Reconstruction and Factorial Consistence: the Elbow Rule Applied to RMSEA, Parallel Analysis and other Confirmatory Techniques
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.5464Keywords:
multivariate analysis, exploratory factor analysis, maximum Likelyhood, comparison of factor structures, RMSEA scree plotAbstract
The comparison of surveys presents recurring methodological problems, among which the following stand out particularly: i) the difficulties associated with the change of the questions, either due to the addition of new ones, changing in the mode that are asked, or the elimination of others; ii) the own difficulties selecting the variables to be compared; iii) the need for recoding between mismatched surveys, and iv) the different measurement scales of the variables. Thus, in order to carry on research in quantitative methods, procedures are required to allow for the factorial structure, to compare variables, and to recode the measurement and the scale, all of them in different periods. To evaluate the extent to which the factorial structure is maintained, this work proposes measures of goodness of fit, attached to the confirmatory factorial analysis, where we can find also an original interpretation of the parsimony principle with the RMSEA, FIT and BIC, through the well-known elbow rule in the scree plot. The methodological proposal is validated through two publications, from different years, of the Sociological Research Center (CIS, by its Spanish acronym) and focused on the phenomenon of fiscal fraud.
Downloads
References
Arsham, H., & Lovric, M. (2011). Bartlett,s Test. In International Encyclopedia of Statistical Science (Issue March, pp. 87-88). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_132
Bandalos, D. L., & Finney, S.J. (2014). The Reviewer,s Guide to Quantitative Methods in the Social Sciences. In G. R. Hancock & R. O. Mueller (Eds.), The Reviewer,s Guide to Quantitative Methods in the Social Sciences (pp. 93-114). Routledge. https://doi.org/10.4324/9780203861554
Bartlett, M.S. (1951). A further note on tests of significance in factor analysis. British Journal of Statistical Psychology, 4(1), 1-2. https://doi.org/10.1111/j.2044-8317.1951.tb00299.x
Bjelland, I., Dahl, A.A., Haug, T.T., & Neckelmann, D. (2002). The validity of the Hospital Anxiety and Depression Scale. Journal of Psychosomatic Research, 52(2), 69-77. https://doi.org/10.1016/S0022-3999(01)00296-3
Bollen, K.A. (1989). Structural Equations with Latent Variables. John Wiley & Sons.
Cerny, B.A., & Kaiser, H.F. (1977). A Study Of A Measure Of Sampling Adequacy For Factor-Analytic Correlation Matrices. Multivariate Behavioral Research, 12(1), 43-47. https://doi.org/10.1207/s15327906mbr1201_3
CIS (Centro de Invetigaciones Sociológicas) (2011a). 2910| Opinión Pública y Política Fiscal (XXVIII). Catálogo de Encuestas.
CIS (2011b). Ficha Técnica 2910| Opinión Pública y Política Fiscal (XXVIII). http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/2900_2919/2910/Ft2910.pdf
CIS (2020). Cuestionario del Estudio: Opinión Pública y Política Fiscal XXXVI SEP 19. http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/3240_3259/3259/cues3259.pdf
CIS (2019a). Estudio No 3259 Opinión Pública y Política Fiscal (XXXVI). http://www.cis.es/cis/opencm/ES/1_encuestas/estudios/ver.jsp?estudio=14464
CIS (2019b). Ficha Técnica Estudio CIS 3259 (pp. 1-2). CIS. http://www.cis.es/cis/export/sites/default/-Archivos/Marginales/3240_3259/3259/FT3259.pdf
Clark, D.A., & Bowles, R.P. (2018). Model Fit and Item Factor Analysis: Overfactoring, Underfactoring, and a Program to Guide Interpretation. Multivariate Behavioral Research, 53(4), 544-558. https://doi.org/10.1080/00273171.2018.1461058
Conway, J.M., & Huffcutt, A.I. (2003). A Review and Evaluation of Exploratory Factor Analysis Practices in Organizational Research. Organizational Research Methods, 6(2), 147-168. https://doi.org/10.1177/1094428103251541
Erdfelder, E., FAul, F., Buchner, A., & Lang, A.G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. https://doi.org/10.1037/1082-989X.4.3.272
Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146
Fernández, R., & Cao, R. (2020). Simulación Estadística. Universidad de la Coruña. https://rubenfcasal.github.io/simbook/Simulacion.pdf
Ferrando, P.J., & Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en psicología. Papeles del Psicólogo, 31(1), 18-33.
Gao, S., Mokhtarian, P.L., & Johnston, R.A. (2008). Nonnormality of data in structural equation models. Transportation Research Record, 2082, 116-124. https://doi.org/10.3141/2082-14
Hofmann, R.J. (1978). Complexity and Simplicity as Objective Indices Descriptive ff Factor Solutions. Multivariate Behavioral Research, 13(2), 247-250. https://doi.org/10.1207/s15327906mbr1302_9
Hogarty, K.Y., Hines, C.V., Kromrey, J.D., Ferron, J.M., & Mumford, K.R. (2005). The Quality of Factor Solutions in Exploratory Factor Analysis: The Influence of Sample Size, Communality, and Overdetermination. Educational and Psychological Measurement, 65(2), 202-226. https://doi.org/10.1177/0013164404267287
Horn, J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179-185. https://doi.org/10.1007/BF02289447
Ibar, R. (2014). Nueva Metodología de recogida de información para su tratamiento a través del análisis multivariante y los modelos de ecuaciones estructurales. Aplicación en el ámbito universitario. CEU San Pablo.
IBM Corp. (2017). IBM SPSS Statistics for Windows, Version 25.0. IBM Corp.
Jefatura del Estado. (2003). Legislación Consolidada Ley 58/2003, de 17 de diciembre, General Tributaria. BOE, 302, 1-168.
Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. https://doi.org/10.1186/1471-2156-11-94
Jones, D.H. (1994). Book Review: Statistical Methods, 8th Edition George W. Snedecor and William G. Cochran Ames: Iowa State University Press, 1989. xix + 491 pp. Journal of Educational Statistics, 19(3), 304-307. https://doi.org/10.3102/10769986019003304
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. https://doi.org/10.1007/BF02289233
Kaiser, H.F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575
Kassambara, A. (2019). ggcorrplot: Visualization of a Correlation Matrix using “ggplot2.”
Kaufman, J.D., & Dunlap, W.P. (2000). Determining the number of factors to retain: A Windows-based FORTRAN-IMSL program for parallel analysis. Behavior Research Methods, Instruments, and Computers, 32(3), 389-394. https://doi.org/10.3758/bf03200806
Lawley, R.D., & Maxwell, A.E. (1971). Factor analysis as a statistical method (2a Edición). Butterworths.
Likert, R. (1932). A technique for the measurement of attitudes [Thesis]. In R. S. Woodworth (Ed.), Archives of Psychology (Vol. 22, Issue 140). The Science Press.
Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: Una guía práctica, revisada y actualizada. Anales de Psicologia, 30(3), 1151-1169. https://doi.org/10.6018/analesps.30.3.199361
Lorenzo-Seva, U., Timmerman, M.E., & Kiers, H.A.L. (2011). The Hull Method for Selecting the Number of Common Factors. Multivariate Behavioral Research, 46(2), 340-364. https://doi.org/10.1080/00273171.2011.564527
Mandelbrot, B. (1961). Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (Ingram Olkin, Sudhist G. Ghurye, Wassily Hoeffding, William G. Madow, and Henry B. Mann, eds.). In SIAM Review (Vol. 3, Issue 1). https://doi.org/10.1137/1003016
Marais, I., & Andrich, D. (2007). RUMMss. Rasch Unidimensional Measurement Models Simulation Studies Software, Version 2.0 (2nd ed.). The University of Western Australia.
Martín-Pliego, F.J. (2011). Introducción a la Estadística Económica y Empresarial. Paraninfo.
Microsoft Corporation. (2020). Microsoft Excel.
Muthen, B., & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45(1), 19-30. https://doi.org/10.1111/j.2044-8317.1992.tb00975.x
O'Connor, B.P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer,s MAP test. Behavior Research Methods, Instruments, and Computers, 32(3), 396-402. https://doi.org/10.3758/bf03200807
O'Connor, B.P. (2020). EFA.dimensions: Exploratory Factor Analysis Functions for Assessing Dimensionality.
Peña, D. (2002). Análisis de Datos Multivariantes. McGraw-Hill.
Pettersson, E., & Turkheimer, E. (2010). Item selection, evaluation, and simple structure in personality data. Journal of Research in Personality, 44(4), 407-420. https://doi.org/10.1016/j.jrp.2010.03.002
Price, L.R. (2014). Investigating Perfect Model Fit in Higher-Order Confirmatory Factor Analysis through Exploratory / Confirmatory and Bayesian Approaches HCFA 1 Investigating Perfect Model Fit in Higher-Order Confirmatory Factor Analysis through Exploratory / Confirmatory. May.
R Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Rahmer, B.D.J., Garzón Saénz, H., & Solana, J. (2020). Análisis comparativo de indicadores de capacidad multivariante. El caso del clúster manufacturero cartagenero Comparative analysis of multivariate capacity indicators. The case of the Cartagena manufacturing cluster. Revista de Métodos Cuantitativos para la Economía y la Empresa, 29, 172-189.
Revelle, W. (2020). psych: Procedures for Psychological, Psychometric, and Personality Research.
Revelle, W., & Rocklin, T. (1979). Very Simple Structure: An Alternative Procedure For Estimating The Optimal Number Of Interpretable Factors. Multivariate Behavioral Research, 14(4), 403-414. https://doi.org/10.1207/s15327906mbr1404_2
Rstudio Team (2020). RStudio: Integrated Development for R. Rstudio,PBC. http://www.rstudio.com
Shapiro, S.S., & Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591-611. https://doi.org/10.1093/biomet/52.3-4.591
Sharma, S. (1996). Applied Multivariate Techniques. John Wiley and Sons Inc.
Smith, E.P. (1997). Methods of multivariate analysis. In Journal of Statistical Planning and Inference (Vol. 59, Issue 1). https://doi.org/10.1016/S0378-3758(96)00098-5
Smith, R.M., Schumacker, R.E., & Bush, M.J. (1998). Using item mean squares to evaluate fit to the Rasch model. Journal of Outcome Measurement, 2(1), 66-78.
Spearman, C. (1927). The Abilities of Man their Nature and Measurement. Nature, 120(3014), 181-183. https://doi.org/10.1038/120181a0
Stegmann, M.B., Sjöstrand, K., & Larsen, R. (2006). Sparse modeling of landmark and texture variability using the orthomax criterion. Medical Imaging 2006: Image Processing, 6144, 61441G. https://doi.org/10.1117/12.651293
Steiger, J.H. and Lind, J. (1980). Statistically-based tests for the number of common factors. Paper Presented at the Annual Spring Meeting of the Psychometric Society.
Tennant, A., & Pallant, J. F. (2012). The Root Mean Square Error of Approximation (RMSEA) as a supplementary statistic to determine fit to the Rasch model with large sample sizes. Rasch Measurement Transactions, 25(4), 1348-1349. https://www.rasch.org/rmt/rmt254d.htm
Thurstone, L.L. (1947). Multiple-factor Analysis. The University of Chicago Press.
Velicer, W.F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41(3), 321-327. https://doi.org/10.1007/BF02293557
Welch, B.L. (1947). The Generalization of Student's, Problem when Several Different Population Variances are Involved. Biometrika, 34(1/2), 28. https://doi.org/10.2307/2332510
Welch, B.L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29(3-4), 350-362. https://doi.org/10.1093/biomet/29.3-4.350
West, S.G., Finch, J.F., & Curran, P.J. (1995). Structural Equation Models with Non Normal Variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural Equation Modeling: Concepts, Issues, and Applications (pp. 56-75). Sage Publications.
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (New York). Springer-Verlag New York. https://ggplot2.tidyverse.org
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.