Job classification in Mexico using a machine learning approach

Authors

DOI:

https://doi.org/10.46661/rev.metodoscuant.econ.empresa.10760

Keywords:

Discouragement, machine learning, classification, Mexico, ENOE

Abstract

In this study, work discouragement in Mexico is addressed from a mathematical modeling perspective. Two conditions of employability are considered: unemployed and discouraged, and the classification of these groups is characterized using machine learning models and sociodemographic variables, such as educational level, sex, age, marital status, number of children, relationship, and area of residence. Considering data from the National Occupation and Employment Survey, the highest classification accuracy of the algorithms addressed was obtained by neural networks and random forests. These models indicated that the main features that distinguish the discouraged from the unemployed are women aged 20-29, with high school and higher education, without children, single, and residing in urban areas. The most relevant thing is that, thanks to the results obtained with the machine learning models, it is possible not only to predict with greater precision who could fall into work discouragement, but also, to propose more effective and focused public policies. These policies can be specifically aimed at the sectors identified as most vulnerable, thus contributing to the reduction of job discouragement and the improvement of employability in the country.

Downloads

Download data is not yet available.

References

Arroyo-Martínez, S., & Ortega-Ovalle, L. G. (2020). El impacto de los salarios en la tasa de desempleo en México del periodo 2000-2017 a través de un modelo estocástico. Revista de investigación en ciencias contables y administrativas, 6(1), pp. 19-48. https://ideas.repec.org/a/msn/rijrnl/v6y2020i1p19-48.html

Barajas, A., & Ibarra, C. A. (2016). Modelos econométricos del desempleo en México: una revisión de la literatura. Memorias del Congreso Nacional de Economía Política.

Casal, R.F., Costa, J., & Oviedo, M. (2020). Métodos de Aprendizaje estadístico.https://rubenfcasal.github.io/aprendizaje_estadistico/aprendizaje_estadistico.pdf

Dinov, I. D. (2018). Data science and predictive analytics. Springer. https://doi.org/10.1007/978-3-319-72347-1

El Naqa, I., & Murphy, M. J. (2015). What is machine learning? In I. El Naqa, R. Li, & M. J. Murphy (Eds.), Machine learning in radiation oncology: Theory and applications (pp. 3-11). Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3_1

Encuesta nacional de ocupación y empleo (ENOE). (n.d.). Instituto Nacional de Estadística y Geografía (INEGI). Retrieved February 17, 2024, https://www.inegi.org.mx/programas/enoe/

Escoto, A., Márquez, C., Prieto, V., Ochoa, S., & Reyes, P. (2017). Desempleo abierto y desalentado en tres mercados de trabajo latinoamericanos. Población y mercados de trabajo en América Latina: temas emergentes, 81-119. https://www.researchgate.net/profile/Ana-

Escoto/publication/317389203_Desempleo_abierto_y_desalentado_en_tres_mercados_de_trabajo_latinoamericanos/links/60b169efa6fdcc1c66ebcc94/Desempleo-abierto-y-desalentado-en-tres-mercados-de-trabajo-latinoamericanos.pdf

Fernández-Delgado, M., Sirsat, M., Cernadas, E., Alawadi, S., Barro, S., & Febrero-Bande, M. (2019). An extensive experimental survey of regression methods. Neural Networks, 111, pp. 11-34. https://doi.org/10.1016/j.neunet.2018.12.010

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. https://www.deeplearningbook.org/

Heath, J. (2014). Unemployment in mexico revisited [Recuperado el 12 de septiembre de 2024]. https://jonathanheath.net/unemployment-in-mexico-revisited/

Hernández Pérez, J. (2020). "Desempleo en México por características sociodemográficas, 2005-2018". In: Economía UNAM, 17(50), pp. 166-181. http://revistaeconomia.unam.mx/index.php/ecu/article/view/524

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression. John Wi- ley & Sons.https://doi.org/10.1002/9781118548387

Humphrey, D.D. (1940). Alleged "additional workers" in the measurement of unemployment. Journal of Political Economy, 48(3), pp. 412-419. https://doi.org/10.1086/255563

INEGI. (2023). Cómo se hace la ENOE: Métodos y procedimientos. Encuesta Nacional de Ocupación y Empleo. https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/ bvinegi/productos/nueva_estruc/702825190613.pdf

International Labour Organization. (2023). Resolution to amend the 19th icls resolution concerning statistics of work, employment and labour underutilization [Accessed: 2024-10-29https://www.ilo.org/sites/default/files/wcmsp5/groups/public/@dgreports/@stat/documents/normativeinstrument/wcms_230304.pdf

International Labour Organization. (2024). Estadísticas sobre las mujeres - ilostat [Accedido: 2024-06-27].https://ilostat.ilo.org/es/topics/women/

Loh, W. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(1), pp. 14-23. https://doi.org/10.1002/widm.8

Long, C. D. (1953). Impact of effective demand on the labor supply. The American Economic Review, 43(2), pp. 458-467.

Long, C. D. (1958). The labor force under changing income and employment. NBER Books.

Maridueña-Larrea, Á., & Martín-Román, Á. (2024). The unemployment invariance hypothesis and the implications of added and discouraged worker effects in Latin America. Latin American Economic Review, 33, pp. 1-25. https://doi.org/10.60758/laer.v33i.213

Mariscal, R., & Villarreal, E. (2017). Modelos econométricos del mercado laboral en México: un enfoque de series temporales. Investigación Económica, 76(299), pp. 149-174.

Martín-Román, Á. L. (2022). Beyond the added-worker and the discouraged-worker effects: The entitled-worker effect. Economic Modelling, 110, 105812. https://doi.org/10.1016/j.econmod.2022.105812

Molnar, C. (2020). Interpretable machine learning. https://christophm.github.io/interpretable-ml-book/index.html

Moy, V. (2020). Trabajadores desanimados y sin empleo. https://imco.org.mx/trabajadores-desanimados-y-sin-empleo/

Murguía Salas, V., Ronzón, Z. & Jardón A. (2023). Desaliento laboral. Una aproximación al análisis de la subutilización de la fuerza de trabajo juvenil de México. Repositorio Institucional de la Universidad Autónoma del Estado de México, pp. 145-162.http://hdl.handle.net/20.500.11799/140182

Ortiz Lazcano, D. A., & Rodríguez Esparza, L. J. (2023). Unemployment Vulnerability Index in Mexico: Effects of the covid-19 pandemic. Economía, sociedad y territorio, 23(71), pp. 309-338. https://doi.org/10.22136/est20231862

Peón, F. V. (2021). Precariedad y desaliento laboral de los jóvenes en México. Contraste Regional 9(17), pp. 185-189. https://www.ciisder.mx/images/revista/contraste-regional-17/93_Precariedad_y_desaliento_laboral_de_los_jvenes_en_Mxico.pdf

Probst, P., Boulesteix, A., & Bischl, B. (2019). Tunability: Importance of Hyperparameters of Machine Learning Algorithms. Journal of Machine Learning Research 20(53), pp. 1-32. http://jmlr.org/papers/v20/18-444.html.

Ruiz Nápoles, P., & Ordaz Díaz, J. L. (2011). Evolución reciente del empleo y el desempleo en México. Economía UNAM 8(23), pp. 91-105. https://www.scielo.org.mx/scielo.php?pid=S1665-952X2011000200005&script=sci_arttext

Sánchez-Salgado, R., & Alonso-Villarreal R. (2018). Análisis econométrico del desempleo en México: una aplicación de la metodología VAR. Estudios Económicos 33(1), pp. 27-56.

Scotti, M. C. M. (2015). Buscadores, desalentados y rechazados: Las dinámicas de inclusión y exclusión laboral enraizadas en la desocupación. El Colegio de México. https://repositorio.colmex.mx/concern/theses/w95050724?locale=es

Segovia Hernández, D. A. (2021). Pronóstico del desempleo en México: aplicación de series de tiempo multivariadas. Universidad Veracruzana. Facultad de Estadística e Informática. Región Xalapa. https://cdigital.uv.mx/server/api/core/bitstreams/0ae33d76-e58d-487e-a998-38851a467e45/content

Sen, J., Mehtab, S., Sen, R., Dutta, A., Kherwa, P., Ahmed, S., Berry, P., Khurana, S., Singh, S., Cadotte, D., Anderson, D., Ost, K., Akinbo, R., Daramola, O., & Lainjo, B. (2022, January). Machine learning: Algorithms, models, andapplications.https://doi.org/10.48550/arXiv.2201.01943

Woytinsky, W. S. (1940). Additional workers on the labor market in depressions: A reply to Mr. Humphrey. Journal of Political Economy, 48(5), pp. 735-739. https://doi.org/10.1086/255613

Published

2025-05-16

How to Cite

Rodríguez Esparza, L. J., Ortiz Lazcano, D. A., & Llamas Valle, M. F. (2025). Job classification in Mexico using a machine learning approach. Journal of Quantitative Methods for Economics and Business Administration, 1–22. https://doi.org/10.46661/rev.metodoscuant.econ.empresa.10760

Issue

Section

Articles