Industry 4.0 and digitization towards job satisfaction of organizations in Tampico, Tamaulipas, Mexico
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.3992Keywords:
Industry 4.0, continuous improvement, organizational conditions, Cronbach's alphaAbstract
Industry 4.0 is related in each place and with the use and implementation of new technologies for the continuous improvement of administrative processes. As part of the growth of an organization, it is important that day by day it adapts to technological changes that affect worker operations or job security. Some of the elements that this industry encompasses are the use of autonomous equipment, robotics, process simulators, 3D printers, artificial intelligence and equipment that share information in real time. The objective of this article is to assess the digitization processes of organizations in the city of Tampico, Tamaulipas (Mexico), from the user's point of view, to identify the determining factors of job satisfaction. The multivariate technique of partial least squares regression (or PLS, by Partial Least Squares (or SEM, by Structural Equation Models) is used, considering as digitization analysis factors and their relationship with the relationship and collaboration model, skills and competencies professionals, digital training and digitization processes. The results show that the degree of motivation increases with the increase in the digitization of processes and that digital training and professional competencies need to increase gradually to have a positive impact in relation to the processes of digitization.
Downloads
References
Adeyeri, M., Mpofu, K., & Tijani, O. (2015). Integration of Agent Technology into Manufacturing Enterprise. A Review and Platform for Industry 4.0. In 2015 International Conference on Industrial Engineering and Operations Management (IEOM), 110. Dubai: IEEE.
Atzori, L., Antonio, L., & Morabito, G. (2010). The Internet of Things: A survey. Journal Computer Networks, 54(15), 2287-2805. DOI: 10.1016/j.comnet.2010.05.010.
Baena, F., Guarin, A., Mora, J., Sauza, J., & Retat, S. (2017). Learning Factory: The Path to Industry 4.0. Journal Procedia Manufacturing, 9, 73-80. DOI: 10.1016/j.promfg.2017.04.022.
Belvedere, V., Grando, A., & Bielli, P. (2013). A Quantitative Investigation of the Role of Information and Communication Technologies in the Implementation of a Product-service System. International Journal of Production Research, 51(2), 1-17. DOI: 10.1080/00207543.2011.648278.
Cae-Innovative Learning Solutions. (2019). ¿Por qué invertir en la formación digital de sus empleados? Nota descriptiva. Recuperado de https://www.cae.net/es/ventajas-de-la-formacion-digital.
Caricato, P., & Grieco, A. (2017). An application of Industry 4.0 to the production of packaging films. Journal Procedia Manufacturing, 11, 949-956. DOI: 10.1016/j.promfg.2017.07.199.
Chen, J. (2012). Advances in Hospitality and Leisure (volume 15). USA: Advances in Hospitality and Leisure.
Consell national de l’industrie. (2013). The New Face of Industry in France. Paris: French National Industry Council.
Darren, G., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. 11.0 update (4 ed.). Boston, MA: Allyn & Bacon.
Díaz, L., Torruco, U., Mildred, M., & Varela M. (2013). La entrevista, recurso flexible y dinámico. Revista de Investigación en Educación Médica, 2(7), 162-167. DOI: 10.1016/S2007-5057(13)72706-6
Domínguez, S. (2012). Propuesta para el cálculo de alfa ordinal y theta de armor. Revista de investigación en Psicología, 15(1), 213-217. DOI: 10.15381/rinvp.v15i1.3684.
Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or Hype? IEEE Industrial Electronics Magazine, 8(2), 56-58. DOI: 10.1109/MIE.2014.2312079.
European Commission. (2016). Factories of the Future PPP: Towards Competitive EU Manufacturing. Bruxelles: European Commission.
Evans, P., & Annunziata, M. (2012). Industrial Internet: Pushing the Boundaries of Minds and Machines. Boston, MA: General Electric.
Ffh-Fundació factor humá (2019). La digitalización acelera el cambio cultural. Nota descriptiva. Recuperado de https://factorhuma.org/es/actualitat/noticias/12711-articulo-de-opinion-la-digitalizacion-acelera-el-cambio-cultural
Foresight (2013). The Future of Manufacturing: A New Era of Opportunity and Challenge for the UK, London: UK Government Office for Science.
Greenacre, M., & Primicerio, R. (2013). Multivariate Analysis of Ecological Data. Bilbao: Fundación BBVA.
Grieco, A., Caricato, P., Gianfreda, D., Pesce, M., Rigon, V., Tregnaghi, L., & Voglino, A. (2017). An Industry 4.0 case study in fashion manufacturing. Journal Procedia Manufacturing, 11, 871-877. DOI: 10.1016/j.promfg.2017.07.190.
Haddara, M., & Elragal, A. (2015). The Readiness of ERP Systems for the Factory of the Future. Journal Procedia Computer Science, 74, 721-728. DOI: 10.1016/j.procs.2015.08.598.
Hair, J., Hult, G., Ringle, C., & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), (2ed). Nueva York: SAGE Publications.
Henseler, J., Ringle, C., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. DOI: 10.1007/s11747-014-0403-8.
Jiménez, R. (2004). Indicadores de calidad y eficiencia de los servicios hospitalarios. Una mirada actual. Revista Cubana de Salud Pública, 30(1), 17-36.
Kagermann, H., Wolfgang, W., & Helbig, J. (2013). Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. Berlin: Industrie 4.0, Working Group of Acatech.
Kang, H.S., Lee, J.Y., & Kim, H. (2016). Sang Smart Manufacturing: Past Research, Present Findings, and Future Directions, International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 111-128. DOI: https: 10.1007/s40684-016-0015-5.
Khaitan, S., & Mccalley, J. (2015). Design Techniques and Applications of Cyberphysical Systems: A Survey. IEEE Systems Journal, 9(2), 1-16. DOI: 10.1109/JSYST.2014.2322503.
Li, K., & Lleytons. (2015). Made in China 2025. Beijing: State Council of China.
Li, X., Di, L., Jiafu, W., Vasilakos, A., Lai, C., & Wang, S. (2015). A Review of Industrial Wireless Networks in the Context of Industry 4.0, Journal Wireless Networks, 23, 23-41. DOI: 10.1007/s11276-015-1133-7.
López, D. (2016). Análisis de Casos de Estudio sobre Industria 4.0 y Clasificación según Sectores de Actividad y Departamentos Empresariales. España: Universidad Politécnica de Valencia.
Matas, A. (2018). Diseño del formato de escalas tipo Likert: un estado de la cuestión. Revista Electrónica de Investigación Educativa, 20(1), 38-49. DOI: https: 10.24320/redie.2018.20.1.1347
Maynard, A. (2015). Navigating the Fourth Industrial Revolution. Journal Nature Nanotechnology, 10(12), 1005-1006. DOI: 10.1038/nnano.2015.286.
Monteiro, D., Marinho, D., Moutao, J., Couto, N., Antunes, R., & Cid, L. (2016). Adaptation and validation of the Portuguese version of Basic Psychological Needs Exercise Scale (BPNESp) to the sport domain and invariance across football and swimming. Journal Montricidade, 12(4), 51-61. DOI: 10.6063/motricidade.9372.
Montgomery, V. (2011). Introducción al análisis de regresión lineal. (3ed). México. Editorial Patria.
National Research Foundation. (2016). Research, Innovation and Enterprise (RIE) 2015. Singapore: Prime Minister’s Office of Singapore.
Organización Mundial de la Salud (2013). Derecho a la salud. Nota descriptiva n.23 [consultado 01 de abril 2019]. Recuperado de http://www.who.int/mediacentre/factsheets/fs323/es/
Pozo, M. (2016). 4 herramientas para dar paso a la industria 4.0. Recuperado de https://ciudadesdelfuturo.es/4-herramientas-digitales-industria-4-0.php.
Prieto, G., & Delgado, A. (2010). Fiabilidad y Validez. Revista Papeles del Psicólogo, 31(1), 67-74. DOI: 10.4067/S0718-09342002005100014.
Reif, R., Liveris, A., & Ann, S. (2014). Report To The President Accelerating U.S. Advanced Manufacturing. Washington, DC: The President’s Council of Advisors on Science and Technology.
Rennung, F., Luminosu, C., & Draghici, A. (2016). Service Provision in the Framework of Industry 4.0. Journal Procedia - Social and Behavioral Sciences, 221, 372-377. DOI: 10.1016/j.sbspro.2016.05.127.
Ridgway, K., Clegg, C., Williams, D., & Hourd, P. (2013). The Factory of the Future. London: Government Office for Science.
Shafiq, S.Y., Sanim, C., Szczerbicki, E., & Toro, C. (2015). Virtual Engineering Object/Virtual Engineering Process: A specialized form of Cyber Physical System for Industrie 4.0. Journal Procedia Computer Science, 60(1), 1146-1155. DOI: 10.1016/j.procs.2015.08.166.
Thomas, B., Riedl, M., Thron, M., & Diedrich, C. (2016). Integration of Classical Components into Industrial Cyber-Physical Systems. Journal Proceedings of the IEEE, 104(5), 947-959. DOI: 10.1109/JPROC.2015.2510981.
Tiwari, S., Wee, H., & Daryanto, Y. (2018). Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Journal Computers & Industrial Engineering, 115, 319-330. DOI: 10.1016/j.cie.2017.11.017.
Tunning. (2007). Reflexiones y perspectivas de la educación superior en América Latina. Informe final. Proyecto Tunning-America Latina. España, Bilbao: Universidad de Deusto, Universidad de Groningen.
Verdejo, P. (2006). Modelo para la educación y evaluación por competencias (MECO), Aseguramiento de la Calidad en la Educación y en el Trabajo,155-195. Editorial: Universidad Autónoma de Baja California, México.
Vizcaíno, A., Manzano, M., & Casas, G. (2015). Validez de constructo y confiabilidad del cuestionario de creencias epistemológicas sobre las matemáticas en alumnos de secundaria básica. Revista Colombiana de Psicología, 24(2), 301-316. DOI: 10.15446/rcp.v24n2.43974.
Welch, S., & Comer, J. (2018). Quantitative Methods for Public Administration: Techniques and Applications. USA: Editorial Waveland Pr Inc.
Zhan, Z., Xiao, L., Yue, G., Jun, Z., Henry, S., & Yun, L. (2015). Cloud Computing Resource Scheduling and a Survey of Its Evolutionary Approaches, Journal ACM Computing Surveys, 47(4), 1-33. DOI: 10.1145/2788397.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Journal of Quantitative Methods for Economics and Business Administration

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.