Economic inequality measurement through Lorenz curves
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.2059Keywords:
Curvas de Lorenz, medidas de desigualdad, distribución de la renta, Lorenz curves, income inequality measures, income distributionAbstract
This paper focuses both on the foundations of income inequality measures and on their relations with Lorenz curves, the Pigou-Dalton’s transfer principle and majorization relations among income vectors. So the historic development of these concepts is surveyed to show how the current broadaccepted set of properties and axioms was generated, in order to define whether an inequality measure has a good perform or not. In doing so, it will be possible to check out when a particular inequality measure performs in a suitable way. Furthermore, an analysis on the problems related to inequality orders and dominance relations among income vectors is included. Because of choosing a unique inequality indicator is highly arguable, the construction of a Lorenz-compatible synthetic dynamic inequality indicator is presented, using an initial set with basic Lorenz-compatible inequality indices as starting point. Finally, as an illustration, an analysis of both inequality and well-being trends in the European Union countries during 1993-1999 is included.
Downloads
References
ARNOLD, B.C. (1987). Majorization and the Lorenz order: A brief introduction. Lecture Notes in Statistics. Springer Verlag. New York.
ARNOLD, B.C.; ROBERTSON, C.A.; BROCKETT, P.L. y SHU, B.-Y. (1987). “Generating ordered families of Lorenz curves by strongly unimodal distributions”. Journal of Business and Economic Statistics, 5, 2, 305-308.
ATKINSON, A.B. (1970). “On the measurement of inequality”. Journal of Economic Theory, 2, 244-263.
AYALA, L. y SASTRE, M. (2002) “What determines income mobility differences across the European Union?”. Working Papers of the Institute for Social and Economic Research, 2002-07. Colchester: University of Essex.
BARTELS, C.P.A. (1977). Economics Aspects of Regional Welfare. Martinus Nijhoff Sciences Division.
BIRKHOFF, G. (1976). “Tres observaciones sobre el Álgebra Lineal”. Univ. Nacional de Tucuman Rev., Serie A, 5, 147-151.
BOURGUIGNON, F. (1979). “Decomposable income inequality measures”. Econometrica, 47, 901-920.
CASAS, J.M.; DOMÍNGUEZ, J. y NÚÑEZ, J.J. (2001) “Sobre la utilización de las escalas de equivalencia en el estudio de la desigualdad y la pobreza. El caso de España”. Anales de Economía Aplicada. XV Reunión Anual de ASEPELT-España. La Coruña. Publicación en CD-ROM (2003).
CASAS, J.M.; HERRERÍAS, R. y NÚÑEZ, J.J. (1997). “Familias de Formas Funcionales para estimar la Curva de Lorenz”. Actas de la IV Reunión Anual de ASEPELT-España. Servicio de Estudios de Cajamurcia, 171-176. Reimpreso en Aplicaciones estadísticas y económicas de los sistemas de funciones indicadoras (Herrerías, R.; Palacios, F. y Callejón, J., eds.). Univ. Granada, 2001, 119-125.
CASAS, J.M. y NÚÑEZ, J.J. (1987). “Algunas Consideraciones sobre las Medidas de Concentración. Aplicaciones”. Actas de las II Jornadas sobre Modelización Económica, 49-62. Barcelona. Reimpreso en Aplicaciones estadísticas y económicas de los sistemas de funciones indicadoras (Herrerías, R.; Palacios, F. y Callejón, J., eds.). Univ. Granada, 2001, 111-118.
CASAS, J.M. y NÚÑEZ, J.J. (1991). “Sobre la Medición de la Desigualdad y Conceptos Afines”. Actas de la V Reunión Anual de ASEPELT-España, Caja de Canarias. Vol.2, 77-84. Reimpreso en Aplicaciones estadísticas y económicas de los sistemas de funciones indicadoras (Herrerías, R.; Palacios, F. y Callejón, J., eds.). Univ. Granada, 2001, 127-133.
CASTAGNOLI, E. y MULIERE, P. (1990). “A note on inequality measures and the Pigou-Dalton Principle of Transfers”. Publicado en Income and Wealth Distribution, Inequality and Poverty. (Dagum, C. y Zenga, M., eds.) Springer Verlag, 171-182.
CASTILLO, E.; HADI, A.S. y SARABIA, J.M. (1998). “A method for estimating Lorenz curves”. Communications in Statistics. Theory and Methods, 27, 2037-2063.
COWELL, F.A. (1995). Measuring inequality. 2ª ed. LSE Handbooks in Economics. Prentice Hall/Harvester Wheatsheaf.
DAGUM, C. (2001). “Desigualdad del rédito y bienestar social, descomposición, distancia direccional y distancia métrica entre distribuciones”. Estudios de Economía Aplicada, 17, 5-52.
DAGUM, C. y ZENGA, M., eds. (1990). Income and Wealth Distribution, Inequality and Poverty. Springer Verlag.
DALTON, H. (1920). “The measurement of the inequality of incomes”. Economic Journal, 30, 348-361.
DAVIES, J. y HOY, M. (1994). “The normative significance of using third-degree stochastic dominance in comparing income distributions”. Journal of Economic Theory, 64, 520-530.
DOMÍNGUEZ, J. y NÚÑEZ, J.J. (2005). “The evolution of economic inequality in the EU countries during the nineties”. First Meeting of the Society for the Study of Economic Inequality (ECINEQ). Palma de Mallorca. [http://www.ecineq.org].
DOMÍNGUEZ, J.; NÚÑEZ, J.J. y RIVERA, L.F. (2002) “Una perspectiva dinámica del análisis de la desigualdad en España, a través de escalas de equivalencia”. Actas de la XVI Reunión Anual de ASEPELT-España. Publicación en CD-ROM. Ed. McGraw-Hill, Madrid.
DOMÍNGUEZ, J.; NÚÑEZ, J.J. y RIVERA, L.F. (2004). “A longitudinal synthetic indicator of inequality. The case of EU countries”. XXIX Simposio de Análisis Económico. Pamplona. [http://www.webmeets.com/files/papers/SAE/2004].
DOMÍNGUEZ, J.; NÚÑEZ, J.J. y RIVERA, L.F. (2005). “Tendencias de los niveles de vida en los países de la UE en la década de los 90”. VII Reunión de Economía Mundial. Madrid. [http://www.ucm.es /info/sieterem].
FLEURBAEY, M. y MICHEL, P. (2001). “Transfer Principles and inequality aversion, with an application to optimal growth”. Mathematical Social Sciences, 42, 1-11.
FLURY, B. (1984). “Common principal components in k groups”. Journal of the American Statistical Association, 79, 388, 892-898.
FOSTER, J.E. (1985). “Inequality measurement”. Publicado en Fair Allocation (H.P. Young, ed.), Proceedings of Symposia in Applied Mathematics, Vol.33, Providence, American Mathematical Society, 31-68.
GARCÍA, C.; NÚÑEZ, J.J.; RIVERA, L.F. y ZAMORA, A.I. (2002). “Análisis comparativo de la desigualdad a partir de una batería de indicadores. El caso de las Comunidades Autónomas españolas en el periodo 1973-1991”. Estudios de Economía Aplicada, Vol. 20, nº1, 137-154.
GASTWIRTH, J.L. (1971). “A general definition of the Lorenz curve”. Econometrica, 39, 1037-1039.
GINI, C. (1912). “Variabilitá e Mutabilitá: Contributo allo studio delle distribuzioni e relazioni statistiche”. Studi Economico-Giuridici dell’Universitá di Cagliari, 3, 1-158.
GINI, C. (1921). “Measurement of inequality of incomes”. The Economic Journal, 31, 124-126.
GUPTA, M.R. (1984). “Functional form for estimating the Lorenz curve”. Econometrica, 52, 5, 1313-1314.
HARDY, G.H.; LITTLEWOOD, J.E. y POLYA, G. (1929). “Some simple inequalities satisfied by convex functions”. The Messenger of Mathematics, 26, 145-153.
HARDY, G.H.; LITTLEWOOD, J.E. y POLYA, G. (1952). Inequalities. 2ª ed. Cambridge University Press.
HOUGHTON, J.C. (1978). “Birth of a parent: the Wakeby distribution for modelling flood blows”. Water Resources Research, 14, 1105-1109.
IRITANI, J. y KUGA, K. (1983). “Duality between the Lorenz curves and the income distribution functions”. Economic Studies Quarterly, 23, 9-21.
KAKWANI, N.C. (1980). Income Inequality and Poverty. Methods of Estimation and Policy Applications. Oxford University Press.
KAKWANI, N.C. y PODDER, N. (1973). “On the estimation of Lorenz curves from grouped observations”. International Economic Review, 14, 2, 278-291.
KARAMATA, J. (1932). “Sur une inégalité rélative aux fonctions convexes”. Publ. Math. Univ. Belgrade, 1, 145-148.
KENDALL, M. y STUART, A. (1977). The Advanced Theory of Statistics, Vol. 1, 4ª ed. C. Griffin. London.
KOLM, S.-Ch. (1976a). “Unequal inequalities I”. Journal of Economic Theory, 12, 416-442.
KOLM, S.-Ch. (1976b). “Unequal inequalities II”. Journal of Economic Theory, 13, 82-111.
KRZANOWSKI, W.J. (1979). “Between-groups comparison of principal components”. Journal of the American Statistical Association, 74, 703-707. Correction note (1981), Journal of the American Statistical Association, 76, 1022.
KUZNETS, S. (1953). Share of upper income groups in income and savings. National Bureau of Economic Research. New York.
LORENZ, M.O. (1905). “Methods of measuring the concentration of wealth”. Journal of the American Statistical Association, 9, 209-219.
MARSHALL, A.W. y OLKIN, I. (1979). Inequalities: Theory of Majorization and its Applications. Academic Press. New York.
MEHRAN (1976). “Linear measures of income inequality”. Econometrica, 44, 805-809.
MOYES, P. (1987). “A new concept of Lorenz domination”. Economics Letters, 23, 203-207.
MUIRHEAD, R.F. (1903). “Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters”. Proceedings of Edinburgh Mathematical Society, 21, 144-157.
MULIERE, P. y SCARSINI, M. (1989). “A note on stochastic dominance and inequality measures”. Journal of Economic Theory, 49, 314-323.
NYGARD, F. y SANDSTROM, A. (1981). Measuring Income Inequality. Amqvist & Wiksell International. Stockholm.
OSTROWSKI, A.M. (1952). “Sur quelques applications des fonctions convexes et concaves au sens de I. Schur”. Journal of Math. Pures Appl., 9, 253-292.
PARETO, V. (1897). Cours d’Economie Politique. Rouge. Lausanne.
PENA, J.B. (1977). Problemas de la medición del bienestar y conceptos afines. INE. Madrid.
PENA, J.B. (Dir.); CALLEALTA, F.J.; CASAS, J.M.; MEREDIZ, A. y NÚÑEZ, J.J. (1996). Distribución Personal de la Renta en España. Pirámide. Madrid.
PEÑA, D. (2002) Análisis de datos multivariantes. McGraw-Hill. Madrid.
PERACCHI, F. (2002) “The European Community Household Panel: A Review”. Empirical Economics, 27, 63-90.
PIETRA, G. (1914-15). “Delle relazioni tra gli indici di variabilitá”. Nota I en Atti del R. Istituto Veneto di Scienze, Lettere ed Arti, LXXIV, Parte II, 775-804.
PIETRA, G. (1948). Studi di statistica metodologica. Giuffre. Milan.
PIGOU, A. C. (1912). Wealth and welfare. McMillan. New York.
RAMOS, H. y SORDO, M.A. (2001). “El orden de Lorenz generalizado de orden j, ¿un orden en desigualdad?”. Estudios de Economía Aplicada, 19, 139-149.
RAMOS, H. y SORDO, M.A. (2003). “Dispersion measures and dispersive orderings”. Statistics and Probability Letters, 61, 123-131.
RAWLS, J. (1972). A theory of justice. Oxford University Press. London.
RENCHER, A.C. (1995). Methods of Multivariate Analysis. Wiley Series in Probability and Mathematical Statistics. New York.
RUIZ-CASTILLO, J. (1986). “Problemas conceptuales en la medición de la desigualdad”. Hacienda Pública Española, 101, 17-31.
RUIZ-CASTILLO, J. (1987). La medición de la pobreza y de la desigualdad en España, 1980-81. Estudios Económicos, nº42. Servicio de Estudios del Banco de España. Madrid.
SARABIA, J.M.; CASTILLO, E. y SLOTTJE, D. (1999). “An ordered family of Lorenz curves”. Journal of Econometrics, 91, 43-60.
SARABIA, J.M.; CASTILLO, E. y SLOTTJE, D. (2002). “Lorenz ordering between McDonald’s generalized functions of the income size distribution”. Economics Letters, 75, 265-270.
SCHUR, I. (1923). “Uber eine klasse von mittelbildungen mit anwendungen die determinaten”. Theorie Sitzungsber Berlin Math. Gesellschaft, 22, 9-20.
SCHUTZ, R.R. (1951). “On the measurement of income inequality”. American Economic Review, 41, 107-122.
SEN, A. (1973). On Economic Inequality. Clarendon Press, Paperbacks. Oxford.
SEN, A. y FOSTER, J.E. (1999). On Economic Inequality. Expanded edition. Clarendon Press Paperbacks. Oxford University Press.
SHORROCKS, A. (1983). “Ranking income distributions”. Economica, 50, 3-18.
SHORROCKS, A. y FOSTER, J.E. (1987). “Transfer sensitive inequality measures”. Review of Economic Studies, 54, 485-497.
ZUBIRI, I. (1985). “Una introducción al problema de la medición de la desigualdad”. Hacienda Pública Española, 95, 291-317.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2006 Revista de Métodos Cuantitativos para la Economía y la Empresa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.