Determination ps Stochastic processes by means of the Husrt coefficient for the projection of the commodities in the international market

Authors

DOI:

https://doi.org/10.46661/rev.metodoscuant.econ.empresa.8541

Keywords:

Stochasticity, Geometric Brownian, Hurst coefficient, Commodities

Abstract

In this study, the potential relationship between commodity values during the period from 2019 to 2023 was investigated, using the Hurst coefficient as a statistical metric. The results indicated that, generally speaking, the price records exhibited persistence with a coefficient of 0.63, but also revealed a certain degree of randomness. Consequently, a geometric Brownian stochastic process along with Monte Carlo simulation was used to anticipate prices over a one-year horizon in the stock market and, in this way, identify unpredictable fluctuations in each data set. Overall, the simulation results demonstrated a stable average trend despite the random nature of the process, with notable increases in the prices of Brent oil, UK and US copper, and bar steel. . On the other hand, HRC steel prices remained constant, while a significant decrease in natural gas prices was anticipated compared to their average historical values.

Downloads

Download data is not yet available.

References

Acuña, C., y Álvarez, A. (2017). Dependencia serial de largo plazo en el índice bursátil chileno, a través del coeficiente de Hurst y Hurst ajustado. Journal of Economics, Finance and Administrative Science, 22(42), 37-50.

https://doi.org/10.1108/JEFAS-02-2017-0047 DOI: https://doi.org/10.1108/JEFAS-02-2017-0047

Aguilar, R. R. (2014). El coeficiente de Hurst y el parámetro α-estable para el análisis de series financieras aplicación al mercado cambiario mexicano. Contaduría y administración, 59(1), 149-173.

https://doi.org/10.1016/S0186-1042(14)71247-1 DOI: https://doi.org/10.1016/S0186-1042(14)71247-1

Argus. (2023). Metals: ARGUS China HRC steel price assessment. https://www.argusmedia.com/es/methodology/key-prices/argus-china-hrc-steel-price

Chamoli, A., Bansal, A. R., y Dimri, V. P. (2007). Wavelet and rescaled range approach for the Hurst coefficient for short and long time series. Computers y Geosciences, 33(1), 83-93. https://doi.org/10.1016/j.cageo.2006.05.008 DOI: https://doi.org/10.1016/j.cageo.2006.05.008

Chaves, H. M. L., y Lorena, D. R. (2019). Assessing reservoir reliability using classical and long-memory statistics. Journal of Hydrology: Regional Studies, 26, 100 - 641. https://doi.org/10.1016/j.ejrh.2019.100641 DOI: https://doi.org/10.1016/j.ejrh.2019.100641

Cadenas, E., Campos‐Amezcua, R., Rivera, W., Espinosa‐Medina, M. A., Méndez‐Gordillo, A. R., Rangel, E., y Tena, J. (2019). Wind speed variability study based on the Hurst coefficient and fractal dimensional analysis. Energy Science & Engineering, 7(2), 361-378. https://doi.org/10.1002/ese3.277 DOI: https://doi.org/10.1002/ese3.277

Cannon, M. J., Percival, D. B., Caccia, D. C., Raymond, G. M., y Bassingthwaighte, J. B. (1997). Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. Physica A: Statistical Mechanics and its Applications, 241(3), 606-626. https://doi.org/10.1016/S0378-4371(97)00252-5 DOI: https://doi.org/10.1016/S0378-4371(97)00252-5

Delgado, O. Y., y Delgado, J. R. (2011). Estimación del exponente de Hurst y la dimensión fractal de una superficie topográfica a través de la extracción de perfiles. UD y la Geomática, (5), 84-91. https://doi.org/10.14483/23448407.3648

Doob, J. L. (1942). What is a stochastic process? The American Mathematical Monthly, 49(10), 648-653. https://doi.org/10.1080/00029890.1942.11991300 DOI: https://doi.org/10.1080/00029890.1942.11991300

Duarte, J., Sierra, K., Pérez-Iñigo, M., y Manuel, J. (2014). Evaluación de la memoria de largo plazo del mercado bursátil colombiano mediante el coeficiente de Hurst. Revista Internacional Administración y Finanzas, 7(4), 1-10.

Equinor (2018). Energy Perspectives. Equinor. https://www.equinor.com/news/archive/07jun2018-energy-perspectives

Gaviria, D. (2019). Introducción al Movimiento Browniano para Finanzas. Derivados Financieros y Finanzas Internacionales. Medellín, Colombia. Instituto Tecnológico Metropolitano 1-29

Global, S. P. (2022). The Future of Copper: Will the Looming Supply Gap Short-Circuit the Energy Transition? New York.

Hall, P., Härdle, W., Kleinow, T., y Schmidt, P. (2000). Semiparametric bootstrap approach to hypothesis tests and confidence intervals for the Hurst coefficient. Statistical inference for stochastic processes, 3, 263-276. https://doi.org/10.1023/A:1009921413616 DOI: https://doi.org/10.1023/A:1009921413616

International Energy Agency [IEA] (2018), World Energy Outlook 2018, IEA, Paris: International Energy Agency.

International Energy Agency [IEA] (2021). Analysis and Forecast to 2026. Paris: International Energy Agency.

Lloyd, J., McBridge, J., y Wang, S. (2022). Oil and Gas Assets at Risk. The Breakthrough Institute. https://thebreakthrough.org/articles/oil-and-gas-assets-at-risk-impacts-of-declining-fossil-production-in-climate-scenarios-in-the-us

Luengas, D., Ardila Romero, E., y Moreno Trujillo, J. F. (2010). Metodología e interpretación del coeficiente de Hurst. ODEON (Bogotá), 5, 265-290.

Luong, P. V., y Sopranzetti, B. (2022). Commodity markets intervention: Consequences of speculation, and informed trading. Journal of Commodity Markets, 26, 100192.

https://doi.org/10.1016/j.jcomm.2021.100192 DOI: https://doi.org/10.1016/j.jcomm.2021.100192

Mandelbrot, B. B., y Wallis, J. R. (1968). Noah, Joseph, and operational hydrology. Water Resources Research, 4(5), 909-918.

https://doi.org/10.1029/WR004i005p00909 DOI: https://doi.org/10.1029/WR004i005p00909

McCauley, J. L., Gunaratne, G. H., y Bassler, K. E. (2007). Hurst exponents, Markov processes, and fractional Brownian motion. Physica A: Statistical Mechanics and its Applications, 379(1), 1-9. https://doi.org/10.1016/j.physa.2006.12.028 DOI: https://doi.org/10.1016/j.physa.2006.12.028

Millán, G. (2021). On the Hurst exponent, Markov processes, and fractional Brownian motion. arXiv,1-3.

https://doi.org/10.31219/osf.io/rqcpb DOI: https://doi.org/10.31219/osf.io/rqcpb

Mobil, E. (2019). Outlook for energy: A perspective to 2040. Exxon Mobil: Irving, TX, USA.

Newell, R., Raimi, D., y Aldana, G. (2019). Global energy outlook 2019: the next generation of energy. Resources for the Future, 1, 8-19.

Nieh, C. C., Yau, H. Y., Hung, K., Ou, H. K., y Hung, S. M. (2013). Cointegration and causal relationships among steel prices of Mainland China, Taiwan, and USA in the presence of multiple structural changes. Empirical Economics, 44, 545-561. https://doi.org/10.1007/s00181-012-0556-6 DOI: https://doi.org/10.1007/s00181-012-0556-6

Patiño, M. A. M., Garzón, M. J. A., y Lozano, J. B. C. (2021). Relevancia del patrón de persistencia de Hurst en la gestión de portafolios de renta variable. Revista de Métodos Cuantitativos para la Economía y la Empresa, 32, 66-82.

https://doi.org/10.46661/revmetodoscuanteconempresa.4122 DOI: https://doi.org/10.46661/revmetodoscuanteconempresa.4122

Postali, F. A., y Picchetti, P. (2006). Geometric Brownian motion and structural breaks in oil prices: a quantitative analysis. Energy Economics, 28(4), 506-522. https://doi.org/10.1016/j.eneco.2006.02.011 DOI: https://doi.org/10.1016/j.eneco.2006.02.011

Raimi, D., Campbell, E., Newell, R. G., Prest, B., Villanueva, S., y Wingenroth, J. (2022). Global Energy Outlook 2022: Turning Points and Tension in the Energy Transition. Resources for the Future Report, Washington, DC, 1-47.

Rendón de la Torre, S., (2013). Memoria de largo plazo en el índice S&P500: un enfoque fractal aplicando el coeficiente de Hurst con el método R/S (rango escalado). Ciencia Económica, 2(2), 35-61

https://doi.org/10.22201/fe.24484962e.2013.v2n2.a3 DOI: https://doi.org/10.22201/fe.24484962e.2013.v2n2.a3

Ryo Eto, E. (2020). Economic and Energy Outlook of Japan for FY2021. IEEE Japan, 1-7.

Shell, S. (2018). Meeting the Goals of the Paris Agreement.

Sierra, G. (2007). Procesos Hurst y movimiento browniano fraccional en mercados fractales. (Trabajo de grado). Instituto Tecnológico de Monterrey, México.

US Energy Information Administration [EIA] (2021). International Energy Outlook 2021. https://www.eia.gov/outlooks/ieo/tables_side_xls.php

Yang, X. (2020). Introduction to stochastic calculus and its applications. SSRN 3607647.

https://doi.org/10.2139/ssrn.3607647 DOI: https://doi.org/10.2139/ssrn.3607647

Published

2024-12-03

How to Cite

Ossa Gonzalez, G. A., & Rojas Domínguez , M. (2024). Determination ps Stochastic processes by means of the Husrt coefficient for the projection of the commodities in the international market. Journal of Quantitative Methods for Economics and Business Administration, 38, 1–21. https://doi.org/10.46661/rev.metodoscuant.econ.empresa.8541

Issue

Section

Articles