exchange rates and the Swiss economy. Journal of Policy Modeling, 40 (6), 1182-1199. https://doi.org/10.1016/j.jpolmod.2018.07.002 DOI: https://doi.org/10.1016/j.jpolmod.2018.07.002
Urbiztondo, S., Cont, W., & Panadeiros, M. (2013). La competencia en el segmento upstream de la industria farmacéutica argentina. Documento de trabajo, 121. http://www.fiel.org/publicaciones/Documentos/DOC_TRAB_1396372329842.pdf
Wang, Y., Zhang, B., Diao, X., & Wu, C. (2015). Commodity price changes and the predictability of economic policy uncertainty. Economics Letters, 127, 39-42. https://doi.org/10.1016/j.econlet.2014.12.030 DOI: https://doi.org/10.1016/j.econlet.2014.12.030
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Leandro Meller, Juan Virdis, Emiliano Gutiérrez, Diego Domínguez

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.