Minimum income required by the household and perception of inequality in Peru
DOI:
https://doi.org/10.46661/rev.metodoscuant.econ.empresa.9442Keywords:
Household income, Perception of inequality, Socioeconomic level, quantilesAbstract
The objectives of the research are to estimate which factors that determine the minimum income required by the household and the perception of economic inequality, for which unconditional quantile regression and probabilistic regressions were employed for this purpose. Additionally, the study calculates the factors impacting the joint perception of economic inequality and inequality in access to education, health, employment, and justice using bivariate probabilistic regressions. Data from the 2022 National Survey on Perception of Inequalities were used. The results show that the required minimum household income and the probability of perception of inequality increase with higher educational and socioeconomic levels.
Downloads
References
Alejo, J., Favata, F., Montes-Rojas, G., & Trombetta, M. (2021). Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners. Economia, 44(88 SE-Articles). https://doi.org/10.18800/economia.202102.004 DOI: https://doi.org/10.18800/economia.202102.004
Arı, A., Özkan Özdemir, H., Kabadurmuş, F. K., Tosun, S., & Özdemir, D. (2022). Do socioeconomic inequalities increase the spread of COVID-19 in Turkey? Applied Economics Letters. https://doi.org/10.1080/13504851.2022.2082367 DOI: https://doi.org/10.1080/13504851.2022.2082367
Atreya, K., Rimal, N. S., Makai, P., Baidya, M., Karki, J., Pohl, G., & Bhattarai, S. (2022). Dalit’s livelihoods in Nepal: income sources and determinants. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02582-2 DOI: https://doi.org/10.1007/s10668-022-02582-2
Autor. (2024). Emprendimiento en Perú antes y durante la Covid-19: Determinantes, brecha en ingresos y eficiencia técnica. Revista de Métodos Cuantitativos Para La Economía y La Empresa, 37.
Barbosa-Camargo, M. I., García-Sánchez, A., & Ridao-Carlini, M. L. (2021). Inequality and dropout in higher education in colombia. A multilevel analysis of regional differences, institutions, and field of study. Mathematics, 9(24). https://doi.org/10.3390/math9243280 DOI: https://doi.org/10.3390/math9243280
Barroso, C., Abásolo, I., & Cáceres, J. J. (2016). Health inequalities by socioeconomic characteristics in Spain: The economic crisis effect. International Journal for Equity in Health, 15(1). https://doi.org/10.1186/s12939-016-0346-4 DOI: https://doi.org/10.1186/s12939-016-0346-4
Cai, W., Deng, Y., Zhang, Q., Yang, H., & Huo, X. (2021). Does income inequality impair health? Evidence from rural China. Agriculture (Switzerland), 11(3), 1–18. https://doi.org/10.3390/agriculture11030203 DOI: https://doi.org/10.3390/agriculture11030203
Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics : methods and applications. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511811241
Choi, G. (2021). Individuals’ socioeconomic position, inequality perceptions, and redistributive preferences in OECD countries. The Journal of Economic Inequality, 19(2), 239–264. https://doi.org/10.1007/s10888-020-09471-6 DOI: https://doi.org/10.1007/s10888-020-09471-6
Consiglio, V. S., & Sologon, D. M. (2022). The Myth of Equal Opportunity in Germany? Wage Inequality and the Role of (Non-)academic Family Background for Differences in Capital Endowments and Returns on the Labour Market. Social Indicators Research, 159(2), 455–493. https://doi.org/10.1007/s11205-021-02719-2 DOI: https://doi.org/10.1007/s11205-021-02719-2
Davies, J. M., Maddocks, M., Chua, K.-C., Demakakos, P., Sleeman, K. E., & Murtagh, F. E. M. (2021). Socioeconomic position and use of hospital-based care towards the end of life: a mediation analysis using the English Longitudinal Study of Ageing. The Lancet Public Health, 6(3), e155–e163. https://doi.org/10.1016/S2468-2667(20)30292-9 DOI: https://doi.org/10.1016/S2468-2667(20)30292-9
Duy Kien, V., Van Minh, H., Bao Giang, K., Weinehall, L., & Ng, N. (2014). Horizontal inequity in public health care service utilization for non-communicable diseases in urban Vietnam. Global Health Action, 7, 24919. https://doi.org/10.3402/gha.v7.24919 DOI: https://doi.org/10.3402/gha.v7.24919
El-Osta, H. S. (2020). The rural–urban income divide among farm households: the role of off-farm work and farm size. Agricultural Finance Review, 80(4), 453–470. https://doi.org/10.1108/AFR-12-2018-0106 DOI: https://doi.org/10.1108/AFR-12-2018-0106
Essama-Nssah, B., & Lambert, P. J. (2012). Chapter 6 Influence Functions for Policy Impact Analysis. In J. A. Bishop & R. Salas (Eds.), Inequality, Mobility and Segregation: Essays in Honor of Jacques Silber (Vol. 20, pp. 135–159). Emerald Group Publishing Limited. https://doi.org/10.1108/S1049-2585(2012)0000020009 DOI: https://doi.org/10.1108/S1049-2585(2012)0000020009
Firpo, S., Fortin, N. M., & Lemieux, T. (2009). Unconditional Quantile Regressions. Econometrica, 77(3), 953–973. https://doi.org/https://doi.org/10.3982/ECTA6822 DOI: https://doi.org/10.3982/ECTA6822
Firpo, S. P., Fortin, N. M., & Lemieux, T. (2018). Decomposing Wage Distributions Using Recentered Influence Function Regressions. In Econometrics (Vol. 6, Issue 2). https://doi.org/10.3390/econometrics6020028 DOI: https://doi.org/10.3390/econometrics6020028
García-Sánchez, E., García-Castro, J. D., Willis, G. B., & Rodríguez-Bailón, R. (2022). Percepción de desigualdad económica en la vida cotidiana e ideología política: un estudio con jóvenes de España. Revista de Estudios Sociales, 79, 2–21. https://doi.org/10.7440/res79.2022.01 DOI: https://doi.org/10.7440/res79.2022.01
Godínez Montoya, L., Figueroa Hernández, E., & Pérez Soto, F. (2015). Determinantes del ingreso en los hogares en zonas rurales de Chiapas. NÓESIS. REVISTA DE CIENCIAS SOCIALES, 24(47), 136–156. https://www.redalyc.org/articulo.oa?id=85932588007 DOI: https://doi.org/10.20983/noesis.2015.1.5
Greene, W. H. (2008). Econometric Analysis (7ma ed.). Pearson/Prentice Hall.
Huber, P. J., & Ronchetti, E. M. (2009). Robust Statistics (2da ed.). John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/9780470434697
Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33–50. https://doi.org/10.2307/1913643 DOI: https://doi.org/10.2307/1913643
Omori, M. (2019). “Nickel and Dimed” for Drug Crime: Unpacking the Process of Cumulative Racial Inequality. Sociological Quarterly, 60(2), 287–313. https://doi.org/10.1080/00380253.2018.1526049 DOI: https://doi.org/10.1080/00380253.2018.1526049
Peng, X. X., & Zhang, J. H. (2022). Socioeconomic inequality in public satisfaction with the healthcare system in China: a quantile regression analysis. Archives of Public Health, 80(1). https://doi.org/10.1186/s13690-022-00925-z DOI: https://doi.org/10.1186/s13690-022-00925-z
Picard, N., & Wolff, F.-C. (2014). Educational inequalities within families in France | Les inégalités intrafamiliales d’éducation en France. Revue Economique, 65(6), 813–840. https://doi.org/10.3917/reco.pr2.0032 DOI: https://doi.org/10.3917/reco.pr2.0032
Qian, Y., Zhou, Z., Yan, J., Gao, J., Wang, Y., Yang, X., Xu, Y., & Li, Y. (2017). An economy-ralated equity analysis of health service utilization by women in economically underdeveloped regions of western China. International Journal for Equity in Health, 16(1). https://doi.org/10.1186/s12939-017-0667-y DOI: https://doi.org/10.1186/s12939-017-0667-y
Rios-Avila, F. (2020). Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition. The Stata Journal, 20(1), 51–94. https://doi.org/10.1177/1536867X20909690 DOI: https://doi.org/10.1177/1536867X20909690
Rodríguez, S. A. (2014). Percepciones de desigualdad socioeconómica. Un estudio exploratorio para el caso argentino. Revista de Ciencias Sociales, 27(34), 93–118. https://www.redalyc.org/articulo.oa?id=453644795006
Simões, N., Crespo, N., Moreira, S. B., & Varum, C. A. (2016). Measurement and determinants of health poverty and richness: evidence from Portugal. Empirical Economics, 50(4), 1331–1358. https://doi.org/10.1007/s00181-015-0967-2 DOI: https://doi.org/10.1007/s00181-015-0967-2
Wegener, B. (1987). The Illusion of Distributive Justice. European Sociological Review, 3(1), 1–13. http://www.jstor.org/stable/522527 DOI: https://doi.org/10.1093/oxfordjournals.esr.a036427
Xie, X., Wu, Q., Hao, Y., Yin, H., Fu, W., Ning, N., Xu, L., Liu, C., Li, Y., Kang, Z., He, C., & Liu, G. (2014). Identifying determinants of socioeconomic inequality in health service utilization among patients with chronic non-communicable diseases in China. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0100231 DOI: https://doi.org/10.1371/journal.pone.0100231
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Luis Enrique Barriga Sairitupa, Juliana Mery Bautista López, José Ignacio Aguaded Gómez

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.