Incorporating Expert Judgment for Detecting Relevant Factors in Social Networks Undetected by Ordinary Methods
DOI:
https://doi.org/10.46661/rev.metodoscuant.econ.empresa.8135Keywords:
Bayesian inference, MCMC simulation methods, informative prior distributions, social networksAbstract
Information and communications technology (ICT) has potential to complement
information sharing bureaus (ISB) Most companies use social networks as
communication channels because they can provide significant business
benefits. This paper focuses on the impact of social networks in a Spanish
foundation for innovation and knowledge dissemination, and how they affect its
main events and activities. We examine the factors underlying a re-tweet on
Twitter or a share on Facebook in order to analyze reporting of this foundation’s
principal events. Comparisons with three statistical models were performed
(standard regression and Bayesian regression with non-informative and
informative priors). We conclude that the advantage offered by Bayesian over
classic methodology is demonstrated by incorporation of collateral information,
usually provided by experts, which can refine the model and obtain conclusions
that cannot be identified otherwise. This conclusion may have significant
implications for companies that make use of social networks
Downloads
References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
https://doi.org/10.1109/TAC.1974.1100705 DOI: https://doi.org/10.1109/TAC.1974.1100705
Butts, C. (2003). Network inference, error, and informant (in)accuracy: a Bayesian approach. Social Networks, 25(2), 103-140.
https://doi.org/10.1016/S0378-8733(02)00038-2 DOI: https://doi.org/10.1016/S0378-8733(02)00038-2
Caimo, C. and Friel, N. (2011). Bayesian inference for exponential random graph models. Social Networks, 33(1), 41-55.
https://doi.org/10.1016/j.socnet.2010.09.004 DOI: https://doi.org/10.1016/j.socnet.2010.09.004
Caimo, C. and Friel, N. (2013). Bayesian model selection for exponential random graph models. Social Networks, 35(1), 11-24.
https://doi.org/10.1016/j.socnet.2012.10.003 DOI: https://doi.org/10.1016/j.socnet.2012.10.003
Carlin, B.P. and Polson, N.G. (1992). Monte Carlo Bayesian methods for discrete regression models and categorical time series. In: Bernardo, J.M., Berger, J.O., Dawid, A.P. and Smith, A.F.M. eds. Bayesian Statistics, 4, 577-86. University Press, Oxford.
https://doi.org/10.1093/oso/9780198522669.003.0032 DOI: https://doi.org/10.1093/oso/9780198522669.003.0032
Carrington, P.J., Scott, J. andWasserman, S. (Eds.) (2005). Models and Methods in Social Networks Analysis. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511811395 DOI: https://doi.org/10.1017/CBO9780511811395
Eriksson, M. and Olsson Gardell, E. (2016). Facebook and Twitter in Crisis Communication: A Comparative Study of Crisis Communication Professionals and Citizens. Journal of Contingencies and crisis Management, 24(4), 198-208.
https://doi.org/10.1111/1468-5973.12116 DOI: https://doi.org/10.1111/1468-5973.12116
García-de-Torres, E., Yezerska, L., Rost, A., Calderón, M., Edo, C., Rojano, M., Said-Hung, E., Jerónimo, P., Arcila, C., Serrano-Tellería, A., Sánchez-Badillo, J. and Corredoira, J. (2011). Uso de Twitter y Facebook por los medios iberoamericanos. El profesional de la información, 20(6), 611-620.
https://doi.org/10.3145/epi.2011.nov.02 DOI: https://doi.org/10.3145/epi.2011.nov.02
Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1995). Introducing markov chain montecarlo. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.J., eds. Markov Chain Monte Carlo in Practice. Chapman and Hall, London.
https://doi.org/10.1201/b14835 DOI: https://doi.org/10.1201/b14835
Golbeck, J. and Hansen, D. (2014). A method for computing political preference among Twitter followers. Social Networks, 36, 177-184.
https://doi.org/10.1016/j.socnet.2013.07.004 DOI: https://doi.org/10.1016/j.socnet.2013.07.004
Guzmán, A.P., Moral, E. and González, F. (2012). Twitter use in the Latin American Universities. RELATEC, Revista Latinoamericana de Tecnología Educativa, 11(1), 27-39.
Harrigan, N., Achananuparp, P. and Lim, E. (2012). Influentials, novelty, and social contagion. The viral power of average friends, close communities, and old news. Social Networks, 34, 470-480.
https://doi.org/10.1016/j.socnet.2012.02.005 DOI: https://doi.org/10.1016/j.socnet.2012.02.005
Hsu, H.W., Lancaster, J., Paradesi, M. and Weninger, T. (2007). Structural Link Analysis from User Profiles and Friends Networks: A Feature Construction Approach. En Proceedings of ICWSM-2007.
Huber, P.J. (1967). The behavior of maximum likelihood estimate under nonstandard conditions. En Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221-233. Ed. Berkeley, University of California Press.
Kaplan, D. (2014). Methodology in the social sciences. Bayesian statistics for the social sciences. Guilford Press, New York.
Koop, G. (2003). Bayesian Econometrics. John Wiley & Sons Inc., United Kingdom.
Koskinen, J.H. and Snijders, T.A.B. (2007). Bayesian inference for dynamic social network data. Journal of Statistical Planning and Inference, 137, 3930-3938.
https://doi.org/10.1016/j.jspi.2007.04.011 DOI: https://doi.org/10.1016/j.jspi.2007.04.011
Koskinen, J.H., Robins, G.L., Wang, P. and Pattison, P.E. (2013). Bayesian analysis for partially observed network data, missing ties, attributes and actors. Social Networks, 35(4), 514-527.
https://doi.org/10.1016/j.socnet.2013.07.003 DOI: https://doi.org/10.1016/j.socnet.2013.07.003
Lunn, D.J., Thomas, A., Best, N. and Spiegelhalter, D. (2000). WinBUGS: a Bayesian modelling framework: concepts, structure and extensibility. Statistics and Computing, 10, 325-337.
https://doi.org/10.1023/A:1008929526011 DOI: https://doi.org/10.1023/A:1008929526011
Oliveira, S.C., Cobre, J. and Ferreira, T.P. (2017). A Bayesian approach for the reliability of scientific co-authorship networks with emphasis on nodes. Social Networks, 48, 110-115.
https://doi.org/10.1016/j.socnet.2016.06.005 DOI: https://doi.org/10.1016/j.socnet.2016.06.005
Parra, P., Gordo, AJ. and D'Antonio, SA. (2014). Social research applied to social networks. A methodological innovation for the analysis of Facebook Likes. Revista Latina de Comunicación Social, 69, 195-212.
Slaughter, A.J. and Koehly, L.M. (2016). Multilevel models for social networks: Hierarchical Bayesian approaches to exponential random graph modeling. Social Networks, 44, 334-345.
https://doi.org/10.1016/j.socnet.2015.11.002 DOI: https://doi.org/10.1016/j.socnet.2015.11.002
Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64(4), 583-639.
https://doi.org/10.1111/1467-9868.00353 DOI: https://doi.org/10.1111/1467-9868.00353
Statista (2022). Avaliable online: https://es.statista.com/estadisticas/698728/porcentaje-deempresas-
que-hicieron-uso-de-las-redes-sociales-en-espana/.
Túñez, M. and Sixto, J. (2011). Social networks, political and Commitment 2.0: Spanish deputies in Facebook. Revista Latina de Comunicación Social, 66, 1-25.
Túnez, M. and Sixto, J. (2012). The social networks like learning environment: analysis of facebook use in the university teaching. Revista de Medios y Educación, 41, 77-92.
Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511815478 DOI: https://doi.org/10.1017/CBO9780511815478
White, H.L., Jr. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817- 838.
https://doi.org/10.2307/1912934 DOI: https://doi.org/10.2307/1912934
White, H.L., Jr. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1-25.
https://doi.org/10.2307/1912526 DOI: https://doi.org/10.2307/1912526
Zellner, A. (1996). An Introduction to Bayesian Inference in Econometrics. John Wiley & Sons Inc., United Kingdom.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 José María Pérez Sánchez, María Acosta García, Emilio Gómez-Déniz

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.