Evaluación de la eficiencia del gasto social en los países EU15 con análisis envolvente de datos y métodos cluster borrosos
DOI:
https://doi.org/10.46661/revmetodoscuanteconempresa.3855Palabras clave:
desigualdad de renta, pobreza, frontera eficiente, análisis envolvente de datos, clustering borrosoResumen
En el estudio de los sistemas de bienestar la relación entre el gasto social y los indicadores de vulnerabilidad como la tasa de pobreza o índices de desigualdad de ingresos tienen gran interés en la literatura. Este trabajo evalúa la productividad del gasto social de los estados de la EU15 (los estados de bienestar más consolidados de la EU28), en el período 2011-2015, con metodología Análisis Envolvente de Datos. Posteriormente, con un método clustering difuso identificamos los patrones existentes de gasto social y su eficiencia. Observamos tres grupos de países. El primero engloba la mayor parte de estado del bienestar nórdico y continental. El segundo grupo, conformado por Luxemburgo e Irlanda, son países con el menor volumen de gastos social sobre PIB pero a la vez son países eficientes. El tercero engloba a los estados del bienestar mediterráneos, junto con Gran Bretaña, que son los menos eficientes en la reducción de los indicadores de vulnerabilidad.
Descargas
Citas
Afonso, A., & Aubyn, M.S. (2006). Cross-country efficiency of secondary education provision: A semi-parametric analysis with non-discretionary inputs. Economic modelling, 23(3), 476-491.
Afonso, A., & St Aubyn, M. (2004). Non-parametric approaches to education and health expenditure efficiency in OECD countries. Journal of Applied Economics, 8(2), 227-246.
Afonso, A., Schuknecht, L., & Tanzi, V. (2010). Income distribution determinants and public spending efficiency. The Journal of Economic Inequality, 8(3), 367-389.
Agasisti, T., & Johnes, G. (2010). Heterogeneity and the evaluation of efficiency: the case of Italian universities. Applied Economics, 42(11), 1365-1375.
Andersson, C., Antelius, J., Månsson, J., & Sund, K. (2017). Technical efficiency and productivity for higher education institutions in Sweden. Scandinavian journal of educational research, 61(2), 205-223.
Anker, J. et al. (2009). Overview and Analysis. Minimum Income Schemes in Denmark: A Study of National Policies, Brussels: European Commission.
Atkinson, A. (2000). A European Social Agenda: Poverty Benchmarking and Social Transfers. Euromod Working Paper No. EM3/00.
Banker RD, Charnes A., & Cooper WW. (1984). Some models for estimating technical and scale inefficiency in data envelopment analysis. Management Science, 30(9), 1078-1092.
Beblo, M., & Knaus, T. (2001). Measuring Income Inequality in Euroland. The Review of Income and Wealth, 47, 301-320.
Bezdek, J.C. (1981). Objective Function Clustering. In Pattern recognition with fuzzy objective function algorithms, Springer, Boston, MA. pp. 43-93.
Bogdanov, G., & Zahariev, B. (2009). Analysis of the Situation in Relation to Minimum Income Schemes in Bulgaria. A Study of National Policies. Brussels: European Commission.
Bradbury, B., & Jäntti, M. (2001). Child poverty across twenty-five countries. In Bradbury, B., Jenkins, S., &Micklewright, J. (eds.), The dynamics of Child Poverty in Industrialised Countries, Cambridge: Cambridge University Press, pp. 62-91.
Cantillon, B., Marx, I., & Van den Bosch, K. (1997). The Challenge of Poverty and Social Exclusion. In OECD (ed.), Towards 2000: The New Social Policy Agenda, Paris: OECD.
Cantillon, B. (2011). The Paradox of the Social Investment State. Growth, Employment and Poverty in the Lisbon Era. Working Paper No. 11 / 03, University of Antwerp. http://www.centrumvoorsociaalbeleid.be/sites/default/files/CSB%20Working%20Paper%2011%2003_March%202011.pdf
Cantillon, B., Marx, I., & Van den Bosch, K. (2002). The Puzzle of Egalitarianism: About the Relationships between Employment, Wage Inequality, Social Expenditures and Poverty. Working Papers No 337, Luxembourg: Luxembourg Income Study.
Charnes, A., Cooper, W.W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
Cincinnato, S., &Nicaise, I. (2009). Minimum Income Schemes: Panorama and Assessment. A Study of National Policies, Brussels: European Commission.
Clements, B. (2002). How efficient is education spending in Europe? European Review of Economics and Finance, 1(1), 3-26.
Coccia, M., Falavigna, G., & Manello, A. (2015). The impact of hybrid public and market-oriented financing mechanisms on the scientific portfolio and performances of public research labs: a scientometric analysis. Scientometrics, 102(1), 151-168.
Costea, A., & Bleotu, V. (2012). A new fuzzy clustering algorithm for evaluating the performance of non-banking financial institutions in Romania. Economic Computation and Economic Cybernetics Studies and Research, 46, 179-199.
Dave, R.N. (1996). Validating fuzzy partitions obtained through c-shells clustering. Pattern Recognition Letters, 17(6), 613-623.
Derrig, R.A., & Ostaszewski, K.M. (1995). Fuzzy techniques of pattern recognition in risk and claim classification. Journal of Risk and Insurance, 62(3), 447-482.
Emrouznejad, A., & Yang, G.L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978-2016. Socio-Economic Planning Sciences, 61, 4-8.
Esping-Andersen, G. (1990). Three Worlds of Welfare Capitalism, Cambridge: Cambridge Polity Press.
Ferrera, M. (2005). Welfare states and social safety nets in Southern Europe: an introduction. In M. Ferrera (Ed.), Welfare State Reform in Southern Europe. Fighting poverty and social exclusion in Italy, Spain, Portugal and Greece, Routledge: Abingdon, pp. 1-23.
Ferrera, M. (1998): Le trappole del welfare, Bolonia: Il Mulino.
Finn, D., Schulte, B., Eichhors, O., Kaufmann, O., & Konle-Seidl, R. (2008). Employment First’: activating the British Welfare State. Bringing the Jobless into Work? Experiences with Activation Schemes in Europe and the US. Berlin: Springer.
González-Pérez, B., Mendaña-Cuervo C., López-González, E., & Caño-Alegre, C. (2007). ¿Son eficientes las Universidades Públicas? Aplicación del análisis envolvente de datos en el caso de Castilla y León. En P. Moyano Pesquera, N. Somarriba Arechavala, J. E. Fernández Arufe (dir.), J. L. Rojo García (dir.), Anales de economía aplicada 2007, 5, 129-153.
Gupta, S., & Verhoeven, M. (2001). The efficiency of government expenditure: experiences from Africa. Journal of Policy Modeling, 23(4), 433-467.
Herrera, S., & Pang, G. (2005). Efficiency of public spending in developing countries: an efficiency frontier approach (Vol. 3645). NY: World Bank Publications.
Hirschinger, M., Spickermann, A., Hartmann, E., Gracht, H., & Darkow, I.L. (2015). The Future of Logistics in Emerging Markets-Fuzzy Clustering Scenarios Grounded in Institutional and Factor‐Market Rivalry Theory. Journal of Supply Chain Management, 51(4), 73-93.
Kandel, A. (1982). Fuzzy Techniques in Pattern Recognition, New York: John Wiley and Sons.
Kapsoli, M.J., & Teodoru, I.R. (2017). Benchmarking Social Spending Using Efficiency Frontiers. Working Paper 17/197, International Monetary Fund.
Khaleie, S., Fasanghari, M., & Tavassoli, E. (2012). Supplier selection using a novel intuitionist fuzzy clustering approach. Applied Soft Computing, 12(6), 1741-1754.
Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., Shamshirband, S., & Ab Hamid, S. H. (2015). Developing a fuzzy clustering model for better energy use in farm management systems. Renewable and Sustainable Energy Reviews, 48, 27-34.
Klawonn, F., Kruse, R., & Winkler, R. (2015). Fuzzy clustering: More than just fuzzification. Fuzzy sets and systems, 281, 272-279.
Legros, M. (2009). Minimum Income Schemes. From Crisis to Another, The French Experience of Means-tested Benefits, Brussels: European Commission.
Liu, J. S., Lu, L. Y., Lu, W. M., & Lin, B. J. (2013). A survey of DEA applications. Omega, 41(5), 893-902.
Nelson, K. (2003). Fighting Poverty: Comparative Studies on Social Insurance, Means-tested Benefits and Income Redistribution. Dissertation Series No. 60, Stockholm: Swedish Institute for Social Research.
Oxley, H., Dang, Th.-Th., Förster, M., & Pellizari, M. (2001). Income inequalities and poverty among children and households with children in selected OECD countries. In K. Vleminckx y T. Smeeding (eds), Child Well-being, Child Poverty and Child Policy in Modern Nations: What do we know, Bristol: Policy Press, pp. 371-405.
Radu, M. (2009). Analysis of the Situation in Relation to Minimum Income Schemes in Romania. A Study of National Policies. Brussels: European Commission.
Ruoppila, S., & Lamminmäki, S. (2009). Minimum Income Schemes. A Study of National Policies. Brussels: European Commission.
Sherman, H. D., & Zhu, J. (2006). Data Envelopment Analysis Explained. Service Productivity Management: Improving Service Performance using Data Envelopment Analysis (DEA), 49-89.
Vandenbroucke, F., & Vleminckx, K. (2011). Disappointing poverty trends: is the social investment state to blame? An exercise in soul-searching for policy-makers. Working Paper No. 11 / 01, University of Antwerp.
Wang, W., & Zhang, Y. (2007). On fuzzy cluster validity indices. Fuzzy sets and systems, 158(19), 2095-2117.
Wu, D., Yan, D.H., Yang, G.Y., Wang, X.G., Xiao, W.H., & Zhang, H.T. (2013). Assessment on agricultural drought vulnerability in the Yellow River basin based on a fuzzy clustering iterative model. Natural hazards, 67(2), 919-936.
Xie, X.L., & Beni, G. (1991). A validity measure for fuzzy clustering», IEEE Transactions on pattern analysis and machine intelligence, 13(8), 841-847.
Yu, S., Wei, Y.M., & Wang, K. (2014). Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition. Energy Policy, 66, 630-644.
Yu, S., Wei, Y.M., Fan, J., Zhang, X., & Wang, K. (2012). Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization. Applied Energy, 92, 552-556.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista de Métodos Cuantitativos para la Economía y la Empresa

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
El envío de un manuscrito a la Revista supone que el trabajo no ha sido publicado anteriormente (excepto en la forma de un abstract o como parte de una tesis), que no está bajo consideración para su publicación en ninguna otra revista o editorial y que, en caso de aceptación, los autores están conforme con la transferencia automática del copyright a la Revista para su publicación y difusión. Los autores retendrán los derechos de autor para usar y compartir su artículo con un uso personal, institucional o con fines docentes; igualmente retiene los derechos de patente, de marca registrada (en caso de que sean aplicables) o derechos morales de autor (incluyendo los datos de investigación).
Los artículos publicados en la Revista están sujetos a la licencia Creative Commons CC-BY-SA de tipo Reconocimiento-CompartirIgual. Se permite el uso comercial de la obra, reconociendo su autoría, y de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.
Hasta el volumen 21 se ha estado empleando la versión de licencia CC-BY-SA 3.0 ES y se ha comenzado a usar la versión CC-BY-SA 4.0 desde el volumen 22.