Modelos para otorgamiento y seguimiento en la gestión del riesgo de crédito // Models for Granting and Tracking in Credit Risk Management

Autores/as

Palabras clave:

scoring de crédito, riesgo de crédito, probabilidad de incumplimiento, análisis discriminante, regresión logística, redes neuronales, credit scoring, credit risk, default probability, discriminant analysis, logistic regression, neural networks

Resumen

Esta investigación muestra la aplicación y desempeño de tres modelos para la clasificación de solicitantes de créditos: el modelo de análisis discriminante, el de regresión logística y el de redes neuronales; técnicas empleadas por las instituciones financieras en el cálculo del scoring de crédito. Los resultados obtenidos muestran un mejor desempeño del modelo de  redes neuronales en comparación con el de regresión logística y análisis discriminante, logrando una tasa de aciertos en la clasificación del 86.9%.  Para los tres modelos se emplearon catorce variables que informan sobre las características socioeconómicas del prestatario y sobre las características propias de la operación crediticia. En el ámbito de la gestión financiera, este resultado es importante dado que puede complementarse con el cálculo de la probabilidad de incumplimiento, con los montos expuestos en cada operación de crédito y con la tasa de recuperación de la entidad para establecer el valor de las pérdidas esperadas a nivel individual y a nivel del portafolio de créditos de la entidad.

------------------------------------

This research shows the application and performance of three models for the classification of credit applicants: discriminant analysis, logistic regression and neural networks; techniques used by financial institutions for the calculation of credit scoring. The results show a better performance of the neural network model compared to logistic regression and discriminant analysis, achieving a success rate of 86.9\% in the classification. For the three models, fourteen variables were used to inform about applicant's socioeconomic characteristics and those of the credit operation. In the area of credit risk management, this result is relevant since it can be complemented by the calculation of default probability, the exposure at default and the recovery rate of the entity to establish the value of expected losses at both the individual level and the whole credit portfolio of the entity.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Julio César Millán Solarte, Universidad del Valle

Profesor Asistente Universidad del Valle, Departamento de contabilidad y Finanzas, Magister en Ciencias de la Organizacion Msc., Especialista en Finanzas, contador Publico, Asesor Financiero

Edinson Caicedo Cerezo, Universidad del Valle

Profesor Asociado Universidad del Valle, Doctor en Empresa, Universidad de Barcelona, España, Master en Investigación en empresa, finanzas y seguros de la misma universidad; Magister en Ciencias de la organización, Universidad del Valle, Cali, Colombia y Estadístico de la misma universidad.  Director del Grupo de Investigación en solvencia y riesgo financiero, Departamento de Contabilidad y Finanzas, Facultad de  Administración, Universidad del Valle, Cali, Colombia.

Citas

Abdou, H. A., & Pointon, J. (2011). Credit scoring, statistical techniques and evaluation criteria: A review of the literature. Intelligent Systems in Accounting, Finance and Management, 18(2-3), 59-88.

Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222(1), 168-178.

Avery, R. B., Calem, P. S., & Canner, G. B. (2004). Consumer credit scoring: Do situational circumstances matter? Journal of Banking & Finance, 28(4), 835-856.

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society, 54(6), 627-635.

Boj, E., Claramunt, M. M., Esteve, A., & Fortiana, J. (2009). Criterio de selección de modelo en credit scoring. Aplicación del análisis discriminante basado en distancias. Artículo presentado en Anales del Instituto de Actuarios Españoles.

Brooks, C. (2014). Introductory econometrics for finance: Cambridge university press.

Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446-3453.

Chatterjee, S., & Barcun, S. (1970). A nonparametric approach to credit screening. Journal of the American statistical Association, 65(329), 150-154.

Fix, E., & Hodges Jr, J. L. (1952). Discriminatory analysis-nonparametric discrimination: Small sample performance: DTIC Document.

Gujarati, D. N. (2003). Basic Econometrics. 4th: New York: McGraw-Hill.

Hamdi, M., & Mestiri, S. (2014). Bankruptcy prediction for Tunisian firms: An application of semi-parametric logistic regression and neural networks approach. Economics Bulletin, 34(1), 133-143.

Hand, D. J., & Henley, W. E. (1997). Statistical Classification Methods in Consumer Credit Scoring: A Review. Journal of the Royal Statistical Society. Series A (Statistics in Society), 160(3), 523-541. doi: 10.2307/2983268

Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83-85.

Henley, W., & Hand, D. J. (1996). A k-nearest-neighbour classifier for assessing consumer credit risk. The Statistician, 77-95.

Hoffmann, F., Baesens, B., Mues, C., Van Gestel, T., & Vanthienen, J. (2007). Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms. European Journal of Operational Research, 177(1), 540-555.

Kiruthika, & Dilsha, M. (2015). A Neural Network Approach for Microfinance Credit Scoring. Journal of Statistics and Management Systems, 18(1-2), 121-138.

Lawrence, E. C., & Arshadi, N. (1995). A Multinomial Logit Analysis of Problem Loan Resolution Choices in Banking. Journal of Money, Credit and Banking, 27(1), 202-216. doi: 10.2307/2077859

Lee, T.-S., Chiu, C.-C., Lu, C.-J., & Chen, I.-F. (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 23(3), 245-254.

Malhotra, R., & Malhotra, D. (1999). Fuzzy systems and neuro-computing in credit approval. Journal of lending and Credit Risk Management, 81, 24-27.

McNeil, A., Frey, R., & Embrechts, P. (2005). Quantitative risk management: Concepts, techniques and tools. Princeton Series in Finance, Princeton.

Quintana, M. J. M., Gallego, A. G., & Pascual, M. E. V. (2005). Aplicación del análisis discriminante y regresión logística en el estudio de la morosidad en las entidades financieras: comparación de resultados. Pecvnia: Revista de la Facultad de Ciencias Económicas y Empresariales, Universidad de León(1), 175-199.

Rayo Cantón, S., Lara Rubio, J., & Camino Blasco, D. (2010). Un modelo de Credit Scoring para instituciones de microfinanzas en el marco de Basilea II. Journal of Economics, Finance and Administrative Science, 15(28), 89-124.

Sohn, S. Y., Kim, D. H., & Yoon, J. H. (2016). Technology credit scoring model with fuzzy logistic regression. Applied Soft Computing, 43, 150-158.

Tang, T.-C., & Chi, L.-C. (2005). Predicting multilateral trade credit risks: comparisons of Logit and Fuzzy Logic models using ROC curve analysis. Expert Systems with Applications, 28(3), 547-556.

Thomas, L., Edelman, D., & Crook, J. (2002). Credit scoring & its applications, Society for Industrial Mathematics: Philadelphia.

Thomas, L. C., Edelman, D. B., & Crook, J. N. (2004). Readings in credit scoring: foundations, developments, and aims: Oxford University Press on Demand.

Tsai, M.-C., Lin, S.-P., Cheng, C.-C., & Lin, Y.-P. (2009). The consumer loan default predicting model – An application of DEA–DA and neural network. Expert Systems with Applications, 36(9), 11682-11690.

Vapnik, V. (1998). The support vector method of function estimation Nonlinear Modeling (pp. 55-85): Springer.

Villano, F. E. S. (2013). Cuantificación del riesgo de incumplimiento en créditos de libre inversión: un ejercicio econométrico para una entidad bancaria del municipio de Popayán, Colombia. Estudios Gerenciales, 29(129), 416-427.

Wiginton, J. C. (1980). A note on the comparison of logit and discriminant models of consumer credit behavior. Journal of Financial and Quantitative Analysis, 15(03), 757-770.

Xiao, W., Zhao, Q., & Fei, Q. (2006). A comparative study of data mining methods in consumer loans credit scoring management. Journal of Systems Science and Systems Engineering, 15(4), 419-435.

Yap, B. W., Ong, S. H., & Husain, N. H. M. (2011). Using data mining to improve assessment of credit worthiness via credit scoring models. Expert Systems with Applications, 38(10), 13274-13283.

Yu, L., Wang, S., Lai, K. K., & Zhou, L. (2008). BioInspired Credit Risk Analysis: Springer

Publicado

2018-06-30

Cómo citar

Millán Solarte, J. C., & Caicedo Cerezo, E. (2018). Modelos para otorgamiento y seguimiento en la gestión del riesgo de crédito // Models for Granting and Tracking in Credit Risk Management. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 25, Páginas 23 a 41. Recuperado a partir de https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2370

Número

Sección

Artículos