Explicit knowledge in small and medium enterprises. An analysis from the perspective of social networks
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.3578Keywords:
externalization, network, open externalizationAbstract
Despite of the recognized importance on the explicitation of knowledge within knowledge management, this process has been mainly studied from the internal perspective. That is, considering only the workers as explicit actors, leaving aside that the sources of knowledge are often external actors. The objective of this paper is to evaluate if there are significant differences between companies that make knowledge explicit internally, versus those that include external actors in this process. For this, a network model was applied in which the nodes represent internal and external actors and the directed links give an account of who is the source of knowledge and who is who is responsible for the disclosure of knowledge. The model was applied to 21 small Colombian service companies and based on the results obtained it was found that it is possible to classify companies into four categories according to their tendency to show more or less internal explicitness, and more or less open explicitness. The results suggest that explicitation profiles exist with better performance than others.
Downloads
References
Aghajani, H., Yahyazadehfar, M., & Hosseinzadeh, S.A. (2011). Knowledge creation processes: a survey of SMEs in the Iranian Province of Mazandaran. Journal of Global Entrepreneurship Research, 1(1), 59-71.
Alvarenga, R.C.D.D., & Choo, C.W. (2011). Expanding the concept of Ba: managing enabling contexts in knowledge organizations. Perspectivas em Ciência da Informação, 16(3), 2-25.
Barabási, A, L, (2012). Linked: The new science of networks. New York: Plume.
Contreras, E. (2009). Transformación de Conocimiento Tácito en Explícito, una revisión crítica. Santiago de Chile, Chile: Ceges.
Erden, Z., Von Krogh, G., & Nonaka, I. (2008). The quality of group tacit knowledge. The Journal of Strategic Information Systems, 17(1), 4-18. DOI: 10.1016/j.jsis.2008.02.002.
Eslami, H., Ebadi, A., & Schiffauerova, A. (2013). Effect of collaboration network structure on knowledge creation and technological performance: the case of biotechnology in Canada. Scientometrics, 97(1), 99-119. DOI: 10.1007/s11192-013-1069-6.
Gao, X., & Guan, J. (2009). Networks of scientific journals: An exploration of Chinese patent data. Scientometrics, 80(1), 283-302. DOI: 10.1007/s11192-007-2013-4
González, D. & Barato, S. (2003). Modelamiento difuso con técnicas de Clustering. Ingeniería, 8(1), 86-94.
González-Sánchez, R., & García-Muiña, F. E. (2011). Innovación abierta: Un modelo preliminar desde la gestión del conocimiento. Intangible capital, 7(1), 82-115. DOI: 10.3926/ic.2011.v7n1.p82-115.
Goonesekera, T. (2012). Measuring Knowledge Management Maturity Levels in the Manufacturing Sector Using Fuzzy Logic Theory (Doctoral dissertation, La Trobe University).
Hahn, M.H., Lee, K.C., & Lee, D.S. (2015). Network structure, organizational learning culture, and employee creativity in system integration companies: the mediating effects of exploitation and exploration. Computers in Human Behavior, 42, 167-175. DOI: 10.1016/j.chb.2013.10.026.
Hemmecke, J., & Stary, C. (2004, April). A framework for the externalization of tacit knowledge embedding repertory grids. In Proceedings OKLC-2004, 5th European Conference on Organizational Knowledge, Learning and Capabilities, Innsbruck (Vol. 56).
Henriquez, L. (2009). Políticas para las Mipymes frente a la crisis. Conclusiones de un estudio comparativo de América Latina y Europa. Documento de Trabajo Europe Aid y ONUDI.
Herschel, R.T., Nemati, H., & Steiger, D. (2001). Tacit to explicit knowledge conversion: knowledge exchange protocols. Journal of Knowledge Management, 5(1), 107-116. DOI: 10.1108/13673270110384455.
Ibarrarán, P., Maffioli, A., & Stucchi, R. (2009). SME policy and firms’ productivity in Latin America.
Kabir, N. (2013). Tacit knowledge, its codification and technological advancement. Electronic Journal of Knowledge Management, 11(3), 235‐243.
Kao, S.C., & Wu, C. (2016). The role of creation mode and social networking mode in knowledge creation performance: Mediation effect of creation process. Information & Management, 53(6), 803-816. DOI: 10.1016/j.im.2016.03.002.
Kinyua, G.M., Muathe, S.M.A., & Kilika, J.M. (2015). Effect of knowledge conversion and knowledge application on performance of commercial banks in Kenya. International Journal of Education and Research, 3(10), 431-445.
Liu, H., Fu, Y., & Chen, Z. (2009). Effects of social network on knowledge transfer within R&D team. In Information Management, Innovation Management and Industrial Engineering, 2009 International Conference on (Vol. 3, pp. 158-162). IEEE.
Liu, H., Wang, Q., & Mei, Y. (2012). Effects of start-up firm's social network on knowledge transfer: An empirical study. In Information Management, Innovation Management and Industrial Engineering (ICIII), 2012 International Conference on (Vol. 3, pp. 228-233). IEEE.
Morrison, E. (2002). Newcomers´relationship: the role of social network ties during socialization. Academy of Mangement Journal, 45, 1149-1160. DOI: 10.5465/3069430.
Muthuveloo, R., Shanmugam, N., & Teoh, A.P. (2017). The impact of tacit knowledge management on organizational performance: Evidence from Malaysia. Asia Pacific Management Review, 22(4), 192-201. DOI: 10.1016/j.apmrv.2017.07.010.
Navarro, J.C., & Olivari, J. (2016). La política de innovación en América Latina y el Caribe. Nuevos caminos. Washington DCB: Banco Interamericano de Desarrollo.
Newman, M.E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167-256.
Nezafati, N., Afrazeh, A., & Jalali, S.M.J. (2009). A dynamic model for measuring knowledge level of organizations based on Nonaka and Takeuchi Model (SECI). Scientific Research and Essays, 4(5), 531-542.
Nonaka, I. (1991). The knowledge creating company. Harvard Business Review, 69, 96‐104.
Nonaka, I., & Takeuchi, H. (1995). La organización creadora de conocimiento. Cómo las compañías japonesas crean la dinámica de la innovación (M.H. Kocka, Trans. 1ª ed.). México: Oxford University Press.
Nonaka, I., & Konno, N. (1998). The concept of “Ba”: Building a foundation for knowledge creation. California Management Review, 40(3), 40-54.
Nonaka, I., Toyama, R., & Konno, N. (2000). SECI, Ba and leadership: a unified model of dynamic knowledge creation. Long Range Planning, 33(1), 5-34. DOI: 10.1016/S0024-6301(99)00115-6.
Nonaka, I., Toyama, R., & Nagata, A. (2000). A firm as a knowledge-creating entity: a new perspective on the theory of the firm. Industrial and corporate change, 9(1), 1-20. DOI: 10.1093/icc/9.1.1.
Nonaka, I., & Toyama, R. (2005). The theory of the knowledge-creating firm: subjectivity, objectivity and synthesis. Industrial and Corporate Change, 14(3), 419-436. DOI: 10.1093/icc/dth058.
Nonaka, I., Von Krogh, G., & Voelpel, S. (2006). Organizational knowledge creation theory: Evolutionary paths and future advances. Organization studies, 27(8), 1179-1208. DOI: 10.1177/0170840606066312.
Nonaka, I., & Toyama, R. (2007). Strategic management as distributed practical wisdom (phronesis). Industrial and Corporate Change, 16(3), 371-394. DOI: 10.1093/icc/dtm014.
Nonaka, I. (2007). The Knowledge-Creating Company. Harvard Business Review, 85, 162-171.
Phelps, C., Heidl, R., & Wadhwa, A., (2012). Knowledge, networks, and knowledge networks: A review and research agenda. Journal of Management, 38(4), 1115-1166. DOI: 10.1177/0149206311432640.
Rai, R., & Prakash, A. (2012). A relational perspective to knowledge creation: Role of servant leadership. Journal of Leadership Studies, 6(2), 61-85. DOI: 10.1002/jls.21238.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059-1069. DOI: 10.1016/j.neuroimage.2009.10.003.
Schilling, M.A., & Phelps, C.C. (2007). Interfirm collaboration networks: The impact of large-scale network structure on firm innovation. Management Science, 53(7), 1113-1126. DOI: 10.1287/mnsc.1060.0624.
Singh, J., & Fleming, L. (2010). Lone inventors as sources of breakthroughs: Myth or reality? Management Science, 56(1), 41-56.
Smith, E.A. (2001). The role of tacit and explicit knowledge in the workplace. Journal of Knowledge Management, 5(4), 311-321. DOI: 10.1108/13673270110411733.
Sosa-García, J., Vega-Pons, S., & Ruiz-Shulcloper, J. (2012). Algoritmos de agrupamiento difuso, índices de validación: un estado del arte. Reporte técnico Reconocimiento de Patrones. La Habana, Cuba: Centro de Aplicaciones de Tecnologías Avanzadas.
Sutanto, J., Tan, C.H., Battistini, B., & Phang, C.W. (2011). Emergent leadership in virtual collaboration settings: A social network analysis approach. Long Range Planning, 44(5), 421-439. DOI: 10.1016/j.lrp.2011.09.001.
Takeuchi, H. (2001). Towards a universal management of the concept of knowledge. En Nonaka, I. & Teece, D. (eds.) (2001), Managing Industrial Knowledge: Creation, Transfer and Utilization, London: Sage.
Takeuchi, H. (2013). Knowledge-based view of strategy. Universia Business Review, 40, 68-79.
Wang, M.C., & Fang, S.C. (2011, June). Accumulation of knowledge capabilities: The perspective of knowledge-based view and network theory. In Technology Management Conference (ITMC), 2011 IEEE International (pp. 383-387). IEEE.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (Vol. 8). Cambridge University Press.
Wei, C., & Alvarenga, R. (2010). Beyond the ba: managing enabling contexts in knowledge organizations. Journal of Knowledge Management, 14(4), 592-610. DOI: 10.1108/13673271011059545.
Yun, S., & Lee, J. (2013). An innovation network analysis of science clusters in South Korea and Taiwan. Asian Journal of Technology Innovation, 21(2), 277-289. DOI: 10.1080/19761597.2013.866310.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Journal of Quantitative Methods for Economics and Business Administration

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.