Determination ps Stochastic processes by means of the Husrt coefficient for the projection of the commodities in the international market
DOI:
https://doi.org/10.46661/rev.metodoscuant.econ.empresa.8541Keywords:
Stochasticity, Geometric Brownian, Hurst coefficient, CommoditiesAbstract
In this study, the potential relationship between commodity values during the period from 2019 to 2023 was investigated, using the Hurst coefficient as a statistical metric. The results indicated that, generally speaking, the price records exhibited persistence with a coefficient of 0.63, but also revealed a certain degree of randomness. Consequently, a geometric Brownian stochastic process along with Monte Carlo simulation was used to anticipate prices over a one-year horizon in the stock market and, in this way, identify unpredictable fluctuations in each data set. Overall, the simulation results demonstrated a stable average trend despite the random nature of the process, with notable increases in the prices of Brent oil, UK and US copper, and bar steel. . On the other hand, HRC steel prices remained constant, while a significant decrease in natural gas prices was anticipated compared to their average historical values.
Downloads
References
Acuña, C., y Álvarez, A. (2017). Dependencia serial de largo plazo en el índice bursátil chileno, a través del coeficiente de Hurst y Hurst ajustado. Journal of Economics, Finance and Administrative Science, 22(42), 37-50.
https://doi.org/10.1108/JEFAS-02-2017-0047 DOI: https://doi.org/10.1108/JEFAS-02-2017-0047
Aguilar, R. R. (2014). El coeficiente de Hurst y el parámetro α-estable para el análisis de series financieras aplicación al mercado cambiario mexicano. Contaduría y administración, 59(1), 149-173.
https://doi.org/10.1016/S0186-1042(14)71247-1 DOI: https://doi.org/10.1016/S0186-1042(14)71247-1
Argus. (2023). Metals: ARGUS China HRC steel price assessment. https://www.argusmedia.com/es/methodology/key-prices/argus-china-hrc-steel-price
Chamoli, A., Bansal, A. R., y Dimri, V. P. (2007). Wavelet and rescaled range approach for the Hurst coefficient for short and long time series. Computers y Geosciences, 33(1), 83-93. https://doi.org/10.1016/j.cageo.2006.05.008 DOI: https://doi.org/10.1016/j.cageo.2006.05.008
Chaves, H. M. L., y Lorena, D. R. (2019). Assessing reservoir reliability using classical and long-memory statistics. Journal of Hydrology: Regional Studies, 26, 100 - 641. https://doi.org/10.1016/j.ejrh.2019.100641 DOI: https://doi.org/10.1016/j.ejrh.2019.100641
Cadenas, E., Campos‐Amezcua, R., Rivera, W., Espinosa‐Medina, M. A., Méndez‐Gordillo, A. R., Rangel, E., y Tena, J. (2019). Wind speed variability study based on the Hurst coefficient and fractal dimensional analysis. Energy Science & Engineering, 7(2), 361-378. https://doi.org/10.1002/ese3.277 DOI: https://doi.org/10.1002/ese3.277
Cannon, M. J., Percival, D. B., Caccia, D. C., Raymond, G. M., y Bassingthwaighte, J. B. (1997). Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. Physica A: Statistical Mechanics and its Applications, 241(3), 606-626. https://doi.org/10.1016/S0378-4371(97)00252-5 DOI: https://doi.org/10.1016/S0378-4371(97)00252-5
Delgado, O. Y., y Delgado, J. R. (2011). Estimación del exponente de Hurst y la dimensión fractal de una superficie topográfica a través de la extracción de perfiles. UD y la Geomática, (5), 84-91. https://doi.org/10.14483/23448407.3648
Doob, J. L. (1942). What is a stochastic process? The American Mathematical Monthly, 49(10), 648-653. https://doi.org/10.1080/00029890.1942.11991300 DOI: https://doi.org/10.1080/00029890.1942.11991300
Duarte, J., Sierra, K., Pérez-Iñigo, M., y Manuel, J. (2014). Evaluación de la memoria de largo plazo del mercado bursátil colombiano mediante el coeficiente de Hurst. Revista Internacional Administración y Finanzas, 7(4), 1-10.
Equinor (2018). Energy Perspectives. Equinor. https://www.equinor.com/news/archive/07jun2018-energy-perspectives
Gaviria, D. (2019). Introducción al Movimiento Browniano para Finanzas. Derivados Financieros y Finanzas Internacionales. Medellín, Colombia. Instituto Tecnológico Metropolitano 1-29
Global, S. P. (2022). The Future of Copper: Will the Looming Supply Gap Short-Circuit the Energy Transition? New York.
Hall, P., Härdle, W., Kleinow, T., y Schmidt, P. (2000). Semiparametric bootstrap approach to hypothesis tests and confidence intervals for the Hurst coefficient. Statistical inference for stochastic processes, 3, 263-276. https://doi.org/10.1023/A:1009921413616 DOI: https://doi.org/10.1023/A:1009921413616
International Energy Agency [IEA] (2018), World Energy Outlook 2018, IEA, Paris: International Energy Agency.
International Energy Agency [IEA] (2021). Analysis and Forecast to 2026. Paris: International Energy Agency.
Lloyd, J., McBridge, J., y Wang, S. (2022). Oil and Gas Assets at Risk. The Breakthrough Institute. https://thebreakthrough.org/articles/oil-and-gas-assets-at-risk-impacts-of-declining-fossil-production-in-climate-scenarios-in-the-us
Luengas, D., Ardila Romero, E., y Moreno Trujillo, J. F. (2010). Metodología e interpretación del coeficiente de Hurst. ODEON (Bogotá), 5, 265-290.
Luong, P. V., y Sopranzetti, B. (2022). Commodity markets intervention: Consequences of speculation, and informed trading. Journal of Commodity Markets, 26, 100192.
https://doi.org/10.1016/j.jcomm.2021.100192 DOI: https://doi.org/10.1016/j.jcomm.2021.100192
Mandelbrot, B. B., y Wallis, J. R. (1968). Noah, Joseph, and operational hydrology. Water Resources Research, 4(5), 909-918.
https://doi.org/10.1029/WR004i005p00909 DOI: https://doi.org/10.1029/WR004i005p00909
McCauley, J. L., Gunaratne, G. H., y Bassler, K. E. (2007). Hurst exponents, Markov processes, and fractional Brownian motion. Physica A: Statistical Mechanics and its Applications, 379(1), 1-9. https://doi.org/10.1016/j.physa.2006.12.028 DOI: https://doi.org/10.1016/j.physa.2006.12.028
Millán, G. (2021). On the Hurst exponent, Markov processes, and fractional Brownian motion. arXiv,1-3.
https://doi.org/10.31219/osf.io/rqcpb DOI: https://doi.org/10.31219/osf.io/rqcpb
Mobil, E. (2019). Outlook for energy: A perspective to 2040. Exxon Mobil: Irving, TX, USA.
Newell, R., Raimi, D., y Aldana, G. (2019). Global energy outlook 2019: the next generation of energy. Resources for the Future, 1, 8-19.
Nieh, C. C., Yau, H. Y., Hung, K., Ou, H. K., y Hung, S. M. (2013). Cointegration and causal relationships among steel prices of Mainland China, Taiwan, and USA in the presence of multiple structural changes. Empirical Economics, 44, 545-561. https://doi.org/10.1007/s00181-012-0556-6 DOI: https://doi.org/10.1007/s00181-012-0556-6
Patiño, M. A. M., Garzón, M. J. A., y Lozano, J. B. C. (2021). Relevancia del patrón de persistencia de Hurst en la gestión de portafolios de renta variable. Revista de Métodos Cuantitativos para la Economía y la Empresa, 32, 66-82.
https://doi.org/10.46661/revmetodoscuanteconempresa.4122 DOI: https://doi.org/10.46661/revmetodoscuanteconempresa.4122
Postali, F. A., y Picchetti, P. (2006). Geometric Brownian motion and structural breaks in oil prices: a quantitative analysis. Energy Economics, 28(4), 506-522. https://doi.org/10.1016/j.eneco.2006.02.011 DOI: https://doi.org/10.1016/j.eneco.2006.02.011
Raimi, D., Campbell, E., Newell, R. G., Prest, B., Villanueva, S., y Wingenroth, J. (2022). Global Energy Outlook 2022: Turning Points and Tension in the Energy Transition. Resources for the Future Report, Washington, DC, 1-47.
Rendón de la Torre, S., (2013). Memoria de largo plazo en el índice S&P500: un enfoque fractal aplicando el coeficiente de Hurst con el método R/S (rango escalado). Ciencia Económica, 2(2), 35-61
https://doi.org/10.22201/fe.24484962e.2013.v2n2.a3 DOI: https://doi.org/10.22201/fe.24484962e.2013.v2n2.a3
Ryo Eto, E. (2020). Economic and Energy Outlook of Japan for FY2021. IEEE Japan, 1-7.
Shell, S. (2018). Meeting the Goals of the Paris Agreement.
Sierra, G. (2007). Procesos Hurst y movimiento browniano fraccional en mercados fractales. (Trabajo de grado). Instituto Tecnológico de Monterrey, México.
US Energy Information Administration [EIA] (2021). International Energy Outlook 2021. https://www.eia.gov/outlooks/ieo/tables_side_xls.php
Yang, X. (2020). Introduction to stochastic calculus and its applications. SSRN 3607647.
https://doi.org/10.2139/ssrn.3607647 DOI: https://doi.org/10.2139/ssrn.3607647
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Genjis Alberto Ossa Gonzalez, Miriam Rojas Domínguez

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.