Natural People Credit Risk Modeling. An applied case in a Colombian Family Benefit Fund
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.5146Keywords:
Credit Risk, Logit Model, Probit Model, Neural Network, Support Vector MachineAbstract
Credit score models quantify the risks in credit operations, customer segmentation, and approve or reject requests to credit customers. These models provide the necessary information to calculate the probabilities of default of any customer through the application of parametric or non-parametric techniques. This work identifies which model (Logit, Probit, Neural Networks, or Linear Support-Vector Machine (L-SVM)) may be more appropriate to measure the credit risk of individuals in a Family Benefit Fund located in Colombia. The results show Linear Support Vector Machine produces better performance, but Probit - Stepwise models are equally useful and they have the advantage of being interpreting the calibrated parameters.
Downloads
References
Abdou, H. A., & Pointon, J. (2011). Credit Scoring, Statistical Techniques and Evaluation Criteria: A Review of the Literature. Intelligent Systems in Accounting, Finance and Management, 18(2-3), 59-88. https://doi.org/10.1002/isaf.325
Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222(1), 168-178. https://doi.org/10.1016/j.ejor.2012.04.009
Altman, E.I. (1980). Commercial bank lending: process, credit scoring, and costs of errors in lending. Journal of Financial and Quantitave Analysis, XV(4), 813-832.
Altman, E. (1968). The Prediction of Corporate Bankruptcy. The Journal of Finance, XXIII(4), 589-609. https://doi.org/https://doi.org/10.2307/2978933
Anderson, D.R., Sweeney, D.J., & Williams, T.A. (2008). Estadística para Administración y Economía (S. Cervantez (ed.); 10th ed.).
Anderson, R. (2007). The Credit Scoring Toolkit. (Oxford University Press, Ed.; 1st ed., Vol. 1). Oxford: Oxford University Press. Mexico DF: CENGAGE Learning.
Apilado, V.P., Warner, D.C., & Dauten, J.J. (1974). Evaluative Techniques In Consumer Finance - Experimental Result And Policy Implications For Financial Institutions. Journal of Financial and Quantitave Analysis, 9(2), 275-284.
Chaudhuri, K., & Cherical, M.M. (2012). Credit rationing in rural credit markets of India. Applied Economics, 44(7), 803-812. https://doi.org/10.1080/00036846.2010.524627
Constangioara, A. (2011). Consumer Credit Scoring. Romanian Journal of Economic Forecasting, 3, 162-178.
Desai, V.S., Crook, J.N., & Overstreet, G.A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95(1), 24-37. https://doi.org/10.1016/0377-2217(95)00246-4
Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Glorfeld, L.W. (1990). A Robust Methodology for Discriminant Analysis Based on Least-absolute-value Estimation. Managerial and Desicion Economics, 11(1), 267-277.
Gonçalves, R.M.L., & Braga, M.J. (2008). Determinantes de risco de liquidez em cooperativas de crédito: uma abordagem a partir do modelo logit multinomial. Revista de Administração Contemporânea, 12(4), 1019-1041. https://doi.org/10.1590/S1415-65552008000400007
Hilbe, J. M. (2015). Practical Guide to Logistic Regression. New York, HY. Taylor and Francis Group. https://doi.org/10.1201/b18678
Hosmer, D., Lemeshow, S., & Sturdivant, R. (2013). Applied Logistic Regression. In Wiley (Ed.), Wiley (Third). Wiley. Hoboken (New Yersey): John Wiley & Sons. https://doi.org/10.2307/1270433
Ley 21, 1 (1982) (testimony of Senado de la República de Colombia). https://www.funcionpublica.gov.co/eva/gestornormativo/norma_pdf.php?i=4827
Lipovetsky, S., & Conklin, M. (2004). Decision Making By Variable Contribution in Discriminant, Logit, and Regression Analyses. International Journal of Information Technology & Decision Making, 3(2), 265-279. https://doi.org/10.1142/S0219622004001033
Martens, D., Van Gestel, T., De Backer, M., Haesen, R., Vanthienen, J., & Baesens, B. (2010). Credit rating prediction using Ant Colony Optimization. Journal of the Operational Research Society, 61(4), 561-573. https://doi.org/10.1057/jors.2008.164
Melo-Velandia, L.F., & Becerra-Camargo, O.R. (2005). Medidas de riesgo, características y técnicas de medición: una aplicación del VaR y el ES a la tasa Interbancaria de Colombia. Banco de La Republica, 1-75.
Melo, L.F., & Granados, J.C. (2011). Regulación y valor en riesgo. Ensayos sobre Política Economica, 29(64), 110-177.
Millán-Solarte, J., & Caicedo-Cerezo, É. (2018). Modelos para otorgamiento y seguimiento en la gestión de riesgo de crédito. Revista de Métodos Cuantitativos para la Economía y la Empresa, 1(25), 23-41. https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2370/2709
Moreno, J.F., & Melo, L.F. (2011). Pronóstico de incumplimientos de pago mediante máquinas de vectores de soporte: una aproximación inicial a la gestión del riesgo de crédito. Boletín de Prensa DANE, 677, 1-33.
Moreno, S. (2013). El Modelo Logit Mixto para la construcción de un Scoring de Crédito. Universidad Nacional de Colombia.
Mures, J., García, A., & Vallejo, E. (2011). Aplicación del Análisis Discriminate y Regresión Logística en el estudio de la morosidad en las Entidades Financieras Comparación de Resultados. Revista de La Facultad de Ciencias Económicas y Empresariales, 1, 175-199. http://search.proquest.com/docview/818448211?accountid=10344
Myers, J.H., & Forgy, E.W. (1963). Comparison of Discriminant and Regression analysis for credit evaluation System. Journal of the American Statistical Association, 58(303), 799-806.
Ochoa, J.C., Galeano, W., & Agudelo, L.G. (2010). Construcción de un modelo de scoring para el otorgamiento de crédito en una entidad financiera. Perfil de Coyuntura Económica, 16, 191-222.
Olagunji, F., & Ajiboye, A. (2010). Agricultural lending decision: a tobit regression analysis. African Journal of Food Agriculture, Nutrition and Development, 10(5), 1-27. https://doi.org/10.4314/ajfand.v10i5.57897
Orgler, Y.E. (1970). A Credit Scoring Model for Commercial Loans. Journal of Money, Credit and Banking, 2(4), 435-445. https://doi.org/10.2307/1991095
Palacio, A.P., Lochmúller, C., Murillo, J.G., Pérez, M.A., & Vélez, C.A. (2011). Modelo cualitativo para la asignación de créditos de consumo y ordinario. El caso de una cooperativa de crédito. Revista Ingenierias Universidad de Medellín, 10(19), 89-100.
Pérez, F.O., & Fernández, H. (2007). Las redes neuronales y la evaluación del riesgo de crédito. Revista Ingenierías, 6(10), 77-91.
Puertas, R., & Marti, M.L. (2012). Análisis del Credit Scoring. Revista Administración de Empresas, 53(3), 303-315.
Rayo, S., Rubio, J.L., & Blasco, D.C. (2010). A Credit Scoring Model for Institutions of Microfinance under the Basel II Normative. Journal of Economics, Finance & Administrative Science, 15(28), 89-124.
Rodríguez, D.E., Becerra, J.A., & Cardona, D. (2017). Modelos y metodologías de credit score para personas naturales: una revisión literaria. Revista CEA, 3(5), 13-28. https://doi.org/10.22430/24223182.645
Rodríguez, D., & Trespalacios, A. (2015). Medición de valor en riesgo en cartera de clientes a través de modelos logísticos y simulación de Montecarlo. Medellín (Colombia): Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/7853.
Roszbach, K. (2004). Bank Lending Policy, Credit Scoring, and the Survival of Loans. Review of Economics and Statistics, 86(4), 946-958. https://doi.org/10.1162/0034653043125248
Saavedra-García, M.L., & Saavedra-García, M.J. (2010). Modelos para medir el riesgo de crédito de la banca. Cuadernos de Administración, 23(40), 295-319. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-35922010000100013&lang=pt
Salazar, F.E. (2013). Cuantificación del riesgo de incumplimiento en créditos de libre inversión: un ejercicio econométrico para una entidad bancaria del municipio de Popayán, Colombia. Estudios Gerenciales, 29(129), 416-427. https://doi.org/10.1016/j.estger.2013.11.007
Soydaner, D., & Kocadağlı, O. (2015). Artificial Neural Networks with Gradient Learning Algorithm for Credit Scoring. Journal of the School of Bussiness Administration, 44(2), 3-12.
Sustersic, M., Mramor, D., & Zupan, J. (2007). Consumer credit scoring models with limited data. Ljubljana Meetings Paper, 1(1), 1-21. https://doi.org/10.1016/j.eswa.2008.06.016
Támara, A., Villegas, G., Leones, M., & Salazar, J. (2018). Modelación del riesgo de insolvencia en empresas del sector salud empleando modelos logit. Revista de Métodos Cuantitativos para la Economía y la Empresa, 1(26), 128-145. https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2757/3039
Taylor, K.W., & Chappell, N.L. (1980). Multivariate analysis of qualitative data. Canadian Review of Sociology/Revue Canadienne de Sociologie, 17(2), 93-108. https://doi.org/10.1111/j.1755-618X.1980.tb00688.x
Thomas, L., Edelman, D., & Crook, J. (2002). Credit Scoring and Its Applications. Philadelphia: SIAM (Society For Industrial and Applied Mathematics).
Trejo, J.C., Martínez, M.Á., & Venegas, F. (2017). Credit risk management at retail in Mexico: An econometric improvement in the selection of variables and changes in their characteristics. Contaduría y Administración, 62(2), 399-418. https://doi.org/10.1016/j.cya.2017.02.006
Webster, G. (2011). Bayesian Logistic Regression Models for Credit Scoring (Issue December). Grahamstown, South Africa: Rhodes University.
Zhai, H., & Russell, J.S. (1999). Stochastic modelling and prediction of contractor default risk. Construction Management and Economics, 17(1), 563-576.
Zhou, L., Lai, K.K., & Yen, J. (2009). Credit Scoring Models With Auc Maximization Based on Weighted Svm. International Journal of Information Technology & Decision Making, 8(4), 677-696. https://doi.org/10.1142/S0219622009003582
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Submission of manuscripts implies that the work described has not been published before (except in the form of an abstract or as part of thesis), that it is not under consideration for publication elsewhere and that, in case of acceptance, the authors agree to automatic transfer of the copyright to the Journal for its publication and dissemination. Authors retain the authors' right to use and share the article according to a personal or instutional use or scholarly sharing purposes; in addition, they retain patent, trademark and other intellectual property rights (including research data).
All the articles are published in the Journal under the Creative Commons license CC-BY-SA (Attribution-ShareAlike). It is allowed a commercial use of the work (always including the author attribution) and other derivative works, which must be released under the same license as the original work.
Up to Volume 21, this Journal has been licensing the articles under the Creative Commons license CC-BY-SA 3.0 ES. Starting from Volume 22, the Creative Commons license CC-BY-SA 4.0 is used.